
IEEE TRANSACTIONS ON MOBILE COMPUTING 1

LineKing: Coffee Shop Wait-Time Monitoring
Using Smartphones

Muhammed Fatih Bulut, Member, IEEE, Murat Demirbas, Member, IEEE,
and Hakan Ferhatosmanoglu, Member, IEEE

Abstract—This article describes LineKing, a crowdsensing system for monitoring and forecasting coffee shop line wait times. LineKing
consists of a smartphone component that provides automatic and accurate wait-time detection, and a cloud backend that uses the
collected data to provide accurate wait-time estimation. LineKing is used on a daily basis by hundreds of users to monitor the wait-
times of a coffee shop in the University at Buffalo, SUNY. The novel wait-time estimation algorithms of LineKing deployed at the cloud
backend provide median absolute errors of less than 3 minutes.

Index Terms—Crowdsensing, Smartphone applications, Wait-time estimation

F

1 INTRODUCTION

Long and unpredictable lines at coffee shops are inconve-
niences of city life. A webservice that provides real-time
monitoring and estimation of line wait-time would help us
make informed choices and improve the quality of our lives.
Furthermore, understanding line waiting has benefits beyond
improving the end-user experience because this has been a
long standing problem in the operations research area.

Traditional solutions to the line wait-time monitoring are
based on infrastructure-based solutions such as camera place-
ment, sensor deployment or monitoring signals that are gener-
ated through bluetooth or Wi-Fi capable devices [1], [2], [3],
[4], [5]. However, these solutions usually do not scale well
as they are costly to deploy and mostly designed for specific
places. In order for the line wait-time monitoring service to be-
come widely adopted the service should be infrastructure-free,
fairly-accurate, easy-to-use, and should work automatically
without relying on manual input from users. In this article,
we take a novel approach and try to solve the line wait-time
monitoring problem through crowdsensing with smartphones.

Addressing line wait-time monitoring problem using smart-
phones has two main challenges. First, we need to detect
the wait-time using off-the-shelf sensors that are provided by
the smartphones. However, wait-time detection using smart-
phones requires use of costly location sensors to understand
the presence of the user at the coffee shop. Moreover, to
understand if the user is waiting in the line, or sitting at
the coffee shop, we may need to use additional sensors,
such as accelerometer, to recognize the relevant activity. But,
performing all of these operations in smartphones may drain
user’s battery very quickly and therefore has the risk of being

• M. F. Bulut and M. Demirbas are both with the Computer Science and
Engineering Department of University at Buffalo, SUNY.
E-mail: {mbulut, demirbas}@buffalo.edu.

• Hakan Ferhatosmanoglu is with the Computer Engineering Department of
Bilkent University. E-mail: hakan@cs.bilkent.edu.tr.

deemed unattractive for users to install our application.
Second, since this is a crowdsensing architecture, we may

not always have a person waiting in the line. We find that
even when our automated wait-time detection component is
returning dozens of readings daily, these readings are still too
sparse and non-uniform to provide accurate answers to real-
time queries about line wait-time. Additionally, newly arrived
customers may not experience the same wait-time as the one
who leaves the line. Hence, to determine the wait-time for
newly arrived customers, as a second challenge, we need to
estimate the current and future wait-time using the sparse and
non-uniform previous history of the collected data.

Our method to address the wait-time detection is to uti-
lize the low-cost network location provider of Android. We
calculate the distance of the user from the coffee shop to
dynamically set the location-sensing frequency. Since the net-
work localization provides coarse-grained information, once
we make sure that the user is around the coffee shop, we
periodically scan the Wireless Access Points (WAP) around
the user. By exploiting the unique fingerprint of WAP beacons
in the coffee shop, we detect the entrance and exit in high
precision. For the coffee shop we performed our experiments,
majority of the customers pick their orders to-go, and therefore
after appropriately filtering out the outliers, we obtain the wait-
time of the customers. Moreover, to scale LineKing to other
coffee shops and franchises, we propose an improvement to the
wait-time detection component further by utilizing the activity
recognition techniques using the accelerometer sensor on the
smartphones.

Our method to address the second challenge, the wait-time
estimation problem, is based on a search in the previous
history of the collected data. More specifically, to overcome
the difficulty of constructing time-series data from sparse and
non-uniform data, our solution in essence finds the best k
candidates from the past data in order to estimate the future
wait-time.

Our contributions are as follows:
1) We designed, implemented, and deployed a crowd-

IEEE TRANSACTIONS ON MOBILE COMPUTING 2

sourced line wait-time estimation system called Line-
King (LK). Our LK app 1 for Android platform has
been downloaded by more than 1000 users in our
university, and are used on a daily basis by hundreds
of users to monitor the wait-time of a coffee shop in
the student union of our university. To the best of our
knowledge, LK is the first automated crowdsensing wait-
time estimation service.

2) As a part of LK, we implemented a fully automatic
and accurate wait-time detection component on Android
platform. Our method utilizes network localization and
WAP scanning capabilities of Android to detect presence
of the user at the coffee shop.

3) As a part of the wait-time detection component, we
developed a lightweight, variance-based activity recog-
nition unit to detect the wait-time more accurately by
utilizing continuous streams of accelerometer data. Our
experiments showed that, we can detect the actual
wait-time of a user with a median error of 20 seconds
accuracy.

4) Our solution to wait-time estimation problem works well
with non-uniform and sparse data by finding the best
possible k candidates using the regression analysis on
the previous history of wait-times. Our results indi-
cated that LK can estimate the wait-time of the coffee
shop with less than 3 min. median absolute error.
We believe that, our solution for wait-time estimation
problem can be extended to other similar crowdsensing
systems which have sparse and non-uniform data.

Outline of the rest of the paper. We describe the model
and assumptions of our deployment next. Section 3 presents
the wait-time detection component of LK. In Section 4, we
explain how we improve the wait-time detection component
by using activity recognition. In Section 5, we discuss LK’s
wait-time estimation component along with the experimental
results. Section 6 discusses how to scale LK to other coffee
shops and franchises. Section 7 discusses the challenges we
faced during the development and deployment process of LK.
Finally, we present the related work in Section 8 and conclude
with Section 9.

2 MODEL AND ASSUMPTIONS

Fig. 1: Coffee shop floor plan.

1. http://ubicomp.cse.buffalo.edu/ubupdates

Although line waiting has an intrinsic problem of many
venue types (such as grocery stores, banks and DMVs),
every venue type has different layouts and waiting conditions.
Hence, in this article we only focus on coffee shops. Par-
ticularly, we chose coffee shops due to their popularities and
dynamically changing conditions; such as the variation in wait-
times and number of employees.

We developed LK for a popular coffee shop at the Student
Union of University at Buffalo and this article only examines
the deployment and experiments of this particular coffee shop.
Floor plan of the coffee shop is shown in Figure 1 2. The
coffee shop does not have a drive-through. The customers who
arrive at the coffee shop join the back of a single FIFO queue.
After waiting the line, the customer is served by the staff.
There are two service desks and the customer is served by
either one of them. During low traffic times one of the service
desk may close temporarily and only a single service desk
is used. Customers who are served usually leave the coffee
shop immediately. However there are some Student Union
tables near the service desks and some customers sit there
after picking up their coffees. There is a Wi-Fi Access Point
(WAP) on the nearby wall of the line to serve customer’s need
for internet access. The WAP has a range of approximately 50
meters. LK utilizes BSSID of the WAP for wait-time detection.

