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Abstract. Consider a wireless sensor network in which each sensor has
a bit of information. Suppose all sensors with the bit 1 broadcast this
fact to a basestation. If zero or one sensors broadcast, the basestation
can detect this fact. If two or more sensors broadcast, the basestation
can only detect that there is a “collision.” Although collisions may seem
to be a nuisance, they can in some cases help the basestation compute
an aggregate function of the sensors’ data.
Motivated by this scenario, we study a new model of computation for
boolean functions: the 2+ decision tree. This model is an augmentation
of the standard decision tree model: now each internal node queries an
arbitrary set of literals and branches on whether 0, 1, or at least 2 of the
literals are true. This model was suggested in a work of Ben-Asher and
Newman but does not seem to have been studied previously.
Our main result shows that 2+ decision trees can “count” rather effec-
tively. Specifically, we show that zero-error 2+ decision trees can compute
the threshold-of-t symmetric function with O(t) expected queries (and
that Ω(t) is a lower bound even for two-sided error 2+ decision trees).
Interestingly, this feature is not shared by 1+ decision trees. Our result
implies that the natural generalization to k+ decision trees does not give
much more power than 2+ decision trees. We also prove a lower bound of
Ω̃(t) · log(n/t) for the deterministic 2+ complexity of the threshold-of-t
function, demonstrating that the randomized 2+ complexity can in some
cases be unboundedly better than deterministic 2+ complexity.
Finally, we generalize the above results to arbitrary symmetric functions,
and we discuss the relationship between k+ decision trees and other com-
plexity notions such as decision tree rank and communication complexity.
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1 Introduction

The motivation for our work comes from monitoring applications in wireless
sensor networks. Consider the scenario where n sensors communicate directly
with a basestation (i.e., a “single-hop” network). Each sensor contains one bit of
information (e.g., “Is the temperature more than 70◦F?”) and the basestation
wants to compute some aggregate function over this information (e.g., “Is the
temperature more than 70◦F for at least 10 of the sensors?”). How efficiently
can the basestation compute the aggregate function? The naive way to compute
the aggregate function is to query each sensor individually resulting in as many
queries as the number of sensors n in the worst case.

We observe that a better solution is to use the broadcast primitive available
in wireless networks. With a single broadcast message, the basestation may si-
multaneously ask a group of sensors if their bit is 1, and switches to the listening
mode. There are three possible scenarios: either 0, 1, or at least 2 sensors re-
ply. In the first two cases, the basestation can detect that exactly 0 or exactly
1 sensors in the group have replied. In the third case, there will be a collision
in the sensors’ replies. Conventional wisdom says that collisions are bad, and
in fact protocols in wireless networks try to disambiguate collisions. In this sce-
nario, however, collisions provide useful information: the basestation gets a quick
feedback affirming that at least 2 sensors have replied in the queried group.

Such a quick in-network feedback collection primitive has many uses in wire-
less sensor network applications. For example for intrusion detection applica-
tions [2], a clusterhead can employ this primitive to quickly check if a threshold
number of sensors have detected an intruder. The clusterhead may initiate the
more costly actions to localize and classify the intruder, only if a threshold num-
ber of sensors detect the phenomena (i.e., after it is assured that this is not a
false-positive due to wind, low-quality sensors, etc.).

The receiver side collision detection required for this primitive can easily be
implemented in the existing sensor radios. Indeed, there has been recent work in
using existing wireless sensor nodes to detect collisions and using this capability
to design more efficient protocols [7, 8, 11].

Next, we present our theoretical framework for studying the problem above.
Decision trees. Decision trees provide an elegant framework for studying the
complexity of boolean functions. The internal nodes of a decision tree are asso-
ciated with tests on the input; the branches leaving a node correspond to the
outcomes of the associated test; and, the leaves of the tree are labeled with out-
put values. The main parameter of interest is the depth of the decision tree; i.e.,
the maximum number of tests made over all inputs. The decision tree complexity
of a particular boolean function is defined to be the minimum of this parameter
over all decision trees computing the function.

