
Dissecting the Performance of Strongly-Consistent
Replication Protocols

Ailidani Ailijiang∗
Microsoft

Ailidani.Ailijiang@microsoft.com

Aleksey Charapko†
University at Buffalo, SUNY

acharapk@buffalo.edu

Murat Demirbas†
University at Buffalo, SUNY

demirbas@buffalo.edu

ABSTRACT
Many distributed databases employ consensus protocols to
ensure that data is replicated in a strongly-consistent man-
ner on multiple machines despite failures and concurrency.
Unfortunately, these protocols show widely varying per-
formance under different network, workload, and deploy-
ment conditions, and no previous study offers a comprehen-
sive dissection and comparison of their performance. To fill
this gap, we study single-leader, multi-leader, hierarchical
multi-leader, and leaderless (opportunistic leader) consen-
sus protocols, and present a comprehensive evaluation of
their performance in local area networks (LANs) and wide
area networks (WANs). We take a two-pronged systematic
approach. We present an analytic modeling of the protocols
using queuing theory and show simulations under varying
controlled parameters. To cross-validate the analytic model,
we also present empirical results from our prototyping and
evaluation framework, Paxi. We distill our findings to simple
throughput and latency formulas over the most significant
parameters. These formulas enable the developers to decide
which category of protocols would be most suitable under
given deployment conditions.

ACM Reference Format:
Ailidani Ailijiang, Aleksey Charapko, and Murat Demirbas. 2019.
Dissecting the Performance of Strongly-Consistent Replication Pro-
tocols. In 2019 International Conference on Management of Data (SIG-
MOD ’19), June 30-July 5, 2019, Amsterdam, Netherlands. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3299869.3319893

∗Work completed at University at Buffalo, SUNY.
†Also with Microsoft, Redmond, WA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00
https://doi.org/10.1145/3299869.3319893

1 INTRODUCTION
Coordination services and protocols play a key role in mod-
ern distributed systems and databases. Many distributed
databases and datastores [4, 7–10, 12, 13, 16, 18, 23, 24, 31, 40]
use consensus to ensure that data is replicated in a strongly-
consistent manner on multiple machines despite failures and
concurrency.

Fault-tolerant distributed consensus problem is addressed
by the Paxos [25] protocol and its numerous variations and
extensions [1, 19–21, 26, 30, 33–35]. The performance of
these protocols become important for the overall perfor-
mance of the distributed databases. These protocols show
widely varying performance under different conditions: net-
work (latency and bandwidth), workload (command interfer-
ence and locality), deployment size and topology (LAN/WAN,
quorum sizes), and failures (leader and replica crash and re-
covery). Unfortunately, there has been no study that offers a
comprehensive comparison across consensus protocols, and
that dissects and explains their performance.

1.1 Contributions
We present a comprehensive evaluation of consensus proto-
cols in local area networks (LANs) and wide area networks
(WANs) and investigate many single-leader, multi-leader, hi-
erarchical multi-leader and leaderless (opportunistic leader)
consensus protocols. We take a two-pronged systematic ap-
proach and study the performance of these protocols both
analytically and empirically.
For the analytic part, we devise a queuing theory based

model to study the protocols controlling for workload and
deployment characteristics and present high-fidelity sim-
ulations of the protocols. Our model captures parameters
impacting throughput, such as inter-node latencies, node
processing speed, network bandwidth, and workload char-
acteristics. We made the Python implementations of our
analytical models available as opensource.
For our empirical study, we developed Paxi, a prototyp-

ing and evaluation framework for consensus and replication
protocols. Paxi provides a leveled playground for protocol
evaluation and comparison. The protocols are implemented

https://doi.org/10.1145/3299869.3319893
https://doi.org/10.1145/3299869.3319893

using common building blocks for networking, message han-
dling, quorums, etc., and the developer only needs to fill
in two modules for describing the distributed coordination
protocol. Paxi includes benchmarking support to evaluate
the protocols in terms of their performance, availability, scal-
ability, and consistency. We implemented Paxi in Go [17]
programming language and made it available as opensource
at https://github.com/ailidani/paxi.
The analytical model and the Paxi experimental frame-

work are complementary. The Paxi experiments cross-validate
the analytical model. And the analytical model allows ex-
ploring varying deployment conditions that are difficult to
arrange and control using the experimental framework.

