
Bridging Paxos and Blockchain Consensus
Aleksey Charapko

University at Buffalo, SUNY
acharapk@buffalo.edu

Ailidani Ailijiang
University at Buffalo, SUNY

ailidani@buffalo.edu

Murat Demirbas
University at Buffalo, SUNY

demirbas@buffalo.edu

Abstract—The distributed consensus problem has been ex-
tensively studied in the last four decades as an important
problem in distributed systems. Recent advances in decentralized
consensus and blockchain technology, however, arose from a
disparate model and gave rise to disjoint knowledge-base and
techniques than those in the classical consensus research. In
this paper we make a case for bridging these two seemingly
disparate approaches in order to help transfer the lessons
learned from the classical distributed consensus world to the
blockchain world and vice versa. To this end, we draw parallels
between blockchain consensus and a classical consensus protocol,
Paxos. We also survey prominent approaches to improving the
throughput and providing instant irreversibility to blockchain
consensus and show analogies to the techniques from classical
consensus protocols. Finally, inspired by the central role formal
methods played in the success of classical consensus research, we
suggest more extensive use of formal methods in modeling the
blockchains and smartcontracts.

I. INTRODUCTION

The consensus problem has been studied for more than
forty years in distributed systems. Distributed consensus is
a fundamental problem arising in the context of database
transactions, state machine replication, group membership, and
leader election. Consensus means processes reach agreement
on a single value: The processes provide their candidate values,
communicate with one another, and agree/commit on a single
consensus value regardless of some faulty processes.

The research on consensus in distributed systems literature
has established a rigorous perimeter around the formal safety
and liveness/progress guarantees that can be provided. In
particular, Paxos [1] protocol for consensus compartmen-
talizes the safety and progress properties nicely. Even un-
der a fully asynchronous model (where all timing assump-
tions/expectations break), Paxos preserves safety thanks to its
balloting and anchoring system. Paxos also provides progress
when the system is out of the realm of the fully asynchronous
model (where FLP result [2] holds) and in to the partially
synchronous model where weak-complete and eventually-
weak-accurate failure detectors are implementable [3]. Formal
methods and formally specified assumptions and guarantees
played a key role in the success of the classical distributed
consensus work. Today Paxos variants have been deployed
ubiquitously in many cloud computing and web applications
to provide distributed coordination [4].

A shortcoming of distributed consensus work is that it failed
to provide a solution that scales to the large number of par-
ticipants desired in public, permissionless, open participation
settings. Paxos deployments are typically limited to 5 nodes.

Byzantine tolerant consensus solutions, such as PBFT [5], are
limited to less than 10, and the latency of PBFT has been
shown to grow quadratically as the number of nodes in the
cluster increases [6].

Recently, on the other side of the canyon, blockchain
consensus arose as a radical solution to distributed consen-
sus, ignoring both the contributions and baggage of classical
distributed consensus work. The blockchain consensus model
brings new constraints and requirements to the consensus
problem. In this model, participation is open and permission-
less. In an open model, it is not sufficient anymore to use
3-5 participants—which was enough for tolerating crashes
and ensuring persistency of the data in a datacenter setting.
For reasons of attestability and tolerating colluding groups of
Byzantine participants, it is preferred to keep the participants
at 1000s or higher.

To deal with the challenges of Byzantine participants in
open/permissionless settings, many blockchain consensus pro-
tocols adopt proof-of-work (PoW) [7], [8] as an identity
assignment tool. PoW ensures that the number of identi-
ties assigned to the honest and adversarial parties can be
made proportional to their aggregate computational power. By
employing PoW for blockchain consensus, Sybil attacks [9]
that employ impersonation is rendered useless since each
sock puppet need to expend significant amount of computing
resources. PoW is expensive in terms of time wasted and
electricity bills: only a miner which has successfully solved a
computationally hard puzzle (finding the right nonce for the
block header) can append to the blockchain.

Blockchain solutions are also not immune from short-
comings. Many solutions exhibited low throughput and high
latency problems. The approximate probabilistic nature of
some blockchain solutions also created issues. Finally, some
problems arose from unclear/vague assumptions and guaran-
tees in blockchain protocols.

Contributions. In this paper we make a case for bridging
these two seemingly disparate approaches in order to help
transfer the lessons learned from the classical distributed
consensus world to the blockchain world and in reciprocal.
Our paper has the following major contributions.