Assumptions. LK aims to estimate the total wait-time of a
customer until she is served, and does not aim to calculate
neither the line length nor the service time. In reality to
get a sense of how the wait-time changes over the time, we
physically observed the coffee shop continuously for a week.
Figure 2 shows the wait-time of the coffee shop for each
10 min. intervals for a day. As the figure indicates, wait-
time fluctuates a lot during the day. Sudden increases and
decreases are also prevalent. In addition, our observation show
that the wait-time almost never falls below 2 minutes (i.e. min.
service time) and above 20 minutes. This provides us a way
to eliminate some of the false positives.

400

600

800

1000

9 10 11 12 13 14 15 16
Time (9am-5pm)

W
ai

t-T
im

e
(s

ec
.)

Fig. 2: Graph of actual wait-time for a day.

Finally, the wait-time detection component on the smart-
phones can only detect the wait-time of a customer in the
coffee shop, hence, many parameters remain unknown, such

2. LK would be readily adaptable to coffee shops with similar layouts and
operations

http://ubicomp.cse.buffalo.edu/ubupdates

IEEE TRANSACTIONS ON MOBILE COMPUTING 3

as arrival rate, service rate, service time. This prevents us
from having a complete understanding of the line’s opera-
tional model and introduce many challenges that need to be
addressed in wait-time estimation component.

Deployment. We developed the client side of LK as a
smartphone application and the server side as a service at the
cloud. Although we developed both Android and iOS versions,
due to the limitations imposed by iOS development framework
on background tasks, in this article we only present the design,
statistics and results of the Android app.

Fig. 3: A screen from the Android app

Figure 3 shows a screen from our Android app. In order to
incentivize our app, we distributed fliers in the campus, post
messages on Facebook and Twitter groups. As of this writing,
our app has been downloaded by more than 1000 users and
has been used daily by more than 300 active users. We retrieve
tens of readings daily from users regarding the wait-time of
the coffee shop.

3 WAIT-TIME DETECTION

The overall architecture of the system is shown in Figure 4. LK
consists of two main components: the client-side component
on the smartphone (which is responsible for detecting the
wait-time and uploading to our server), and the server-side
component in the cloud. In this section, we present the client-
side component on the smartphone. The server-side component
is explained in Section 5.

The client-side component includes a controller and three
subcomponents: Phone-state receiver, Wait-time detection unit
and Data-Uploader. The controller is responsible for manag-
ing and handling the interactions between these subcompo-
nents. We explain each subcomponent in detail next.

3.1 Phone state receiver
This component serves as a notification center for the applica-
tion. Android provides a notification service to let apps know

about various events occurring on the device, such as Boot,
Reboot, Wi-Fi connected/disconnected, Wi-Fi Signal Strength
Change etc. These notifications enable apps to take action
based on relevant events. We exploit this notification service
in order to improve the wait-time-detection subsystem.

The Phone-State-Receiver subsystem has two different re-
ceivers which are Boot Receiver and Wi-Fi State Receiver.
In Android, receivers work as follows: First, each receiver
registers itself to listen specific events occurring on the device.
Whenever the registered action happens, the operating system
broadcasts a special object, i.e. an Intent, and delivers the
event specific information to all registered receivers. We
utilize this mechanism to monitor various relevant events for
our application. For example, the Wi-Fi State Receiver gets
notified when the state of the Wi-Fi connection is changed:
So if the user turns the Wi-Fi off, this receiver fires at the
Controller to stop the Wi-Fi Tracking Service if it is running.
In addition, when a user connects to a WAP, we request the
network location of the user to learn her distance from the
coffee shop opportunistically.

3.2 Wait-Time detection

An intuitive way to detect wait-time of a user is to track
user’s location continuously and timestamp the entrance and
exit of user from the coffee shop. However, excessive use of
location providers (i.e. GPS or network) results in rapid battery
consumption, which is undesirable for smartphone users. In
order to minimize the battery consumption, we embraced the
following. First, due to the cost of GPS, while tracking user’s
location, we solely use the network location. Second, we
exploit the user’s distance from the coffee shop in order to
dynamically determine the location-sensing frequency. Third,
once we detect that the user is around the coffee shop, we use
the unique BSSID of the WAP to understand user’s presence
at the venue. These help conserve considerable energy; impact
of 2-8% in the battery stats of the Android for a person who
lives nearby the campus. We note that the principles that
we discuss here are derived from our previous works. For
more detailed energy-efficiency evaluation, please refer to our
previous works [6], [7].

More specifically, LK’s wait-time detection component
works as follows. LK periodically probes user’s location based
on the user’s distance from the coffee shop. If user’s distance
is greater than the threshold value (which means user is
currently not in the campus), we schedule the next location
probing assuming that the user is driving (30 mph). We
make this conservative assumption because our experiments
have found that detecting user’s transportation mode (driving
versus walking or biking) is in fact more costly than checking
network location for every 1 minute [6].

If the user’s distance to the coffee shop is less than the
threshold value, we start scanning WAPs around the user
every 2 minutes. Thanks to the API provided by Android,
it is possible to scan the WAPs around the device without
connecting to them. If the unit detects the BSSID of the
coffee shop, then we detect user’s entrance to the place (t1)
and reduce the scanning period to 20 seconds to detect the

IEEE TRANSACTIONS ON MOBILE COMPUTING 4

[Start/Stop)
monitoring])

Web)Service)
(Apache)HTTP))

Pre;processor)
Model)
Builder)

[JSON)Data])

[data])

[raw)data])

Controller)

WAPSense) LocaIonSense)

[Start/Stop)
monitoring])

[results])[results])

Phone)State)
Receiver) Uploader)SQLite)

Database)

[state)is)changed])
[start)uploading])

MySQL)
Database)

Wait;Ime)
EsImator)

[data])[data])

Fig. 4: Overall system architecture. Left: smartphone architecture for wait time detection. Right: cloud architecture for wait
time estimation.

departure more accurately. When the BSSID is heard no
longer, we assume that the user exited the coffee shop (t2).
We regard the difference of t2−t1 as the wait-time of the user.
Since we observed that most of the customers who are served
usually leave the coffee shop immediately, we assume that the
resulting wait-time would reflect the actual wait-time of the
customers in the coffee shop (we explain a way to overcome
this limitation in Section 4). In addition, while WAP scanning
is enabled, we check the user’s location every 5 minutes (until
the user enters the coffee shop) to detect if the user left the
boundary of the threshold distance (i.e. campus boundary). If
so, we stop WAP scanning and start location-sensing based on
the distance from the coffee shop.

3.3 Data uploader

After completing the wait-time-detection, the smartphone
component tries to upload the resulting data to the cloud as
an input to our wait-time estimation system. The uploading
process is mostly successful in real time. However, due to the
status of the device or connection, sometimes it is not possible
to transmit data immediately. However, this data is still useful
even if it belongs to the past. To handle this case, we have a
data uploader subsystem.

Since a failed data transfer costs some energy, the data
uploader uses some simple heuristics to increase the upload
success rate. We assume that the device is charged mostly
when the user is at home or office where she has a reasonably
fast and reliable data connection, which is most of the time
a Wi-Fi connection. Therefore, the data uploader is triggered
when the device is connected to a power outlet to leverage this
efficient and reliable connection. Under some circumstances,
even if the device is being connected to a power outlet, it
may not have such data connection available. If so, then the
data uploader periodically (once an hour) checks for a data
connection.