1.2 Results
Armed with both the simulation results from the analyti-
cal model and the experimental results obtained from the
Paxi platform implementations, we distill the performance
results into simple throughput and latency formulas and
present these in Section 6. These formulas provide a simple
unified theory of strongly-consistent replication in terms of
throughput —Formula 3: L/(1 + c)(Q + L − 2)— and latency
—Formula 7:(1+c)∗((1−l)∗(DL+DQ)+l ∗DQ). As such, these
formulas enable developers to perform back-of-the-envelope
performance forecasting. In Section 6 we discuss these re-
sults in detail and provide a flowchart to serve as a guideline
to identify which consensus protocols would be suitable for
a given deployment environment. Here we highlight some
significant corollaries from these formulas.

Protocol parameters L number of leaders
Q quorum size

Workload parameters c conflict probability
l locality

Deployment parameters DL latency to leader
DQ latency to quorum

Considering protocol parameters, an effective protocol-
level revision for improving throughput and latency is to
increase the number of leaders in the protocol, while trying
to avoid an increase on the number of conflicts. Increasing
the number of leaders is also good for availability: In Paxos,
failure of the single leader leads to unavailability until a new
leader is elected, but in multi-leader protocols most requests
do not experience any disruption in availability, as the failed
leader is not in their critical path. Another protocol revision
that helps to improve throughput and latency is to reduce Q,
the quorum size, provided that fault-tolerance requirements
are still met.

As workload parameters are concerned, reducing conflict
probability and increasing locality (in the presence of mul-
tiple leaders) are beneficial. However, there is an interplay
between the number of leaders and probability of conflicts:

Phase 1 Phase 2

Ack Ack

Quorum

QuorumReject

Reject

Propose Accept

Figure 1: State transitions for two-phase coordination

increasing the number of leaders (which helps for throughput
and latency) may cause an increase on conflicts (which hurts
throughput and latency). EPaxos [30] protocol suffers from
this problem. Multi-leader protocols that learn and adapt to
locality, such as WPaxos [1] and WanKeeper [2], are less
susceptible to this problem.

Finally, the deployment parameters, distance to the leader
and distance from leader to the quorum number of nodes,
also have a big effect on the latency in WAN deployments.
Note that these deployment parameters shadow the protocol
parameters, the number or leaders and the quorum size. In
WANs, other factors also affect latency. The asymmetric
distances between datacenters, the access pattern locality,
and unbalanced quorum distances complicate forecasting
the performance WAN deployments.

1.3 Outline of the rest of the paper
In Section 2 we briefly introduce the protocols we study.
We discuss our analytical model in Section 3 and our proto-
typing/evaluation framework in Section 4. We present the
evaluation in Section 5, discussion of the findings in Section 6,
and conclude the paper in Section 7.

2 PROTOCOLS
Many coordination and replication protocols share a similar
state transition pattern as shown in Figure 1. These protocols
typically operate in two phases. In the phase-1, some node
establishes itself as a leader by announcing itself to other
nodes and gaining common consent. During this stage, an
incumbent leader also acquires information related to any
prior unfinished commands in order to recover them in the
next phase. The phase-2 is responsible for replicating the
state/commands from the leader to the nodes.
Leveraging this two phase pattern, we give brief descrip-

tions of the protocols in our study below. These protocols
provide strong consistency guarantees for data replication
in distributed databases.

Paxos. The Paxos consensus protocol [25] is typically em-
ployed for realizing a fault-tolerant replicated state machine
(RSM), where each node executes the same commands in the

https://github.com/ailidani/paxi

self-appoint
as command

leader

phase-1a
Propose

Phase:

Leader

phase-1b
Promise

wait for
majority

phase-2a
Accept

phase-2b
Accepted

phase-3
Commit

wait for
majority

"lead with
ballot b?" "Ok, but" command

c? "Ok" commit c

Figure 2: Overview of Paxos algorithm

same order to arrive to identical states. Paxos achieves this
in 3 distinct phases: propose (phase-1), accept (phase-2), and
commit as shown in Figure 2. During phase-1, a node tries
to become the leader for a command by proposing it with
a ballot number. The other nodes acknowledge this node to
lead the proposal only if they have not seen a higher ballot
before. Upon reaching a majority quorum of acks in the pro-
pose phase, the “leader” advances to phase-2 and tells the
followers to accept the command. The command is either
a new one proposed by the leader, or an older one learned
in phase-1. (If the leader learns some older pending/uncom-
mitted commands in phase-1, it must instruct the followers
to accept the pending commands with the highest ballot
numbers.) Once the majority of followers acknowledge the
acceptance of a command, the command becomes anchored
and cannot be lost. Upon receiving the acks, the leader sends
a commit message that allows the followers to commit and
execute the command in their respected state machines.