1) We show parallels between the two approaches by show-
ing how blockchain consensus fits in and compares with
the Paxos consensus protocol.

2) We survey prominent blockchain consensus work that
achieved improved throughput and instant irreversibility,



and show analogies to techniques from the classic con-
sensus protocols.

3) We suggest the use of formal methods, which has proven
its benefits in the classic consensus work, for blockchain
consensus for better specifying and model checking the
blockchain protocols and smartcontracts.

4) We show analytical evaluation of how blockchain and
Paxos compare at the protocol level.

To help address concurrent execution and distributed sys-
tems challenges, in our future work, we propose to use
TLA+/PlusCal [10] to build a formal framework that facilitates
modeling and proving properties for blockchain consensus
protocols and smartcontracts. The framework will support
ways to test the blockchain and smartcontract protocols under
a variety of challenging environments such as strategic par-
titioning, unfair execution scheduling, overstretched timelines
(due to bad/malicious clock synchronization), and inopportune
Byzantine and crash failures.

II. PAXOS

The original Paxos protocol [1] achieves the fault tolerant
consensus among a set of nodes. The classical consensus
problem is described by two safety and one liveness properties.

Agreement: No two correct nodes can decide on different
values.

Validity: If all initial values are same, nodes must decide
that value.

Termination: Correct nodes decide eventually.
Distributed consensus is not an easy problem to solve in

the presence of faults, and in some cases a solution that
satisfies all three properties above becomes impossible. The
“Coordinated Attack” result [11] states that there is no deter-
ministic algorithm for reaching consensus in a model where
an arbitrary number of messages can be lost undetectably. The
result applies to both asynchronous and synchronous models.
Even assuming no message loss, FLP impossibility result [2]
states that there is no deterministic algorithm for reaching
consensus under the fully asynchronous system model in the
presence of just one crash failure. Unlike the coordinated
attack result, FLP applies only for asynchronous systems,
partially-synchronous, or synchronous systems are safe from
this impossibility result. However, it is important to note that
even for the most synchronous cluster of computers a heavy
load of requests can break all the timeliness assumptions and
turn the system into an asynchronous one in effect.

Paxos satisfies the safety properties of consensus even under
asynchrony and arbitrary message loss. This does not conflict
with the two impossibility results discussed above, because
those state that it is impossible to satisfy the safety and liveness
properties together, but do not state that the protocol needs to
sacrifice safety under those conditions. Paxos preserves safety
under any condition and achieves liveness when conditions
improve outside the impossibility realm. Paxos comes with a
simple formal proof for satisfying its properties.

Paxos runs in three distinct phases: propose (phase-1),
accept (phase-2) and commit (phase-3), as shown in Figure
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1. During the first phase, a node tries to become the leader
by proposing a unique ballot number b to its followers with a
phase-1a message. The followers acknowledge a leader with
the highest ballot seen so far, or reject with a ballot greater than
b. Receiving one rejection fails the candidate with this ballot
number, because it indicates there is another leader candidate
with a higher ballot number reaching to the participants. The
node becomes leader and advances to phase-2 after receiving
the majority quorum of acknowledgments. In this phase, leader
tries to choose a suitable value v for this ballot. The value
would be some uncommitted v associated with the highest
ballot learned in previous phase, or any new value if none
exists. The leader commands followers to accept value v and
waits for accepted messages. Once the majority of followers
acknowledge the acceptance of the value, it becomes anchored
and cannot be revoked. A single rejection received in phase-
2b, on the other hand, nullifies the leadership of the node, and
sends it back to phase-1 to try with a higher ballot number.
Finally, the leader sends a commit message in phase-3 that
allows the followers to commit and apply the value to their
respected state machines.

It’s important to see that after phase-2, an anchored value
cannot be overridden later as it is guaranteed and proven by
Paxos that any leader with higher ballot number will learn
it before proposing new rounds. Such stability also makes
classical consensus definite.

Paxos can only tolerate crash failures. But it is easy to
extend phase-2b and phase-3 to tolerate Byzantine failure as
shown in PBFT [5]. Figure 2 shows the operation of PBFT
algorithm in normal case. When compared to Figure 1, it is
easy to see the increase in communication complexity.