We can define different decision tree models by restricting the set of tests
that can be performed at each internal node. In the simple decision tree model,
each test queries the value of a single bit of the input. This standard model
is extremely well-studied in theoretical computer science; see e.g. the survey of
Buhrman and de Wolf [6]. Other models include linear decision trees, where



the tests are signs of linear forms on the bits (see, e.g., [9]); algebraic decision
trees, the generalization to signs of low-degree polynomials (see, e.g., [4]); k-
AND decision trees [5], where the tests are ANDs of up to k literals; k-bounded
decision trees [15], the generalization to arbitrary functions of up to k bits; and
IF2-linear decision trees [13], where the tests are parities of sets of input bits.

Closer to the interests of the present article are models where the tests are
threshold functions of the input bits. When the tests can be ORs of input vari-
ables, the model is known as combinatorial group testing (see the book [10]).
When the tests can count and branch on the number of inputs in any subset
of variables, the model is connected to that of combinatorial search (see the
book [1]). Finally, when the tests allowed are ORs of any subset of input literals,
we have the decision tree model studied by Ben-Asher and Newman [3]. We call
this last model the 1+ decision tree model.

In this article, we initiate the study of the 2+ decision tree model. If the
algorithm at the basestation does not try to avoid collisions but instead uses them
to determine when at least 2 sensors have replied, the complexity of computing
the aggregate function is determined by the 2+ decision tree complexity of the
function. The tests in this model are on arbitrary subsets of the n input literals,
and the branches correspond to the cases of either 0, 1, or at least 2 literals in
the subset being true. (We will give a formal definition in Section 2.1.) We also
introduce and examine the k+ decision tree model, a natural generalization of
the 2+ model in which the branches correspond to 0, 1, 2, . . . , k− 1, or at least
k literals being true.

A similar motivation for 2+ decision trees appears in the work of Ben-Asher
and Newman [3]. They were concerned with the PRAM model of parallel com-
putation with n processors and a one-bit CRCW memory cell. This led naturally
to the 1+ model of computation, which Ben-Asher and Newman studied. The
authors also mentioned that an Ethernet channel scenario — say, a single bus
Ethernet network where the controller can detect any collisions in the network
— yields a computational model equivalent to our 2+ decision trees, but left the
study of this model as an open problem.
Organization of the article. We defer the statement of our main results to
Section 3, in order to first introduce formal definitions of our models. We prove
our main results in Sections 4 and 5, and we present other results from the full
version of this article in Section 6. Due to lack of space, the missing details
including all the omitted proofs will appear in the full version of the paper.

2 Preliminaries

2.1 Definitions

In this article, we are concerned with boolean functions; i.e., functions of the form
f : {0, 1}n → {0, 1}. We write a typical input as x = (x1, . . . , xn) ∈ {0, 1}n, and
write |x| for its Hamming weight, namely

∑n
i=1 xi. We also use the notation

[n] = {1, . . . , n} and log(m) = max{log2(m), 1}.



A boolean function f : {0, 1}n → {0, 1} is monotone if f(x) ≥ f(y) whenever
x ≥ y coordinate-wise. A function f is (totally) symmetric if the value of f(x) is
determined by |x|. When f is symmetric, we write f0, f1, . . . , fn ∈ {0, 1} for the
values of the function on inputs of Hamming weight 0, 1, . . . n, respectively. The
functions which are both monotone and symmetric are the threshold functions.
Given 0 ≤ t ≤ n + 1, the t-threshold function T t

n : {0, 1}n → {0, 1} is defined by
T t

n(x) = 1 iff |x| ≥ t.
For an arbitrary symmetric function f we recall the integer parameter Γ (f),

first introduced by Paturi [17], and related to the longest interval centered around
n/2 on which f is constant:

Γ (f) = min
0≤`≤dn/2e

{` : f` = f`+1 = · · · = fn−`}.

E.g., for the threshold functions we have Γ (T t
n) = min{t, n + 1− t}.

k+ decision trees. Let 1 ≤ k ≤ n be integers. A k+ decision tree T over n-bit
inputs is a tree in which every leaf has a label from {0, 1}, every internal node is
labeled with two disjoint subsets Qpos, Qneg ⊆ [n], and the internal nodes have
k + 1 outgoing edges labeled 0, 1, . . . , k − 1, and k+. Every internal node is also
called a query ; the corresponding sets Qpos and Qneg are called the positive query
set and negative query set. Given a boolean input x = (x1, . . . , xn) ∈ {0, 1}n,
the computation of T on x begins at the root of T . If that node is labeled by
(Qpos, Qneg), computation proceeds along the edge labeled 0, 1, . . . , k− 1, or k+

according to Hamming weight of the literal set {xi : i ∈ Qpos}∪ {xj : j ∈ Qneg};
i.e.,

∑
i∈Qpos

xi +
∑

j∈Qneg
xj . The label k+ has the interpretation “at least k.”