Data uploader stores the pending transfers inside a database
that resides on the device. The data is sent to server as a JSON
object using HTTP POST. Once the data is successfully sent,
which is confirmed by a response from the server side, then

the Data uploader clears up the database in order to save some
storage on the device.

4 WAIT-TIME DETECTION USING ACTIVITY
RECOGNITION
As we explained earlier, our initial design assumes that most of
the customers leave the coffee shop after getting their orders.
Also, we remove the wait-time which is less than 2 min.
and longer than 20 min. Since, users who pass nearby of the
coffee shop usually spend less than 2 min. and the customers
who seat at the coffee shop usually spend more than 20 min.,
according to our previous approach most of the time they do
not constitute a problem. However, some customers may stay
in between 2 to 20 min. and these insert false positives to our
system. In addition, by removing long stays (more than 20
min.), we miss out the data that we can potentially use. Finally,
in order for LK to scale any place we need a mechanism to
differentiate customers who prefer to sit and the customers
who prefer to-go. Therefore, in this section, we discuss how
to extract the actual wait-time regardless of customers’ willing
to stay or leave. Below, we explain how we achieve this.

In order to detect the actual wait-time of a customer, we
need to distinguish line waiting from other activities such as
walking and sitting in the coffee shop. We utilize activity
recognition [8], [9] in order to detect the actual wait-time
of the user. However, we would like to emphasize that our
aim is to correctly identify the wait-time of the user not to
recognize the activities that the user make while in the coffee
shop. As we show in the remaining of the section, even in
the presence of wrongly classified activities we were able to
detect the wait-time of the user accurately.

In our approach, we find that we can reliably detect the wait-
time by utilizing only the accelerometer sensor on the smart-
phones while spending minimum battery. Figure 5a shows
a representative graph for the l2-norm (i.e. Euclidean norm:
length of 3-dimensional [x, y, z] vector) of accelerometer
readings of a customer while in the coffee shop. As shown
in the figure, during its stay in the coffee shop, a customer
can be in one of the 4 different regions. First is the region
when the customer enters into the range of WAP. In this region

IEEE TRANSACTIONS ON MOBILE COMPUTING 5

1" 2" 3" 4"

(a)

leaving-from-the-line by walking

leaving-from-the-line by sitting

leaving-from-the-line by walking

S

O

W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time (min.)

A
ct
iv
ity

(b)

Fig. 5: a) Four regions of a graph of l2-norm of accelerometer readings while a customer is in the coffee shop. b) Classified
base events for each 5 seconds, annotated with leaving-from-the-line points.

customer is walking into the end of the line. High variance in
accelerometer readings in this region is prevalent and indicates
that the user is walking. This region may or may not be present
depending on the accuracy of the presence detection compo-
nent (i.e. particularly the period of WAP-sense component as
explained in 3.2). In the second region, consecutive stationary
(very low variance) and low-speed walking (medium variance)
is observed and indicates the presence of line waiting activity.
In this region, occasional walking (high variance) is allowed as
the customer may walk in the line for a short period. However,
in general walking in this region is short and hence results in
low-speed walking activity. Then in the third region, mostly
stationary (low-variance) behavior is observed. In this region,
customer is actually sitting at the coffee shop. Note that while
customer is sitting at the table, she may play with her phone
and therefore may result in similar variance as happened in
low-speed walking activity. However, most of the time user
left her smartphone either in his pocket or on the table due
to eating/drinking and therefore results in low-variance. Also
note that third region may not present if the customer picked
the order to-go (which is predominantly the case). In the final
fourth region, there is a sharp increase in the variance, this
indicates that the user is walking again. After a short period,
user is out of the range of the WAP which indicates that the
user left the coffee shop.

Based on these observation, we classified user’s activity in

every 5 sec. to one of the 3 base events: Stationary (S), Walking
(W) and Others (O), using variance as the main feature (see
Figure 5b). We then form a sequence based representation
(similar to that in [10]) of the user’s activities while the
user is in the coffee shop. Then, our classifier look for the
leaving-from-the-line point which is usually the point where
user performs at least 15 sec. of consecutive high-variance
(walking) activities. We also consider the cases where the
tables are very close to the service area. In this case, customers
usually sit the table in a short period (less than 15 seconds).
In those cases, we look for low-variance activity (stationary)
which lasts more than 2.5 minutes. Starting point of this low-
variance activity is what we call leaving-from-the-line point
again. Lastly, we assume that the customers enter to the
coffee shop and directly go to the line without sitting at the
beginning. We confirm this with our observation that this is
the case almost all of the time and therefore a reasonable
assumption to make. Moreover, after entering into the range
of WAP, we assume that the customers enter to the line when
they stop high-variance activity. In this way, we eliminate
the time difference of entering into the range of WAP and
walking into the end of line in wait-time detection. We also
consider the cases where user turns on and off the screen of
her smartphone. Since those are usually the moments of the
transition periods, i.e. taking from the pocket to hand or vice
versa, we ignore those periods when deciding leaving-from-

IEEE TRANSACTIONS ON MOBILE COMPUTING 6

the-line point. In this way, we aim to eliminate the temporary
unexpected variation caused by users use of the smartphone
while in the line. Figure 5b shows the classified base events
for every 5 sec. along with the detected leaving-from-the-
line points for Figure 5a. Below, we explain the base event
detection and wait-time extraction in details.

Base Event Detection. Once the user enters into the range
of WAP, we start to record the accelerometer readings. Record-
ing continues until we detect the leaving-from-the-line point.
We request at a sampling frequency of 50 Hz approximately.
For each t seconds interval (t = 5 in our implementation), we
have a sequence of timestamped raw accelerometer readings.
In order to deal with orientation issues, we first compute the
l2−norm of the raw data. Then, we calculate the variance for
every t seconds and classify the activity based on this value
(We trained our model by visiting the coffee shop several times
and note the different variance values). If the variance turns
out to be high (usually σ > 2), then we classify the activity
as W . If the variance is very low (usually σ < 0.05) then we
classify it as S. Finally, if the variance is in between the high
and low thresholds, we classify the activity as O, which could
be low-speed walking in the line or being stationary while
playing with phones.

Extracting wait-time. As we explained earlier, we assume
that the user leaves the line if she performs more than 15
sec. of consecutive walking activities or more than 2.5 min. of
consecutive stationary activities (which signifies that user is no
longer in the line and sitting). With the later, we try to capture
the cases where users is very close to the table and just sits
without walking too much. Also note that 2.5 min. is more than
enough for the line we are interested in (due to high turnover),
however it can be easily adjusted based on the line or can also
be automatically determined by examining the accelerometer
sensor readings. To extract the wait-time, we keep a sequence
of streaming base events for the last 2.5 minutes and check the
conformity in real-time. If we realize that user is no longer in
the line, we stop accelerometer recording. Note that even in the
presence of a short unexpected behavior or wrongly classified
base event, since we are looking for consecutive events, our
method will be able to extract wait-time correctly.

Accuracy. In order to verify the accuracy of our approach,
we have collected 2 months of accelerometer data (along with
the screen on/off status) from 5 Nexus S 4G devices, each one
of them runs Android Jelly Bean 4.1. This data is collected by
the members of our lab and we asked participants to record
the entrance, exit time and the line-waiting start/end time in
minutes. Later, we examine each file by visualizing it and find
out the exact entrance and departure time based on the input
from the participants.