III. POW BLOCKCHAIN AND RELATION TO PAXOS

The proof-of-work (PoW) blockchain approach solves the
consensus problem in an open, permissionless setup subject
to crashes, byzantine failures, and Sybil attacks. PoW ensures
that the number of identities assigned to the honest and



silent phase-1 Phase:

Miner

phase-2a 
Accept 

"mined
b!"

Miner
Miner
Miner
Miner
Miner

Starting to
mine b

May start on mining b+1
right after b was mined  
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adversarial parties is proportional to their aggregate com-
putational power. This makes PoW expensive in terms of
wasted computation time and electricity bills, as only a miner
successfully solving a computationally hard puzzle appends
to the blockchain. However, employing PoW for blockchain
consensus renders impersonation or Sybil attacks [9] useless.

Blockchain protocol leverages on a distributed ledger stored
at all nodes in the network. The ledger consists of a sequence
of blocks, with multiple transactions included in each block.
Some nodes periodically add uncommitted transactions to a
new block and append it to the ledger. The procedure of
appending the block to a ledger is called mining. It involves
solving a computationally hard problem, such as finding a
nonce that will make a hash of all transactions, previous block
and the nonce satisfy some predetermined criteria.

Proof-of-work blockchains rely on Nakomoto [12] consen-
sus, which has somewhat different, yet comparable properties
than the classical consensus. The biggest difference between
the two is the probabilistic nature of Nakomoto consensus,
resulting in slight chance of reversing the transaction. The
probability of reversal, however, diminishes quickly with the
age of the block.

Probabilistic Agreement: For a blockchain of length n, any
two nodes will return the same chain prefix of length n − r
with probability greater than p. The probability p is controlled
by varying the size of r, with larger r increasing the p. The
tailing blocks of length r still have larger chance of reversal.

Transaction Validity: Well-behaved nodes only accept
blocks with valid and not spent transactions (no duplicates of
same transaction in different blocks). Malicious nodes need to
have majority of compute power to put invalid transaction on
the chain and maintain it as longest chain in the network.

Probabilistic Termination: The consensus is probabilistic
with chance of reversal becoming negligible after sufficient
number of blocks r are added to the chain after. As such, any
valid node will stabilize on some chain prefix of length n− r,
with negligible probability of changes to the prefix.

Although blockchain is seemingly a very different solution
than the Paxos protocol, next we show how to draw parallels
between Paxos and blockchain and highlight the similarities
and differences between the protocols.

A. Leader Election: Silent vs. Loud

Both solutions, blockchain and Paxos, require a leader to
commit to a ledger or log. The mechanisms of picking a

leader, however, are drastically different. The blockchain way
of finding a leader to commit a block requires nodes to solve
a hard computational puzzle. The first participant to do so
appends the block to the ledger and becomes a silent leader for
the round, as shown in Figure 3. A node never communicates
to the rest of the cluster about the intent to become a leader,
since being a miner de-facto represents such intent.

The Paxos way is different, with loud leader election process
done via Phase 1 as shown in Figure 1. A leader candidate
sends a phase-1a message with its ballot number, or counter,
and tries to get “OKs” from a majority number of participants
in the quorum. Receiving one rejection message is a deal
breaker, because it indicates there is another leader candidate
with a higher ballot number reaching to the participants.

B. Multiple Leaders: to fork or not to fork

The loud election process makes it unlikely (but not impos-
sible say due to bad failure detectors) for two nodes to think
they should lead the protocol. However, the ballot and quorum
system prevents the two leaders from making progress at the
same time and ensures that only a single leader can append
to the log. This is done via comparing ballots both in phase-
1 and phase-2 of Paxos. If a leader enters a phase-2 with a
ballot lesser than some other node, it will receive a rejection
message causing it revert back to phase-1 and try to become
a leader with an even higher ballot. Accept phase responsible
for appending to the log successfully completes only when a
majority quorum is reached with all “OK” messages.

Silent blockchain election may result in multiple nodes
successfully solving the puzzle and appending their blocks to
the ledger at roughly the same time, creating a divergence, or
fork, in the blockchain. The chances of forking decrease when
a puzzle is sufficiently difficult and the incentive mechanism
resolves the fork within a few block additions. One forked
chain is likely to grow faster, as participants prefer to mine on
the longest chain for having a chance to receive the mining
fee if they become the leader for that round.