The computation of T on x then proceeds recursively at the resulting child node.
When a leaf node is reached, the tree’s output on x, denoted by T (x), is the label
of the leaf node. T is said to compute (or decide) a function f : {0, 1}n → {0, 1}
if and only if T (x) = f(x) for all x ∈ {0, 1}n. The cost of T on x, denoted
cost(T, x), is the length of the path traced by the computation of T on x. The
depth of the tree T is the maximum cost over all inputs. The deterministic
k+ decision tree complexity of a boolean function f , denoted D(k+)(f), is the
minimum depth of any k+ decision tree that computes it.

As usual, we also introduce randomized k+ decision trees. Formally, these are
probability distributions P over deterministic k+ decision trees. The expected cost
of P on input x is ET∼P [cost(T, x)]. The expected cost of P itself is the maximum
expected cost over all inputs x. Given a boolean function f : {0, 1}n → {0, 1},
the error of P on input x is PrT∼P [T (x) 6= f(x)]. We say that P computes f
with zero error if this error is 0 for all inputs x (in particular, each deterministic
T in the support of P must compute f). We say that P computes f with two-
sided error if the error is at most 1/3 for all inputs x. Note that both the
expected cost measure and the error measure are worst-case over all inputs; we
do not consider distributional complexity in this article. The zero (respectively,
two-sided) error randomized k+ decision tree complexity of a boolean function
f , denoted R

(k+)
0 (f) (respectively, R

(k+)
2 (f)), is the minimum expected cost over

all distributions P which compute f with zero (respectively, two-sided) error. In



this work, our randomized upper bounds will be for zero error k+ computation
and our randomized lower bounds for two-sided error.

We conclude by noting that the simple decision tree model is the 1+ model
with the extra restriction that the query sets Qpos and Qneg satisfy |Qpos ∪
Qneg| = 1 at each node. We use the standard notation D(f), R0(f), and R2(f)
for the associated deterministic, 0-error, and 2-sided error complexities.

2.2 Related work

Our main results concern the complexity of symmetric functions under the 2+

decision tree model, as well as the relation between the deterministic, zero-error
randomized, and two-sided error randomized complexities of functions under the
k+ decision tree model. In this section, we review some of the work done on sim-
ilar problems in the simple and 1+ decision tree models.

Simple decision trees. The computation of totally symmetric functions is not
interesting in the simple decision tree model; it’s easy to see that for noncon-
stant totally symmetric f we have D(f) = n (and it’s also known that even
R2(f) ≥ Ω(n) [16]). But some of the most interesting open problems in the
theory of simple decision trees concern functions that have a large “degree” of
symmetry. Recall that a graph property for v-vertex graphs is a decision problem
f : {0, 1}(

v
2) → {0, 1} which is invariant under all permutations of the vertices.

Let f be a nonconstant monotone graph property. Two famous open problem
in simple decision tree complexity are the evasiveness conjecture [18], that D(f)
equals

(
v
2

)
, and the Yao-Karp conjecture [19], that R(f) must be Ω(v2).

The relationship between deterministic and randomized complexity is an-
other interesting aspect of simple decision trees. Perhaps surprisingly, it is known [16]
that deterministic, zero-error randomized, and two-sided error randomized sim-
ple decision tree complexity are polynomially related for every boolean function;
specifically, D(f) ≤ O(R2(f)3). On the other hand, it is not known whether
R0(f) ≤ O(R2(f)) holds for all f .

1+ decision trees. In the 1+ model, the complexity of symmetric functions
becomes a natural question, and a non-trivial one. For example, we of course
have D(1+)(T 1

n) = 1, but the value of even D(1+)(T 2
n) is not immediately ob-

vious. Ben-Asher and Newman point out that it is not hard to show that
D(1+)(T t

n) ≤ O(t log(n/t)), and they show that this bound is tight:

Ben-Asher–Newman Theorem [3]. For 2 ≤ t ≤ n, D(1+)(T t
n) = Θ(t log(n/t)).