During the 2 months period, we have collected 268 files in
total, consisting of accelerometer readings and screen status
for each visit to the coffee shop. We try to exhibit a diverse
behavior during the collection process, such as using the
phone during the line-waiting, sitting after the order etc. Mean
presence time of the collected data is 11.3 minutes with
106.81 min. maximum. On the other hand, mean actual line
wait-time of the collected data reported by the participants is
approximately 6.83 min. with 18.85 min. maximum.

Using the variance-based classification algorithm described
above, we calculate the actual wait-time for each visit to the
coffee shop. Our experiment indicates that the mean absolute
error of our wait-time detection system is 47 sec. with a
median error of 20 sec. Figure 6 shows the cumulative error
distribution function for our experiment. As shown in the
figure, almost 85% of the errors are less than 1 min. In
comparison to previous work [5], which reportedly has 10
sec. mean error, we believe that our variance-based classifier
is accurate enough for our end goal of estimating the wait-
time for newly arrived customers without requiring to place
special equipments in the coffee shop.

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8 10 12 14 16
Error (min.)

D
en
si
ty

#FF9999Fig. 6: CDF of errors for wait-time detection using activity
recognition. 85% of the errors are less than 1 min.

5 WAIT-TIME ESTIMATION
In this section, we present the wait-time estimation component
of LK. This component resides on the server-side (hosted on
AWS EC2 cloud for scalability) and consists of four main
components: Web service, Pre-processor, Model-builder and
Wait-time estimator. The web service serves as the interface
between smartphones and the back-end. It accepts wait-time
collected from the smartphones and provides wait-time esti-
mation for the querying smartphones. Data collected from web
service is fed into pre-processing module which is responsible
mainly for removing outliers. After pre-processing, model
builder builds a model periodically from all the collected
data. Lastly, the wait-time estimator module uses the model
and estimates the future wait-time. Below we first describe
wait-time estimation problem, then we outline our methods
for wait-time estimation. Finally, we present results about the
performance of our methods.

5.1 Wait-time estimation problem
The problem is to estimate the line wait-time for any arriving
query by using Crowdsensed data (CD), i.e. the wait-time data
that is collected from the participants. Although the queries
can be for anytime (past, now, future); we expect real-time
querying for the current time (e.g., 5-10 minutes in to the
future) to be most useful. Hence, the wait-time estimation

IEEE TRANSACTIONS ON MOBILE COMPUTING 7

models need to access the most up-to-date information in
CD. Wait-times usually depend on i) the time of the day, ii)
weekday vs. weekend, and iii) seasonality depending on the
nature of the business. For our specific coffee shop, there is
less traffic in off-school days and weekends, and slightly more
traffic in certain times of a day. An estimation method should
capture all of these variables accurately.

The theory of time-series analysis has been usually based
on a regular uniform time-series that contain enough samples
[11], [12], [13]. In our case, the data is neither complete
nor uniform. Therefore, a general theory of time-series is not
directly applicable on CD. However, as the popularity of the
application increases and by employing techniques for filling
missing data, we can overcome this challenge and build robust
models to estimate wait-times.

In this article, we consider an approach that is designed to
handle insufficient data and that adapts/improves as more data
becomes available. We call this approach Nearest Neighbor
Estimation (NNE). NNE is based on constrained nearest-
neighbor search in a multi-dimensional space. This approach is
dynamic and works well with non-uniform and sparse CD. We
believe that our method fits well to the quickly and sometimes
unpredictably changing wait-time of the coffee shop.

5.2 NNE: Nearest neighbor estimation
The main idea in this method is to predict the queried value
(i.e. wait-time for a particular time) using the previous history
of wait-time based on their closeness in time and similarity
of values. As a strawman, we first consider returning the last
uploaded data as the estimated value assuming the last one
would be the most closest one to the estimated interval. We
call this approach NNE-last. When the system has enough
incoming data points, the last uploaded value can in fact
reflect the actual situation of the line accurately. However, this
approach may fail if the data is scarce or if the data includes
false positives in it. We regard NNE-last as a baseline method
in our experiments.

In our second approach, we try to identify the k nearest
neighbor points for the query where similarity is defined
with respect to the estimation potential. The key here is to
design a similarity (neighborliness) function that minimizes
the estimation error for the query. In order to realize this
method, we define every data point with 3 dimensions: week,
day and day-interval, [w, d, g]. Each data is associated by a
vector [wi, di, gi], where wi stands for the week of the year
and is from the domain [1,52], di stands for day of the week
and from the domain [1,7], gi stands for interval of the day
and is from the domain [1,48] (there are 48 intervals of 10
minutes between 9am and 5pm). We use euclidean distance
Lij to denote the similarity measure between two vectors as
shown in Equation 1.

Lij =
√
(wi − wj)2 + (di − dj)2 + (gi − gj)2 (1)

Once we define the similarity metric, similar to the k-nearest
neighbor algorithm in machine learning, we aim to find the k
nearest neighbors for the queried data point. For this purpose,
we first calculate the distance of the query to each of the

labeled data points (previous history of wait-times). Then we
find the minimum distanced k data points and calculate the
average of their wait-time as the estimated value. We call this
approach NNE-basic.

Regression-based optimization. Although, NNE-basic is
simple and takes the time difference between data points into
account, it does not differentiate between different dimensions
of the data vector, that is, the week, day and the interval
are assumed to have equal weights on the distance. As an
alternative, we consider multiplying each dimension with
weights (α, β, γ) that are optimized based on the previous
history of wait-times of the same venue.

In statistics, it is a common practice to use regression to
understand the relationship between regressand and regressors.
For our case, we want to quantify the relation between the
wait-time (vi) and the data vector ([wi, di, gi]). Here, we
first assume that wait-time (v) is linearly dependent to the
dimensions of the data vector ([w, d, g]). Then, we utilize the
labeled data points (previous history of wait-times) and assign
the weights that optimize the regression function (as shown
in Equation 2) for the labeled data. Next, we define the new
similarity metric Lij as the weighted euclidean distance as
shown in Equation 3. Then similar to our NNE-basic approach,
we find the minimum distanced k data points and calculate the
average of their wait-time as the estimated value. We call this
approach NNE-regression.

vi = αwi + βdi + γgi + θ (2)

Lij =
√
|α(wi − wj)2|+ |β(di − dj)2|+ |γ(gi − gj)2| (3)

5.3 Estimation Results
In this part, we present the estimation results of the methods
we developed. However, before that, for both NNE-basic and
NNE-regression approaches, we need to choose the right k
value: the number of neighboring points to consider. Given
the sparseness and scarcity of the data in the first few months,
it is not logical to select large values. As the data grows, we
can select larger values. However, selecting large values can
lead to lose the impact of recent data points. To simplify our
analysis, based on our experiments, we selected k = 5.

Data. In order to validate the estimation accuracy of LK,
in this article, we conducted an academic year of experiment
from September 3, 2012 to May 3, 2013. In that analysis, we
focus on the time interval 9am to 5pm every weekdays. We
excluded winter break and spring break from our analysis.

During that period, we collected two types of data. First is
the crowdsensed data (CD) collected from the participants as
explained in Section 3. Due to the nature of crowdsensing,
CD is sparse and non-uniform along the time line. We have a
total of 2865 data points in our CD dataset. Figure 7 shows
the monthly distribution of the data points. As shown in the
figure, there is less data points on December and January due
to the winter break. In addition, there is surplus of data points
on April due to the new advertisement campaign along with
the deployment of the new version of our app as explained

IEEE TRANSACTIONS ON MOBILE COMPUTING 8

0

200

400

600

800

Sep Oct Nov Dec Jan Feb Mar Apr May
Month

N
o.

 o
f r

ea
di

ng
s

Fig. 7: Monthly counts of uploaded wait-times to our server.

in Section 4. We deployed the new version to collect data
for testing the estimation accuracy of our activity recognition
based wait-time detection approach. With the new version of
our app, we were able to collect 552 extra data points. This
data was collected from April 8th to May 3rd, 2013.