C. Accept Phase Communication: 1-way vs. 2-way

The blockchain protocol employs communication only once
and only in one way, from the leader to the participants. This
corresponds to Paxos phase-2a: the accept message phase.

As discussed above, phase-2b allows Paxos to catch multiple
leaders and guarantee progress only for one leader. Since the
blockchain consensus protocol skips phase-2b and phase-3, it
provides unavoidably a probabilistic consensus. Therefore, in
order to commit, you need to wait to see more consecutive
blocks and ascertain that the block sticks in the longest chain.
At the point of commit, the work required to rewrite history
by creating an earlier fork is so huge that you can conclude
the block is finally committed. In other words, blockchain pro-
vides an eventually-consistent/stabilizing consensus protocol.

For phase-2 in Paxos, the leader has a two-way acknowl-
edged communication. This works OK for the leader because
the number of the participants is typically less than half a
dozen. On the other hand, if thousands of nodes participated
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Fig. 4: Paxos throughput drastically reduces for larger cluster.

in a Paxos protocol, the leader would struggle to maintain any
reasonable commit throughput while receiving that many ack
messages in each round. To avoid the problem with thousands
of participants, the blockchain has only one way broadcast
communication, which is propagated from the leader to the
participants via a gradual gossip protocol (Figure 3).

We illustrate the problem with Paxos leader struggling to
sustain high throughput for large clusters in Figure 4, showing
the results of performance model [13] with parameters to
roughly match single region EC2 deployment on small nodes.
In particular, we modeled a FIFO processing pipeline at the
leader node with a G/G/1 queue. We approximated message
processing and communication delays with real Paxos imple-
mentation over Amazon AWS EC2 t2-small instances. We as-
sumed normally distributed network latency. Our final average
latency formula is as follows: L = 2mo+Nmi+ lm+w+ l,
where mo and mi are processing latencies for outbound and
inbound messages, lm is the round-trip time for the message
making a majority quorum obtained with Monte-Carlo method
approximation of k-order statistics, w is the G/G/1 queue wait
time [14] and l is network RTT between leader and a client
issuing a request.

D. The Environment: Public vs. Private

The typical use case of Paxos is to replicate state to make
it consistently and safely survive crash failures in a private
environment. As a result, keeping the number of participants
small, around 5 nodes, works well for this case.

The blockchain applications bring new constraints and re-
quirements to the consensus problem. In blockchains, the par-
ticipants can now be Byzantine, motivated by financial gains.
So it is not sufficient to limit the consensus participants to be
3-5 nodes, because the rest of the network does not necessarily
trust these nodes. In blockchains, for reasons of attestability
and tolerating colluding groups of Byzantine participants, it is
preferred to have many thousands of participants.

Comparing popular proof-of-work Nakamoto [12] consen-
sus with Byzantine consensus solutions, such as byzantine
Paxos [15] reveals major differences. Whereas Nakamoto con-
sensus has probabilistic guarantees for termination, agreement,
and validity, the classic Byzantine Consensus has deterministic
guarantees for them. However, the performance of Nakamoto
consensus is far less sensitive to the number of participants

than that of byzantized Paxos, making it more suitable for
public environments without further changes.

IV. BLOCKCHAIN EXTENSIONS AND RELATION TO PAXOS

In this section we discuss some recent blockchain optimiza-
tion and enhancements and show how they relate to classical
consensus protocols, such as Paxos and practical byzantine
consensus protocol (PBFT).

A. Leader Election: Stable Leader

Paxos deployments typically continue with the same leader
for many rounds. So to avoid paying the cost of phase-1
repeatedly, MultiPaxos, or multi-decree Paxos, skips phase-
1 and continues with iterating over phase-2 messages for the
consecutive rounds. If an incumbent leader arises, the phase-
1 leader election may need to happen again. An orthogonal
mechanism, such as a failure detection service, is used to
ensure that there are not many candidates running to become
a leader at a given time, as that may hinder the progress of
the protocol. That situation is called the “dueling leaders”
situation. As we explained earlier, even when there are mul-
tiple leader candidates, Paxos is safe thanks to the ballot and
majority mechanisms employed in phase-1 and phase-2.