Ben-Asher and Newman also consider randomized complexity. They sketch
the proof of the fact that R

(1+)
0 (T 2

n) ≥ Ω(log n), and also observe that R
(1+)
2 (T 2

n) =
O(1). This leads to the interesting conclusion that unlike in the simple decision
tree model, there is no polynomial relationship between R

(1+)
0 and R

(1+)
2 —

indeed, R
(1+)
0 (f) can be unboundedly larger than R

(1+)
2 (f).



As we mentioned in the introduction, Ben-Asher and Newman leave the
study of the 2+ model as an open problem. In particular, they asked if their
main theorem can be extended to D(2+)(T t

n) ≥ Ω(t log(n/t)), observing only a
trivial Ω(t) lower bound.

3 Our results

Our main results exactly characterize (up to constants) the zero and two-sided
error randomized 2+ complexities of all symmetric functions. We also nearly
characterize the deterministic 2+ complexity of symmetric functions; in particu-
lar, we answer the open question of Ben-Asher and Newman up to a log t factor.

Theorem 1. For any symmetric boolean function f : {0, 1}n → {0, 1}, write
Γ = Γ (f). Then

Ω
(
(Γ/ log Γ ) · log(n/Γ )

)
≤ D(2+)(f) ≤ O

(
Γ · log(n/Γ )

)
,

R
(2+)
0 (f) = Θ(Γ ),

R
(2+)
2 (f) = Θ(Γ ).

In particular, the above bounds hold with Γ = min(t, n + 1 − t) for threshold
functions f = T t

n.

To get a feel for the threorem consider the threshold function g = T 100
n . The-

orem 1 states that R
(2+)
0 (g) = R

(2+)
2 (g) = O(1) while it can be shown that

R
(2+)
0 (g) ≥ Ω(log n). On the other hand both D(2+)(g) = D(1+)(g) = Θ(log n).

The upper bounds and lower bounds of Theorem 1 are tackled in Sections 4
and 5 respectively.

An immediate corollary of Theorem 1 is that there is no polynomial relation-
ship between deterministic and zero-error randomized 2+ decision tree complex-
ity; indeed, no bounded relationship at all. This is because for t = O(1) we have
D(2+)(T t

n) ≥ Ω(log n), yet R
(2+)
0 (T t

n) = O(1). This latter result shows that the
zero-error 2+ decision tree model is quite powerful, being able to compute T

O(1)
n

with a number of queries independent of n.
Our upper bound R

(2+)
0 (f) ≤ O(Γ ) relies essentially on the upper bound

R
(2+)
0 (T t

n) ≤ O(t), and to prove this we actually prove a stronger statement: any
“k+ query” can be exactly simulated with an expected O(k) many 2+ queries.
Consequently we deduce that the zero error randomized k+ decision tree com-
plexity of any boolean function is O(k) times smaller than its 2+ decision tree
complexity.

Corollary 1. For any boolean function f : {0, 1}n → {0, 1}, R
(k+)
0 (f) ≥ Ω(R(2+)

0 (f)/k).



The inequality in this corollary is best possible. Indeed, we show that for every
symmetric function f it holds that R

(k+)
0 (f) = Θ(Γ (f)/k). A similar reduction

can be made regarding deterministic k+ complexity.
The full version of this article includes many other results regarding the k+

decision tree complexity of general functions. We give a brief overview of some
of these results in Section 6.

4 Upper bounds

A straightforward observation reduces computation of general symmetric func-
tions to that of threshold functions. Thus in this section we only discuss com-
puting threshold functions.

Our upper bound for the deterministic 2+ complexity of thresholds follows
immediately from the Ben-Asher–Newman Theorem (which in fact only needs
1+ queries). We also have the following very straightforward extension:

Proposition 1. Let 1 ≤ k ≤ t ≤ n and 0 ≤ t ≤ n + 1 be integers. Then
there exists a query algorithm that correctly decides whether |x| is 0, 1, . . . , t −
1, or at least t in O(t/k log(n/t)) queries. In particular, D(k+)(T t

n) ≤
⌈

t
k

⌉
·(

2 ·
⌈
log

(
n
t

)⌉
+ 1

)
.

Note that this Proposition bounds the 2+ complexity of a k+ query, which
immediately implies for every f that D(k+)(f) is never better than D(2+)(f) by
more than a O(k log(n/k)) factor.