The second type of data we collected is the ground truth
data (GD). This data is collected manually by sitting at the
coffee shop and observing the customers’ wait-time for every
10 minute intervals. GD is collected for the last month of our
experiment (April 8th to May 3rd, 2013 for every weekday) to
evaluate the estimation accuracy of LK. Due to a special event
at the student union, coffee shop was closed in April 26th and
therefore we excluded it from our analysis. For GD collection,
every 10 minutes the experimenters (authors) pinpointed the
person at the end of the line and ran a stopwatch until that
person is served. As such, GD reflects the actual wait time
at the coffee shop for every 10 minutes. Contrary to CD,
GD is uniformly distributed along the time line. However,
since we want LK to be scalable and self-bootstrapping, the
estimation techniques we presented in Section 5 uses only
CD. We note that we use GD only for validation purpose—to
calculate estimation error of our models.

Evaluation. We evaluate LK using the ground-truth (GD)
data we collected for the last month of our experiment. Since
we excluded the weekends, we have 19 days in total for
testing and evaluations. We evaluate the approaches using their
resulting Mean Absolute Error (MAE) and Median Absolute
Error (MdAE). More specifically, given a set of n ground
truth wait-time: y1, y2, ..., yn and their estimated values (using
CD): f1, f2, ..., fn, MAE is defined in Equation 4 while
MdAE is defined in Equation 5. Note that mean error is
highly affected by the outliers in the data, on the other hand
median error is more robust to such extremities. Therefore,
we consider median error as the most representative metric
for this problem. We also give the 1st (25%) and 3rd quartiles
(75%) for comparison.

MAE =
1

n

n∑
i=1

|fi − yi| (4)

MdAE = median{|f1 − y1|, |f2 − y2|,, |fn − yn|} (5)

Method MAE MdAE 1st q. 3rd q.

NNE-last 260.53 225.79 98.26 380.35
NNE-basic 210.18 180.70 87.52 290.90
NNE-regression 211.93 180.73 80.69 301.67

TABLE 1: Estimation errors (in seconds) for the experiment.

Method MAE MdAE 1st q. 3rd q.

NNE-last 214.86 183.23 77.94 312.75
NNE-basic 201.16 168.83 71.09 295.58
NNE-regression 192.32 158.87 73.14 279.45

TABLE 2: Estimation errors (in seconds) with more accurate
wait-time detection.

Estimation results without activity recognition. Table 1
shows the estimation errors for the three different approaches
using the wait-time detection method as explained in Section
3. Median error of the NNE-last is 225.79 seconds, NNE-
basic is 180.70 sec. and NNE-regression is 180.73 seconds.
Mean errors are approximately 30 sec. higher than the median
errors. We believe that this is due to the sensitivity of MAE
to the outliers which usually occur in intervals where sudden
increases/decreases are observed in wait-time.

We also observed that both NNE-regression and NNE-
basic are performing better than the NNE-last. We believe
that sparseness of the data is the main cause of the worst
performance of NNE-last. In addition, although we expected
NNE-regression to overperform NNE-basic, the results show
similar errors. We believe that due to the inaccuracies in
detecting presence of the user (i.e. WAP scanning period),
variation in service time and the false positives, we reach the
point where we can improve the wait-time estimation more.
Hence, NNE-regression and NNE-basic are both performing
similar and results in similar errors. Next, we show that we
could improve the results of NNE-regression by using a more
accurate wait-time detection component.

Figure 8a and 8b show the daily MAE and MdAE of the
three different approaches for the last month of our experiment
(only weekdays and a day is excluded since the coffee shop
was closed). Almost all of the days NNE-last is the worst
performing method. On the other hand, for some particular
days NNE-last perform well. We believe that this is directly
related to the surplus of incoming data points in those days. On
the other side, NNE-regression and NNE-basic mostly exhibit
similar errors while the NNE-regression is a little better than
the NNE-basic.

Figure 9a and 9b shows the comparison of ground truth
and estimated values using NNE-basic and NNE-regression
respectively for the day 18 and Figure 9c and 9d for the day
19. Even though we do not consider the variation in service
time in our design, our estimations are close to the actual
values. However, as the graphs show, sudden increases and
decreases sometimes constitute a problem for both NNE-basic
and NNE-regression.

Estimation results with activity recognition. In here
we examine the estimation accuracy of LK using activity
recognition based wait-time detection unit as explained in

IEEE TRANSACTIONS ON MOBILE COMPUTING 9

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Day

M
A

E
 (s

ec
.)

NNE- last NNE-basic NNE-regression

(a)

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Day

M
dA

E
 (s

ec
.)

NNE- last NNE-basic NNE-regression

(b)

Fig. 8: a) Daily mean absolute errors. b) Daily median absolute errors.

Section 4. Since we deployed this version in the last month
of our experiment, in order to have a fair amount of data,
we use the first two weeks for training and the next two
weeks (remaining 9 days) for testing and evaluation. Table
2 shows the estimation errors of our three different estimation
approaches. Median error of the NNE-last is 183.23 seconds,
NNE-basic is 168.83 sec. and NNE-regression is 158.87 sec.
Similar to our previous findings, due to the outliers (mostly the
sudden increases/decreases in wait-time) that are sometimes
missed by our methods, mean errors are little higher than the
median errors (almost 30 seconds). In overall, based on the
results, NNE-regression is the best performing approach for
our dataset. We believe that NNE-regression outperforms the
other approaches due to its power of determining the right
weights for each dimension of the data vector. In compar-
ison to our previous finding (see Table 1), we found that
new method of wait-time detection using activity recognition
improved the estimation errors considerably even though we
use less data (only 4 weeks) in comparison to our previous
experiment. Especially the increase in the accuracy of NNE-
last is prevalent. We believe that this is due to the elimination
of false positives using the more accurate wait-time detection
and the inclusion of more data points due to the elimination
of pre-processing step on the data.

Figure 10a and 10b shows the daily MAE and MdAE of
our approaches. As shown in the figure, in most of the days
NNE-regression is better than the NNE-last and NNE-basic
approaches. Figure 11a and 11b shows the comparison of
ground truth and estimated values using NNE-basic and NNE-
regression respectively for the day 12 and Figure 11c and 11d
for the day 18. Similar to our previous findings, even though
we do not consider the variation in service time in our design,
our estimations are close to the actual values. In addition, we
observed that sometimes NNE-regression fails to adopt itself
to the sudden increases/decreases in wait-time while the NNE-
basic and NNE-last are more successful in adapting to sudden
increases and decreases. In future, we may consider to merge
NNE-regression with NNE-last so that LK can adapt itself to

changing conditions more accurately. However, in overall, our
estimations are close to the actual values.

We believe that variation in service time for different users
(which we did not consider), and the inaccuracy in detecting
the user’s entrance/exit to the coffee shop due to WAP scan-
ning period are the limiting factors for better estimation results.
Moreover, variation in the number of employees working in
the coffee shop during the day, different speed-of-service for
different employees are also other limiting factors for better
estimation. However, in overall, we believe that LK performs
well enough for a coffee shop whose wait-time ranges from 2
to 20 minutes by estimating the wait-time with only 2.5 min.
median error.