Bitcoin-NG [16] introduces a similar optimization to the
blockchain, where a single leader takes control over the ledger
for a duration of several microblocks. In the blockchain setting,
however, we do not want to have one stable leader for too long,
as to incentivize other miners and make sure no single miner
can control the network for long enough to gain any advantage.
To that case, Bitcoin-NG uses key blocks to carry out the leader
election. Similar to the original Bitcoin [12], miners try to find
a nonce that will generate a certain predetermined hash value
for the key block. Once the leader is chosen, it can append
some limited number of microblocks to the ledger. The leader
is prohibited from appending too many microblocks or from
appending them too often to prevent malicious or greedy leader
from swamping the system with transactions.

In Bitcoin-NG microblocks do not require any proof-of-
work, as the leader is already chosen in the key block. This
allows the leader to process transactions and add them to the
ledger more efficiently, given that is stays within the rate limits
on issuing the microblocks.

B. Irreversibility of Blockchain

Byzcoin [17] is a recent blockchain variant that uses
practical byzantine consensus protocol (PBFT) to make the
blockchain consensus instantly irreversible when a block is
added to the ledger, rather than probabilistically irreversible
after adding some number of consecutive blocks to the ledger.

PBFT cannot reasonably scale over to thousands of nodes
needed for public blockchain networks, therefore Byzcoin
forms a small subset or council of nodes to run PBFT. Unlike
regular blockchain with a single miner leading a block, in
Byzcoin the council is responsible on agreeing on what the
next block should be. Once such agreement has been reached,



and thee council collectively endorses the block with Schnorr
signatures and the block becomes irreversible.

Byzcoin must choose the council with great care to prevent
large colluding groups of nodes from entering the council.
A PoW approach is used to elect the council members on a
rolling basis: the miner or miners successfully solving the most
recent block join the council, while some old members leave.
The council consists of 144 members, roughly representing
a day worth of miners in a chain producing a new block
every 10 minutes. The PoW prevents any colluding party from
overpowering the council, given the total number of Byzantine
nodes in the network is less than one-third.

C. Federated Blockchains

Stellar Consensus Protocol (SCP) [18] gives a different take
on using classical byzantine consensus, such as PBFT. Unlike
Byzcoin that must carefully select the council to run PBFT,
SCP breaks the network into federation or groups of nodes.
Upon entering the network, a node specifies some quorum
slices. Each quorum slice represents a consortium of other
participants a node trusts. However, the node does not need
to trust every node in the quorum slice individually. SCP uses
quorum slices to construct quorums for different nodes in such
a way that every node in the quorum must have at least one
of its slices be entirely in the quorum as well.

The protocol runs in a two phases. It starts with a nomi-
nation phase, which if run long enough, eventually produces
the same set of candidate values at every intact node. Upon
predicted/approximated convergence of nomination phase, the
nodes start the ballot phase to perform federated voting
(PBFT) to commit and abort ballots associated with composite
values. The ballot phase runs on some quorum in the system,
and for safety any two quorums in the network need to
intersect with at least one non-faulty, non-byzantine node.
PBFT also makes the committed blocks instantly irreversible.

SCP does not rely on PoW for any of its operations. The
quorum intersection requirement also means that quorums
must get larger with more nodes participating, potentially
reducing the performance of the system.

V. FORMAL METHODS AND BLOCKCHAIN

Formal methods have been an important part of distributed
systems research. Since concurrency introduces an explosion
of possible executions, operational reasoning about distributed
algorithms is inapplicable. Clearly/unambiguously specifying
the protocol and environment behavior is of paramount im-
portance for distributed systems. Any assumptions made while
building a distributed system will bite back. For instance, it
may not be safe to assume that one network hop is faster than
two, or even that no hops is faster than one. Or what was
assumed to be an atomic execution block may be violated by
some rogue process executing concurrently and changing the
system state in an unanticipated manner. When faults enter the
picture, things get even more convoluted, because fault-actions
will collude with program actions to complicate things and
create many new corner cases.

A practical companion to formal methods is the model
checking tools to support them. Model checking frameworks
provide a language to specify/model a distributed algorithm,
and also support testing this model exhaustively to detect
violations of user provided safety and progress properties. A
prominent example is the TLA+ [10] framework, by Leslie
Lamport, who is also the inventor for Paxos. TLA+ pro-
vides a math/logic based language for specifying distributed
algorithms/protocols and model checking them. Many major
distributed consensus and coordination protocols, including
Paxos and several of its variants [19], [20], [21], have been
modeled and verified with TLA+.