To complete the proof of the upper bounds in Theorem 1, it now suffices to
analyze the zero-error randomized complexity of threshold functions, which we
do in the following theorem:

Theorem 2. Let 2 ≤ k ≤ t ≤ n be integers. Then there is a randomized
k+ query algorithm which, given x ∈ {0, 1}n, correctly decides whether |x| is
0, 1, . . . , t − 1, or at least t, using an expected O(t/k) queries. In particular,
R

(k+)
0 (T t

n) ≤ O(t/k). Moreover, if t ≤ k then R
(k+)
0 (T t

n) = 1.

Corollary 1 follows directly from this theorem (using linearity of expectation),
and as mentioned earlier Theorem 2 implies the upper bounds in Theorem 1.

The key to proving Theorem 2 is the following “Count” algorithm:

Theorem 3. Let k ≥ 2. There is an algorithm Count which on input x, out-
puts |x| in an expected O(1 + |x|/k) many k+ queries.

We will also need the following easier result:

Proposition 2. For each k ≥ 1 and each real t satisfying k ≤ t ≤ n, there
is an O(t/k)-query zero-error randomized k+ query algorithm which on input
x ∈ {0, 1}n has the following properties:

(i) It makes (at most) 4t/k queries, with probability 1.
(ii) It outputs either “|x| ≥ t” or “don’t know.”



(iii) If |x| ≥ 4t, it outputs “|x| ≥ t” with probability at least 1/4.
(iv) If it ever outputs “|x| ≥ t”, then indeed |x| ≥ t.

We remark that Proposition 2 works even if our k+ queries only return the
response “k+” or “< k”; in particular, it holds even when k = 1. Theorem 3,
however, needs the full power of k+ queries.

The algorithm in Theorem 2 is as follows:

1. Run Count till 4t/k queries are made or it halts. In the latter case return
the output of Count and halt.

2. Run algorithm from Proposition 2.
a. If the algorithm outputs “don’t know” go to Step 1 else output “|x| ≥ t”

and halt.

Next, we sketch how to prove Theorem 3 using balls and bins analysis. The
Count algorithm involves randomly partitioning the coordinates [n] into some
number of “bins.” We think of the “balls” as being the indices for which the input
x has a 1. With this framework set up, it is fairly easy to prove Proposition 2.
We also prove Theorem 3 about the Count algorithm using the balls and bins
framework. Suppose we toss the balls (1-coordinates) into bins and then make
a k+ query on each bin. Recall that this tells us whether the number of balls
is 0, 1, 2, . . . , k − 1, or ≥ k. If a bin contains fewer than k balls, we say it
isolates these balls. Whenever a bin isolates balls, we have made progress: we
know exactly how many 1’s are in x in the bin’s coordinates. We can henceforth
“throw away” these coordinates, remembering only the 1-count in them, and
continue processing x on the substring corresponding to those coordinates in
bins with at least k many 1’s. Thus in terms of balls and bins, we can think of
the task of counting |x| as the task of isolating all of the balls. We note that the
ability to isolate/count and throw away is the crucial tool that 2+ queries gain
us over 1+ queries.

We now give a brief intuition behind the Count algorithm. Although the
algorithm doesn’t actually know |x|, the number of balls, if it could partition
using 2|x|/k bins then that would likely isolate a constant fraction of the balls.
If we could do this repeatedly while only using O(# balls remaining/k) many
queries, we will be able to construct the desired Count algorithm. Since we
don’t know the number of balls remaining, we can try using 2, 4, 8, etc., many
bins. If we get up to around the “correct number” 2|x|/k, we’re likely to isolate
a good fraction of balls; we can then reset back to 2 bins and repeat. Although
we pay a query for each bin, we don’t have to worry too much about doubling
the number of bins too far; resetting becomes highly likely once the number of
bins is at least the correct number. More worrisome is the possibility of resetting
too early; we don’t want to just keep isolating too few bins. However, we will
show that if the number of bins is too small, we are very unlikely to get many
isolating bins; hence we won’t reset.