6 SCALING LK TO MULTIPLE VENUES

While we presented LK’s deployment for one coffee shop, we
believe LK’s deployment can be extended for other coffee-
shops too. To add a new business to the LK, we only require
the geographical locations, i.e. latitude and longitude, and
the BSSID of the business. After a business is added, LK
immediately starts receiving wait-time data from the users
visiting that business. Depending on the number of LK users
visiting the business, it may take time for LK to construct
a model and start providing accurate wait-time estimations
for the business. To speed up this process, a business added
to LK may manually provide wait time for a week, or offer
promotions and coupons for users who install the LK app and
check-in frequently. As an alternative, we could use data from
similar businesses to help bootstrapping effort for the newly
added businesses. Below, we include more details on how to
scale LK to a large set of locations.

Automated learning of BSSID. In our reported deployment
we manually learned the BSSID of the WAP in the coffee shop.
However, in order to scale LK to other locations quickly, we
can automate this process as follows. Initially when the BSSID
of the WAP in a business is still unknown, LK relies on just
the Location sensing mechanism for wait-time detection (this
time GPS is utilized for accurate presence detection). During

IEEE TRANSACTIONS ON MOBILE COMPUTING 10

200

400

600

800

9 10 11 12 13 14 15 16
Time (9am-5pm)

W
ai

t-T
im

e
(s

ec
.)

Estimations Ground-Truth

(a)

200

400

600

800

9 10 11 12 13 14 15 16
Time (9am-5pm)

W
ai

t-T
im

e
(s

ec
.)

Estimations Ground-Truth

(b)

200

400

600

800

9 10 11 12 13 14 15 16
Time (9am-5pm)

W
ai

t-T
im

e
(s

ec
.)

Estimations Ground-Truth

(c)

200

400

600

800

9 10 11 12 13 14 15 16
Time (9am-5pm)

W
ai

t-T
im

e
(s

ec
.)

Estimations Ground-Truth

(d)

Fig. 9: Plot of ground truth vs. forecasted data using a) NNE-basic for the day no. 18. b) NNE-regression for the day no. 18.
c) NNE-basic for the day no. 19. d) NNE-regression for the day no. 19.

IEEE TRANSACTIONS ON MOBILE COMPUTING 11

0

100

200

300

11 12 13 14 15 16 17 18 19
Day

M
A

E
 (s

ec
.)

NNE- last NNE-basic NNE-regression

(a)

0

100

200

300

11 12 13 14 15 16 17 18 19
Day

M
dA

E
 (s

ec
.)

NNE- last NNE-basic NNE-regression

(b)

Fig. 10: a) Daily mean absolute errors. b) Daily median absolute errors.

this phase, LK app instances scan for the available WAPs in
that business location and upload these to the LK servers.
Learning and validating the BSSID of a business involves
recurring observations of the same BSSID by different users at
different times. After the BSSID of the business is learned, LK
starts accepting line wait-time detections from that business
via WAP as well. This increases the data collected from that
business and shortens the period for constructing an accurate
wait-estimation model.

Integrating LK with social networks. We plan to use
social network services and APIs to quickly scale LK for line
wait-time monitoring of businesses nationwide and worldwide.
For example, we will obtain the geographical locations of new
businesses to add to LK by using the Foursquare [14] Venue
API (which does not even require a login to Foursquare). We
also plan to integrate/embed LK as an extension to the existing
popular location-based services such as Facebook, Foursquare
and Google+.

Offline wait-time estimation. Although LK’s wait-time es-
timation component resides on EC2 for scalability, sometimes
it is desirable for users to have the estimation models on their
phone for immediate and offline access to the future wait-
time. Although it is not scalable to hold models for all of
the franchises, it is possible for user’s to have their favorite
shops’s model on their smartphones which is assumably a few.

7 DISCUSSION

During our deployment, we faced several challenges and
learned some lessons.

Device fragmentation in Android ecosystem. Android
ecosystem consists of a large number of different vendors and
manufacturers. Therefore, unexpectedly, same API in different
phones may give different values. For example, in our line
wait-time detection component, we set the accelerometer’s
sampling frequency to the same scale. However, we quickly
noticed that this same scale gives different results even in
Google’s own phones; Nexus S and Galaxy Nexus. Hence,
an approach to generate uniform accelerometer readings for

different devices was necessary. We resolve this problem by
taking time as a threshold rather than the number of sampling
points accumulated. Supporting for different screen sizes was
also another challenge that we encountered during our design
process.

Bootstrapping. Finding enough user-base is a classical
problem of any crowdsensing system. Although, LK does
not require everyone in the line to have our application,
we need a reasonable amount of users so that LK can give
accurate line wait-time estimations. To achieve this objective,
we distributed fliers and post status updates on social media
such as in Facebook and Twitter for several weeks. Although,
we did not incorporate any monetary incentives in our current
deployment, we think that in future we may give coupons
randomly while the user is in the coffee shop as an incentive
for others to install our application. For similar future apps,
we will also consider using the PhoneLab [15] testbed to help
with bootstrapping efforts.

Design decisions. For simplicity’s sake, we decided early
on to handle the general case accurately, and ignore most
rare corner cases which can increase the battery consumption.
For example, LK’s presence detection component does not
use GPS and uses 2-minutes Wi-Fi scanning periods to detect
user’s presence at the coffee shop. We believe that this is a
good tradeoff to take: inaccuracy incurred by not being so
precise here provides LK to be energy-efficient and attract
more users to install our application. As another example, in
our activity recognition based wait-time detection component
we assume that customers first go into the line before sitting
at the tables. Although, there might be cases where people
first sit and then go in to the line, we observe that these are
very few and handling them may increase the complexity of
our line wait-time detection component.

Dynamic adaptation of estimation models. The question
of “Can LK know/learn about its accuracy and later adopt its
estimation methods/parameters accordingly?” is an important
one. We believe that the answer for this question is yes. To
calculate the accuracy, LK can observe the difference between
its estimate and the wait-time that has just been collected by

IEEE TRANSACTIONS ON MOBILE COMPUTING 12

200

400

600

800

1000

9 10 11 12 13 14 15 16
Time (9am-5pm)

W
ai

t-T
im

e
(s

ec
.)

Estimations Ground-Truth

(a)

200

400

600

800

1000

9 10 11 12 13 14 15 16
Time (9am-5pm)

W
ai

t-T
im

e
(s

ec
.)

Estimations Ground-Truth

(b)

200

400

600

800

9 10 11 12 13 14 15 16
Time (9am-5pm)

W
ai

t-T
im

e
(s

ec
.)

Estimations Ground-Truth

(c)

200

400

600

800

9 10 11 12 13 14 15 16
Time (9am-5pm)

W
ai

t-T
im

e
(s

ec
.)

Estimations Ground-Truth

(d)

Fig. 11: Plot of ground truth vs. forecasted data using a) NNE-basic for the day no. 12. b) NNE-regression for the day no. 12.
c) NNE-basic for the day no. 18. d) NNE-regression for the day no. 18.

IEEE TRANSACTIONS ON MOBILE COMPUTING 13

the wait-time detection unit of LK. Based on the error, LK can
switch to whichever NNE works best, or whichever k value
works best. This switching can be done periodically in every
day/week. We consider to incorporate this feature in our future
design.