Even on the industry side of distributed systems, formal
methods have been adapted to deal with the challenges of
distributed systems. AWS successfully used invariant-based
reasoning and formal methods (in particular TLA+) for build-
ing robust distributed systems. AWS used TLA+ in many
key projects: S3, DynamoDB, EBS, and a distributed lock
manager. The paper “Use of formal methods at Amazon Web
Services, 2014” [22] writes: “Before launching any complex
service, we need to reach extremely high confidence that the
core of the system is correct. We have found that the standard
verification techniques in industry (deep design reviews, code
reviews, static code analysis, stress testing, fault-injection
testing, etc.) are necessary but not sufficient. Human fallibility
means that some of the more subtle, dangerous bugs turn
out to be errors in design; the code faithfully implements
the intended design, but the design fails to correctly handle a
particular ‘rare’ scenario. We have found that testing the code
is inadequate as a method to find subtle errors in design.”

Based on the significant role formal methods played in the
success of the classical distributed consensus and coordination
work, we suggest the use of formal methods for blockchain
consensus for better specifying and model checking the
blockchain protocols and smartcontracts.

A. Using formal methods for blockchain consensus

TLA+ can help precisely specify the assumptions made
by blockchain protocols, such as timing and partition as-
sumptions. Several protocols have been shown vulnerable to
timing attacks because they depended on some reasonable time
synchronization assumptions. While PoW consensus protocols
make several reasonable timing assumptions, when an attacker
manages to violate tem, the safety of the protocol may be
violated as well. Using TLA+ it is possible to model these
assumptions and identify vulnerabilities.

Another benefit of using formal methods and TLA+ for
modeling blockchain protocols is in the design process. TLA+
specification language supports stepwise refinement, as it is
easy to check if one model implements/refines the other: this
is specified via an implication sign. This can be leveraged
to identify new implementations and abstractions as well as
designing and verifying new features to blockchain protocols,
such as sharding.

Of course modeling blockchain protocols brings new chal-
lenges for TLA+ framework. Blockchain protocols have a
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Fig. 5: TLA+ model for DAO attack

probabilistic component, and it is important to model it in
TLA+. It is also important to develop libraries and high level
primitives for specifying consensus algorithms and blockchain
consensus protocols (with models for basic math primitives
like hashes, public/private signatures).

B. Using formal methods for smartcontracts
Smartcontracts [23], [24] represent an important application

of blockchain technology. Smartcontracts help users establish
and enforce the common rules for all involved parties, avoiding
the need in lawyers and courts as reward and/or failure clauses
execute automatically in the contract. However, smart contracts
are not devoid of challenges. Since a contract is non-mutable
once in place, all parties must be sure of contract’s correctness
before joining. Formal methods and model checking allow to
simplify the contract development, ensure its correctness under
various conditions and provide an extra level of confidence to
the parties joining the contract.

When money is involved, attackers get smart quickly:
“Never underestimate the time and expense your opponent will
take to break your code”[25]. It is easy to have vulnerabilities
in concurrent code due to the many corner cases. Smartcon-
tracts are especially at risk due to money on the line and the
high speed of transfers. TLA+ can be used for identifying
those cornercases and help design correct protocols.

Modeling the DAO hack.
Incorrect or buggy smart contract can have large repercus-

sion on the parties involved. For instance, the DAO attack
[23] resulted in unauthorized drainage of large amounts of
money from the DAO, an investment fund managed entirely
by smart contracts with no central authority or human control.
The contract protocol allowed the participants to withdraw
some of their money from the fund, however, the withdraw part
of the contract was flawed. The bug was ultimately exploited,
resulting in the fund’s money stolen by a malicious participant.

To illustrate the usefulness of formal methods and how they
can save contract developers from major problems, we have
modeled the DAO withdrawal protocol with the bug ultimately
exploited by the hackers as shown in Figure 5a. We then
performed model checking to find the concurrency problem
with the contract’s protocol and corrected it in Figure 5b.