Statement of Count algorithm. We now present some more details on the
Count algorithm. The Count algorithm is dovetailing of two other algorithms:



A-Count (which in O(A2) queries can determine if |x| ≤ A, where A is an
absolute constant) and Shave (to be described soon). More precisely,

0. Set X ← 0.
1. Run A-Count till A2 queries are made. If the algorithm halts with the

answer w then halt and return X + w.
2. Run Shave till A2 queries are made. Assume Shave has isolated the set of

indices S (out of which w are 1s), update X ← X +w and go to Step 1 with
the input projected to indices outside of S.

The algorithm Shave is as follows:

Run Partition+(t) with t equal to 0; 0, 1; 0, 1, 2; 0, 1, 2, 3; . . . .
Halt as soon as one of the run halts.

The algorithm Partition+(t) runs another algorithm Partition(t) 50 times
and halts the first time Partition(t) “accepts” and “rejects” if all the runs
“reject.” Finally, the Partition(t) algorithm is as follows:

1. Toss the indices into 2t bins and do a k+ query on each bin.
2. Call a bin “good” if the number of balls in it is in the range [14k, 3

4k].
3. If the fraction of good bins is at least 1

20 , declare “accept” and isolate the
balls.

4. Otherwise declare “reject” and do not isolate any balls.a

a Not isolating any ball is just for the simplicity of analysis. In practice one should
indeed isolate any ball that one can.

5 Lower bounds

Deterministic lower bound.

Lemma 1. For any symmetric function f : {0, 1}n → {0, 1} such that Γ =
Γ (f) > 2,

D(2+)(f) ≥ Ω ((Γ/ log Γ ) · log(n/Γ )) .

(When Γ ≤ 2, D(2+)(f) ≤ 1.)

Proof. The statement about the Γ ≤ 2 case is trivial. For Γ > 2, assume without
loss of generality that fΓ−1 6= fΓ . (If the inequality does not hold, then fn−Γ 6=
fn−Γ+1 and we exchange the roles of the 0 and 1 labels in the rest of the proof.)
Assume also for now that Γ/3 and 3n/Γ are integers. We describe an adversary
that constructs inputs of weight Γ − 1 or Γ while answering the 2+ queries of
the algorithm consistently.

The adversary maintains two pieces of information: a list of m = Γ/3 sets
U1, . . . , Um of “undefined” variables and a set I ⊆ [m] of the sets of undefined
variables that are “active.” Initially, U` = { n

m (`− 1)+1, . . . , n
m · `} and I = [m].

For each query (Qpos, Qneg), the adversary proceeds as follows:



1. If there is an index ` ∈ I such that |Qpos ∩U`| > |U`|/m, then the adversary
answers “2+”, assigns the variables in U` \ Qpos the value 0, and updates
U` = U` ∩Qpos. We refer to a query handled in this manner as an `-query.

2. Otherwise, let Q′ ⊆ Qneg be a set of size |Q′| = min{2, |Qneg|}. The adversary
sets the variables in U` ∩ (Qpos ∪Q′) to 0 and updates U` = U` \ (Qpos ∪Q′)
for each ` ∈ I. It then returns the answer “0”, “1”, or “2+”, depending on
the size of Q′. We refer to the query as a 0-query in this case.

After answering the query, each set U` of size |U`| < 3m is considered “defined.”
When the set U` is defined, the adversary updates I = I \ {`}. If I is still not
empty, the adversary also sets 3 of the variables in U` to one. When the last set
U` is defined, the adversary sets either 2 or 3 of its variables to one.

While not all the sets are defined, the answers of the adversary are consistent
with inputs of weight Γ − 1 and Γ . Therefore, the algorithm must make enough
queries to reduce the sizes of U1, . . . , Um to less than 3m each. Let q = q0 + q1 +
· · ·+qm be the number of queries made by the algorithm, where q0 represents the
number of 0-queries and q` represents the number of ` queries, for ` = 1, . . . ,m.

Consider now a fixed ` ∈ [m]. Each `-query removes at most a 1−1/m fraction
of the elements in U`, and each 0-query removes at most |U`|/m + 2 ≤ 2|U`|/m
elements. So |U`| < 3m holds only when( n

m

) (
1
m

)q`
(

1− 2
m

)q0

< 3m.

The inequality holds for each of ` = 1, . . . ,m; taking the product of the m

inequalities, we obtain
(

n
m

)m (
1
m

)q1+···+qm
(
1− 2

m

)m·q0
< (3m)m, which implies

(for m ≥ 4)( n

3m2

)m

< mq1+···+qm

(
1− 2

m

)−m·q0

≤ mq1+···+qm42q0 ≤ m2(q0+q1+···+qm).