8 RELATED WORK

Mobile crowdsensing. Participatory [16] and opportunistic
[17] sensing are the two ends of the sensing spectrum where
both have pros and cons and choice of which one to use
depends on several factors. The former depends on users’
explicit participation, while the latter does not and therefore
can scale more easily. In parallel to the widespread use of
smartphones in recent years, we have witnessed an increasing
interest in opportunistic sensing with smartphones–which is
usually dubbed as mobile crowdsensing [18]. To the best of our
knowledge, LK is the first mobile crowdsensing system that
explore line wait-time estimation in a coffee shop. However,
there are other researchers who explore different domains
of mobile crowdsensing. For example, in TagSense [19],
authors leverage camera, compass, accelerometer and GPS
sensors of the phones to provide an image tagging system.
In [20], Bao and Choudhury introduce MoVi that employs
smartphones to enable collaborative sensing using videos for
recognizing socially interesting events. In [21], authors de-
velop a smartphone-based solution to monitor road and traffic
condition of a city.

Line wait-time detection and estimation. Traditional so-
lutions to the line wait-time monitoring problem are based on
infrastructure-based solutions such as camera placement [1],
[2], sensor deployment [3] or monitoring signals generated
through bluetooth [4] or Wi-Fi capable devices [5]. However,
these solutions usually do not scale well as they are costly to
deploy and mostly designed for specific places. Also most of
the time, extensive training and testing are required before
real-world deployment. Among these, we identified [5] as
the most relevant work to ours. In [5], authors monitor the
received signal strength of the smartphones using a specially
placed WAP. Their approach requires participants to use their
smartphones while in the queue to track signal strength. On
the other hand, LK provides a more holistic approach, from
detecting user’s presence at the coffee shop to wait-time
detection and wait-time estimation. In addition, LK provides
an infrastructure-free solution (assuming most of the coffee
shops have already WAPs) for wait-time detection by solely
relying on crowd’s automatically generated input. Finally in
[5], the aim is to detect the wait-time of a customer who leaves
the line, while in ours, we try to estimate the wait-time for a
newly arrived customer.

Besides, line wait-time detection is only one part of the
problem. Due to the sparse and non-uniform nature of the
collected data, we need to estimate the current and future
wait-times. In literature, line wait-time estimation has been
explored mostly in the context of Queue Theory [22]. Those
works usually assume that examiners have the full knowledge
of the parameters, i.e. queue discipline, arrival rate, service rate
etc. However, in our problem we only have wait-times and

the associated timestamps. So queueing theory is not easily
applicable for our problem. On the other hand, line wait-
time estimation is related to some problems in general time
series theory where the task is to forecast future data using
the previous ones. Number of different techniques have been
proposed in the literature ranging from ad hoc methods (i.e.
moving average, exponential smoothing) to complex model-
based approaches which take trend and seasonality into ac-
counts (i.e. Decomposition, Holt-Winters, ARIMA) [11], [13],
[12]. A major challenge is that general time series analysis
depends on data that is uniformly distributed along the time.
However, our application has non-uniform and initially sparse
data that prevent us from applying the general time series
theory easily.

Localization. LK needs to achieve energy-efficient local-
ization in order to detect user’s presence at the coffee shop.
In the literature, both localization and power-aware sensing
are explored. In [23], authors examine the human localiza-
tion in a building using smartphone sensors and randomly
placed audio beacons in the building. In UnLock [24], authors
propose an unsupervised indoor localization by exploiting an
identifiable signature in one or more sensing dimensions such
as the pattern of accelerometer readings while in an elevator.
Similarly, in LK we use the unique BSSID of WAP in the
coffee shop in the interest of localization. Finally, in [25],
authors identify four factors that waste energy: static use of
location sensing mechanism, absence of use of other sensors,
lack of cooperation among applications, and finally ignoring
battery level while sensing. LK uses dynamic location sensing
based on the user’s distance from the coffee shop to achieve
energy-efficiency.

Activity Recognition. Due to the proliferation of sensors in
commodity mobile devices, identifying the physical activity
of a user has recently gained attention in pervasive com-
munity. Aside from using sensor motes to recognize user’s
activity [26], there has been an increasing interest on using
smartphones to perform activity recognition. In [8] authors use
accelerometer in smartphones to recognize different activities
including walking, jogging and standing. In [9], authors use
smartphones to determine transportation mode of a user. In
most of these works, researchers utilize accelerometer along
with some other sensors such as GPS. As explained in Sec-
tion 4, LK exploits accelerometer on smartphones for more
accurate wait-time detection.

9 CONCLUSION AND FUTURE WORK
In this article, we presented LineKing, a novel crowdsensing
line wait-time monitoring system. LK alleviates the limitations
of the infrastructure-based solutions by proposing an automatic
and accurate wait-time detection on the smartphones along
with accurate wait-time estimations in the cloud. We deployed
LK in a coffee shop of the University at Buffalo, SUNY. LK
has been available for more than a year and has been down-
loaded by more than 1000 users. Our experiments indicated
that we can estimate the actual wait-time of the coffee shop
with 2-3 minutes median absolute error.

For future work, we consider several extensions of LK.
In our current design, we focused on the total wait-time

IEEE TRANSACTIONS ON MOBILE COMPUTING 14

of a user without considering the service time. However,
detecting the service time could be useful for both the venue
owners and the customers. As a second extension, LK can
be extended to report the line length along with the current
wait-time. As shown in the Figure 5a, when the customer is
waiting in the line, she generates peaks which mostly occur
when another person has left the line. Therefore counting
such peaks in the accelerometer graph roughly corresponds
to the number of customers in the line. As another extension,
we consider scaling LK’s estimation component to support
multiple (possibly hundreds) venues at the same time. For this,
LK needs to handle the incoming stream of big data while
forecasting the wait-times of different venues accurately.

REFERENCES

[1] MultiQ at Shanghai World Expo 2010,http://www.multiq.com/
wp-content/uploads/2013/05/case study shanghai world expo 2010.
pdf.

[2] IRISYS Queue Management, http://www.irisys.co.uk/
queue-management/.

[3] D. Bauer, M. Ray, and S. Seer, “Simple sensors used for
measuring service times and counting pedestrians,” Transportation
Research Record: Journal of the Transportation Research Board,
vol. 2214, no. -1, pp. 77–84, 12 2011. [Online]. Available:
http://dx.doi.org/10.3141/2214-10

[4] D. Bullock, R. Haseman, J. Wasson, and R. Spitler, “Automated
measurement of wait times at airport security,” Transportation
Research Record: Journal of the Transportation Research Board,
vol. 2177, no. -1, pp. 60–68, 12 2010. [Online]. Available:
http://dx.doi.org/10.3141/2177-08

[5] Y. Wang, J. Yang, Y. Chen, H. Liu, M. Gruteser, and R. P.
Martin, “Tracking human queues using single-point signal monitoring,”
in Proceedings of the 12th Annual International Conference on
Mobile Systems, Applications, and Services, ser. MobiSys ’14. New
York, NY, USA: ACM, 2014, pp. 42–54. [Online]. Available:
http://doi.acm.org/10.1145/2594368.2594382

[6] M. F. Bulut and M. Demirbas, “A holistic approach for energy efficient
proximity alert on android,” in 2013 IEEE Global Communications
Conference, GLOBECOM 2013, Atlanta, GA, USA, December 9-13,
2013, 2013, pp. 2816–2821.