TLA+ facilitates invariant-based reasoning, so
we first define an invariant for safe withdrawal:
SafeWithdrawal == (bankBalance=BALANCE ∧
malloryBalance=0) ∨ (bankBalance=BALANCE-AMOUNT
∧ malloryBalance=AMOUNT). This invariant checks that
Mallory’s withdrawal affects the bank balance only once.
However, we can see the invariant is too tight for our
protocol, since the bank balance updates before Mallory
receives the money in non-atomic way, i.e. the money can
be in-flight from bank account to Mallory. That is how the
invariant-based thinking helps us immediately: we can see
that the withdrawal is a non-atomic operation, and realize that
we should be more careful with the updates. Nevertheless,
we relax the invariant as shown in Figure 5a on lines 5-9.

Procedure BankWithdraw on lines 11-18 in Figure 5a mod-
els the bank withdrawal contract, while procedure mallory-
SendMoney (lines 20-26) governs how Mallory receives the
money after the bank withdrawal. Note that in line 25 she
can attempt to withdraw the money again. Also note that
BankWithdraw line 15 gives money to Mallory before updating
the bank balance on line 17. If Mallory is cheating, she may
attempt to withdraw the money before the bank balance is
updated from her previous withdrawal.

TLA+ model checking catches the malicious behavior eas-
ily, since some execution causes the violation of the invariant,
resulting in a double spending. The model checker also
produces the error trace, outlining all steps that must happen
to cause the invariant violation. In this case, the error trace



contains 8 steps: initially BankWithdraw is called, which then
calls the MallorySendMoney to complete withdrawal. How-
ever, Mallory’s SendMoney implementation includes another
call to BankWithdraw and the balance check on line 13 passes
because bankBalance is not decremented by amount (that
comes in line 17). So the second BankWithdraw executes
concurrently and Mallory manages to do double withdrawal.

In Figure 5b we illustrate the fixed version of the protocol.
We move the updating bank balance before invoking Mallo-
rySendMoney, making sure the bank balance updates before
Mallory receives the funds. Of course, for that we change
SafeWithdrawal to accommodate the new way of updating
bankBalance. But it turns out that the invariant is still too tight.
For instance, if initially BALANCE=10 and we call BankWi-
hdraw(AMOUNT=4), it is still valid to have two withdrawals
concurrently provided that in the final state no new money
is produced: Invariant == bankBalance+malloryBalance ≤
BALANCE. We also model check for progress and write an
EndState temporal formula for it on lines 11-12.

VI. PAXOS AND BLOCKCHAIN PERFORMANCE

Paxos and PoW blockchain protocols have very different
performance characteristics, making it rather hard to perform
a direct and fair comparison. Paxos is designed for small clus-
ters, relatively quick operation latency and high throughput.
Blockchain, on the other hand, runs on many thousands of
participants and trades small operation latency for predictable
throughput in large deployments.

Paxos-style protocols rely on inter-node communication,
making the sheer number of message exchanges to be a bottle-
neck for a Paxos round leader. In typical small deployments,
the message requirement for a round is manageable, however
as cluster size increases, the same leader needs to handle more
traffic, ultimately degrading the performance.

The maximum throughput of Paxos largely depends on the
network and processing capacity of the leader server and the
number of followers. If an incoming and outgoing message
and outgoing broadcast take an average ofµi and µo and µb
milliseconds to process respectively, we can estimate the max-
imum throughput of a Paxos system as Rmax = 1

Nµi+µb+µo
,

where N is the number of nodes in the cluster.
On the blockchain scale with thousands of nodes, network

bandwidth becomes the limiting factor, since sending an accept
message to all participants is problematic even with smallest
possible blocks. For instance, in the absence of UDP multicast
on the Internet scale, 1 Kb block requires about 0.82 seconds
to be send over to all Paxos followers in a cluster of 10,000
nodes with 100 mbps connection at the leader. This drives
the broadcast cost µb very high for large clusters. Orthogonal
solutions are then required to make Paxos overcome the
network bottlenecks, such as using peer-to-peer networks or
pub/sub systems, such as Apache Kafka or BookKeeper [26],
[27], to deliver signed messages from the leader and back.