Taking the logarithm on both sides and dividing by 2 log m, we get m
2 log m log n

3m2 <

q0 + q1 + · · ·+ qm = q. Recalling that m = Γ/3, we get the desired lower bound.
To complete the proof, we now consider the case where Γ/3 or n/m is not an

integer. In this case, let Γ ′ be the largest multiple of 3 that is no greater than
Γ , let n′ = n− (Γ −Γ ′), and let n′′ be the largest multiple of m no greater than
n′. Let the adversary fix the value of the last n − n′ variables to one and the
previous n′ − n′′ variables to zero. We can now repeat the above argument with
Γ ′ and n′′ replacing Γ and n.

Randomized lower bound. We have the following result:

Lemma 2. For any symmetric function f : {0, 1}n → {0, 1} such that Γ =
Γ (f) > k and integer k ≥ Γ ,

R
(k+)
2 (f) ≥ Ω (Γ/k) .

When Γ ≤ k, even D(2+)f ≤ 1.



6 Other results

In the full version of this article, we prove a number of results about the deter-
ministic k+ complexity of non-symmetric functions. We state a number of these
results in this section.

First, every boolean function has nontrivial deterministic k+ complexity:

Theorem 4. For all f : {0, 1}n → {0, 1}, D(k+)(f) ≤ O(n/ log k).

The proof of this theorem uses a result from the combinatorial group testing
literature [10]. The bound in Theorem 4 is sharp:

Theorem 5. At least a 1 − 2−2n−1
fraction of functions f : {0, 1}n → {0, 1}

satisfy the inequality D(k+)(f) ≥ (n/ log(k + 1))(1− on(1)).

We can furthermore exhibit simple explicit functions with this property:

Theorem 6. Let eq : {0, 1}n × {0, 1}n → {0, 1} be defined by eq(x, y) = 1 iff
x = y. Then D(k+)(eq) ≥ Ω(n/ log k).

The proof of Theorem 6 is a direct corollary of a more general result linking
deterministic k+ complexity to communication complexity. Let CC(f) denote
the deterministic 2-party communication complexity of f (for details, see [14]).

Theorem 7. For any f : {0, 1}n×{0, 1}n → {0, 1}, D(k+)(f) ≥ Ω(CC(f)/ log k).

Interestingly, the deterministic k+ complexity of a function is also closely
related to its simple decision tree rank. The notion of (simple) decision tree
rank was first introduced by Ehrenfeucht and Haussler [12] in the context of
learning theory, and has the following recursive definition. If T has a single
(leaf) node we define rank(T ) = 0. Otherwise, supposing the two subtrees of
T ’s root node are T1 and T2, we define rank(T ) = max{rank(T1),rank(T2)} if
rank(T1) 6= rank(T2), and rank(T ) = rank(T1)+1 if rank(T1) = rank(T2).
For a boolean function f , we define rank(f) to be the minimum rank among
simple decision trees computing f .

Theorem 8. For all f : {0, 1}n → {0, 1},

rank(f)/k ≤ D(k+)(f) ≤ O
(
rank(f) log(n/rank(f))

)
.

Both bounds in this inequality may be tight. For the lower bound, it can be
shown that for any symmetric function f we have rank(f) = Θ(Γ (f)). This
implies that for t = Θ(n) we have rank(T t

n) = Θ(n); but for this t we also have
D(k+)(T t

n) ≤ O(n/k), by Proposition 1. This does not rule out a lower bound of
the form (rank(f)/k) · log(n/rank(f)), but such a lower bound would be ruled
out by the OR function, which has rank 1 but even 1+ query complexity 1. The
upper bound is tight in the case of the so-called odd-max-bit function, which
has rank 1; it can be shown that D(k+)(odd-max-bit) ≥ Ω(log n), independent
of k.

Finally, in contrast to the evasiveness conjecture (for simple decision trees),
we show that the basic monotone graph property of connectivity has o(v2) de-
terministic 1+ complexity:



Theorem 9. For the connectivity graph property Connv : {0, 1}(
v
2) → {0, 1} it

holds that D(1+)(Connv) ≤ v(dlog ve+ 1).
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