[7] M. F. Bulut, Y. S. Yilmaz, M. Demirbas, N. Ferhatosmanoglu, and
H. Ferhatosmanoglu, “Lineking: Crowdsourced line wait-time estimation
using smartphones,” in MobiCASE, 2012, pp. 205–224.

[8] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recognition
using cell phone accelerometers,” SIGKDD Explor. Newsl., vol. 12, no. 2,
pp. 74–82, Mar. 2011.

[9] S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and M. Srivastava,
“Using mobile phones to determine transportation modes,” ACM Trans.
Sen. Netw., vol. 6, no. 2, pp. 13:1–13:27, Mar. 2010.

[10] R. Hamid, S. Maddi, A. Johnson, A. Bobick, I. Essa, and C. Isbell,
“A novel sequence representation for unsupervised analysis of human
activities,” Artif. Intell., vol. 173, no. 14, pp. 1221–1244, Sep. 2009.

[11] C. Faloutsos, “Mining time series data,” in SBBD, 2005, pp. 4–5.
[12] K. Kalpakis, D. Gada, and V. Puttagunta, “Distance measures for effec-

tive clustering of arima time-series,” in Proceedings of the 2001 IEEE
International Conference on Data Mining, ser. ICDM ’01. Washington,
DC, USA: IEEE Computer Society, 2001, pp. 273–280.

[13] O. Maimon and L. Rokach, Eds., Data Mining and Knowledge Discovery
Handbook, 2nd ed. Springer, 2010.

[14] Foursquare venues platform, https://developer.foursquare.com/overview/
venues.

[15] A. Nandugudi, A. Maiti, T. Ki, F. Bulut, M. Demirbas, T. Kosar, C. Qiao,
S. Y. Ko, and G. Challen, “Phonelab: A large programmable smartphone
testbed,” in Proceedings of First International Workshop on Sensing and
Big Data Mining, ser. SENSEMINE’13. New York, NY, USA: ACM,
2013, pp. 4:1–4:6.

[16] J. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy,
and M. B. Srivastava, “Participatory sensing,” in In: Workshop on World-
Sensor-Web (WSW06): Mobile Device Centric Sensor Networks and
Applications, 2006, pp. 117–134.

[17] A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo, and R. A.
Peterson, “People-centric urban sensing,” in Proceedings of the 2nd
annual international workshop on Wireless internet, ser. WICON ’06.
New York, NY, USA: ACM, 2006.

[18] R. K. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: Current state and
future challenges,” IEEE Communications Magazine, vol. 49, no. 11, pp.
32–39, 2011.

[19] C. Qin, X. Bao, R. R. Choudhury, and S. Nelakuditi, “Tagsense: Lever-
aging smartphones for automatic image tagging,” IEEE Transactions on
Mobile Computing, vol. 13, no. 1, pp. 61–74, 2014.

[20] X. Bao and R. R. Choudhury, “Movi: mobile phone based video high-
lights via collaborative sensing,” in Proceedings of the 8th international
conference on Mobile systems, applications, and services, ser. MobiSys
’10. New York, NY, USA: ACM, 2010, pp. 357–370.

[21] P. Mohan, V. N. Padmanabhan, and R. Ramjee, “Nericell: Rich
monitoring of road and traffic conditions using mobile smartphones,” in
Proceedings of the 6th ACM Conference on Embedded Network Sensor
Systems, ser. SenSys ’08. New York, NY, USA: ACM, 2008, pp. 323–
336. [Online]. Available: http://doi.acm.org/10.1145/1460412.1460444

[22] R. B. Cooper, Introduction to Queueing Theory, 2nd ed. New York,
NY: North-Holland, 1981.

[23] I. Constandache, X. Bao, M. Azizyan, and R. R. Choudhury, “Did you
see bob?: human localization using mobile phones,” in Proceedings of
the sixteenth annual international conference on Mobile computing and
networking, ser. MobiCom ’10. New York, NY, USA: ACM, 2010, pp.
149–160.

[24] H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, and
R. R. Choudhury, “No need to war-drive: Unsupervised indoor
localization,” in Proceedings of the 10th International Conference
on Mobile Systems, Applications, and Services, ser. MobiSys ’12.
New York, NY, USA: ACM, 2012, pp. 197–210. [Online]. Available:
http://doi.acm.org/10.1145/2307636.2307655

[25] Z. Zhuang, K.-H. Kim, and J. P. Singh, “Improving energy efficiency of
location sensing on smartphones,” in Proceedings of the 8th international
conference on Mobile systems, applications, and services, ser. MobiSys
’10, 2010, pp. 315–330.

[26] P. Zappi, C. Lombriser, T. Stiefmeier, E. Farella, D. Roggen, L. Benini,
and G. Tröster, “Activity recognition from on-body sensors: accuracy-
power trade-off by dynamic sensor selection,” in Proceedings of the
5th European conference on Wireless sensor networks, ser. EWSN’08.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 17–33.

Muhammed Fatih Bulut received his B.S. de-
gree from Computer Engineering Department
of Bilkent University, Turkey in 2009 and Ph.D.
degree from University at Buffalo, SUNY in 2014.
His research interests include mobile comput-
ing, crowdsourcing and social networks. More
specifically his research focuses on employing
smartphones and social networks to build in-
novative people-centric, socially-aware systems
and applications.

Murat Demirbas received his BSc in Com-
puter Science and Engineering from Middle East
Technical University (METU), Ankara, Turkey.
He received his MS and PhD in Computer
Science and Engineering from The Ohio State
University. His research interests are in the
broad area of distributed and networked sys-
tems, and span the areas of cloud computing,
distributed algorithms, fault-tolerant computing,
self-stabilization, ubiquitous computing, wireless
sensor networks, smartphones, crowdsourcing.

Hakan Ferhatosmanoglu received his B.S. de-
gree from Computer Science, Bilkent Univer-
sity, Ankara, Turkey in 1997 and Ph.D. degree
from University of California, Santa Barbara in
2001. Currently, he is an Associate Professor
in the Department of Computer Engineering
of Bilkent University. His research interests fo-
cus on Database Systems and Applications,
Biomedical Informatics, High-Performance Data
Management, Scientific, Multimedia, and high
dimensional databases and Social Networks.

http://www.multiq.com/wp-content/uploads/2013/05/case_study_shanghai_world_expo_2010.pdf
http://www.multiq.com/wp-content/uploads/2013/05/case_study_shanghai_world_expo_2010.pdf
http://www.multiq.com/wp-content/uploads/2013/05/case_study_shanghai_world_expo_2010.pdf
http://www.irisys.co.uk/queue-management/
http://www.irisys.co.uk/queue-management/
http://dx.doi.org/10.3141/2214-10
http://dx.doi.org/10.3141/2177-08
http://doi.acm.org/10.1145/2594368.2594382
https://developer.foursquare.com/overview/venues
https://developer.foursquare.com/overview/venues
http://doi.acm.org/10.1145/1460412.1460444
http://doi.acm.org/10.1145/2307636.2307655

	Introduction
	Model and Assumptions
	Wait-Time Detection
	Phone state receiver
	Wait-Time detection
	Data uploader

	Wait-time detection using activity recognition
	Wait-Time Estimation
	Wait-time estimation problem
	NNE: Nearest neighbor estimation
	Estimation Results

	Scaling LK to multiple venues
	Discussion
	Related Work
	Conclusion and Future Work
	References
	Biographies
	Muhammed Fatih Bulut
	Murat Demirbas
	Hakan Ferhatosmanoglu