Blockchain, on the other hand, puts more effort in the proof-
of-work and delay it introduces. PoW requires only a one-
way communication from the successful miner to its peers,
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Fig. 6: Estimated maximum throughput of paxos and
blockchain, both using 1 Mb blocks with 495 byte transactions.

while the difficulty of the puzzle both reduces the rate at
which that one-way communication happens and reduces the
chance of multiple miners arriving to the solution at roughly
the same time. Additionally, the peer-to-peer communication
further reduces miner bottlenecks by shedding some of the
network load to the nearby peer nodes.

All of these techniques make sure that the network per-
formance does not become the bottleneck in the system,
allowing blockchains to provide stable throughput regardless
of the number of participants. One can easily estimate the
maximum throughput of the system just by knowing how many
transactions can go to a block and the mining rate of the chain:
Rmax = bsRblocks

µtx
, where Rblocks is the block mining rate in

blocks per some unit of time, bs is the block’s storage capacity,
and µtx is average transaction size.

Figure 6 shows our estimated maximum throughput for
Paxos and blockchain. Both protocols use 1 Mb blocks filled
with transactions of 495 bytes. For Paxos, we assumed the
leader is responsible for sending blocks to each follower over
a 100 Mbit connection. Expectedly, the number of messages
greatly hinders the performance of Paxos as we increase the
number of nodes due to the longer block transmission times.
At the blockchain scale, a lower baseline throughput is offset
by its stability and better performance in large deployments.
Note that we did not use byzantized Paxos in this comparison,
and protocols like PBFT require even more communication
and will degrade quicker than non-byzantine Paxos.

Reasoning about operation latencies involves accounting
for all possible delays between client issuing a request and
receiving the ack from the system. For very large clusters, the
network bandwidth at the leader will determine these latencies,
and for smaller deployments the latencies are largely driven
by the compute capacity. For instance, in a network-bound
estimate, the time to run a Paxos round on 1 Mb block at a
leader with 100 mbps connection may exceed 800 seconds, if
no additional methods to relieve network bottlenecks are used.

PoW blockchain latency largely depends on the probabilistic
nature of Nokamoto consensus. Thus, the latency of PoW
blockchain depends on the time required to mine sufficient
number of blocks to make reversing the consensus highly
improbable. In Bitcoin this is typically 6 blocks, each taking
roughly 10 minutes to mine. However, transactions may spend
some additional time in the pool before being picked up by
the miners and added to the block, and the queuing effect



of the pool may drive transaction commit latency above
the 60-minute minimum. More recent blockchains that offer
irreversibility of transactions once the block is appended to
the chain can greatly reduce the minimum latency to the time
of mining/adding one block.

VII. FUTURE WORK AND CONCLUDING REMARKS

In this paper we drew parallels between classical consensus
protocols and blockchains. Although the algorithms have orig-
inated in disparate communities with different background and
expertise, both share many similarities, such as leader election
phase, and transaction accept phase. Recently there has been
several successful examples of transferring techniques from
classical consensus protocols to blockchain domain to offer
better throughput and latency. Aside from borrowing on the
protocol-level techniques, we suggest that blockchain work
would benefit from the formal methods commonly adopted in
distributed systems. For instance, the DAO hack case study in
Section V shows how formal specification and model checking
can help find bugs in smartcontracts.

In our current work, we work towards a more direct perfor-
mance comparison of blockchain and classical consensus at the
protocol level in order to illustrate the benefits and drawbacks
of protocol-level techniques independent of implementations
and deployment environments.

We have developed the Paxi framework [28], which allows
consensus protocols to be evaluated in a common environment
under varying workloads, deployment size, and failure recov-
ery scenarios. Paxi framework already ships with a variety
of Paxos protocols including MultiPaxos [29], Flexible Paxos
[30], EPaxos [19], Paxos Groups, WPaxos [31], WanKeeper
[32], within the framework. We plan to add Blockchain
implementations to Paxi in the near future to enable direct
comparison between Paxos and Blockchain solutions.

In our future work, we propose to use TLA+/PlusCal to
develop a formal framework and a domain specific language
in order to facilitate modeling and proving properties for
blockchain consensus protocols and systems. The framework
will be used for model checking blockchain and smartcontracts
in the presence of inopportune crash and byzantine failures,
stretched timelines and schedules, and network partitions.
Finally, the stepwise refinement that TLA+ formalism supports
can help us explore the blockchain design state-space for
hybridized/hierarchical versions of blockchains protocols that
provide efficiency/performance benefits.
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