Several optimizations are adopted over this basic scheme.
The commit phase is typically piggybacked to the next mes-
sage broadcasted from the leader, alleviating the need for
an extra message. Another popular optimization, known as
multi-Paxos or multi-decree Paxos [37], reduces the need for
extra messages further by allowing the same leading node to
instruct multiple commands to be accepted in different slots
without re-running the propose phase, as long as its ballot
number remains the highest the followers have seen. In the
rest of the paper, we use Paxos to refer to the multi-Paxos
implementation.
As examples of databases that uses Paxos, FaunaDB [16]

uses Raft [33] (a Paxos implementation) to achieve consensus,
Gaios [7] uses Paxos to implement a storage service, WAN-
Disco [8] uses Paxos for active-active replication, Bizur [19]
key-value store uses Paxos for reaching consensus indepen-
dently on independent keys, pg_paxos [13] adopts Paxos
for fault-tolerant, consistent table replication in PostgreSQL,
and Clustrix [10] distributed SQL database uses Paxos for
distributed transaction resolution.

Flexible Paxos. Flexible quorums Paxos, or FPaxos [20],
observes that the majority quorum is not necessary in phase-
1 and phase-2. Instead, FPaxos shows that the Paxos prop-
erties hold as long as all quorums in phase-1 intersect with
all quorums in phase-2. This result enables deploying multi-
decree Paxos protocols with a smaller quorum in phase-2,
providing better performance at the cost of reduced fault
tolerance.

Vertical Paxos. Vertical Paxos (VPaxos) [26] separates
the control plane from the data plane. VPaxos imposes a
master Paxos cluster above some Paxos groups in order to
control any configuration changes, and enables a quick and
safe transition between configurations without incurring any
stop time: one Paxos group finishes the commands proposed
in the previous configuration, while another Paxos group
starts on the commands in the new configuration. The ability
to safely switch configurations is useful in geo-replicated
datastores, since it allows for relocating/assigning data/ob-
jects to a different leader node in order to adjust to changes
in access locality. Spanner [12] and CockroachDB [24] are
examples of databases that uses Paxos groups to work on
partitions/shards with another solution on top for relocat-
ing/assigning data to another Paxos group.

WanKeeper. WanKeeper [2] is a hierarchical protocol
composed of two consensus/Paxos layers. It employs a to-
ken broker architecture to control where the commands
take place across a WAN deployment. The master resides
at level-2 and controls all token movement, while the level-
1 Paxos groups located in different datacenters across the
globe, execute commands only if they have a token for the
corresponding objects. When multiple level-1 Paxos groups
require access to the same object, the master layer at level-2
retracts the token from the lower level and performs com-
mands itself. Once the access locality settles to a single re-
gion, the master can pass the token back to that level-1 Paxos
group to improve latency.

WPaxos.WPaxos [1] is a multi-leader Paxos variant de-
signed for WANs. It takes advantage of flexible quorums idea
to improve WAN performance, especially in the presence of
access locality. In WPaxos, every node can own some objects
and operate on these objects independently. Unlike Vertical
Paxos, WPaxos does not consider changing the object own-
ership as a reconfiguration operation and does not require
an external consensus group. Instead WPaxos performs ob-
ject migration between leaders by carrying out a phase-1
across the WAN, and commands are committed via phase-2
within the region or neighboring regions. Since the process
of moving ownership between leaders is performed using the
core Paxos protocol, WPaxos operates safely without requir-
ing an external master as in vertical Paxos or WanKeeper.
FleetDB [9] adopts WPaxos for implementing distributed
transactions over multiple datacenter deployments in WAN.

Egalitarian Paxos. Egalitarian Paxos [30], or EPaxos, is a
leaderless solution, where every node can opportunistically
become a leader for some command and commit it. When
a command does not interfere with other concurrent com-
mands, it commits in a single round after receiving the acks
from a fast quorum, which is approximately 3/4ths of all
nodes. In a sense, EPaxos compacts phase-2 to be part of
phase-1, when there are no conflicts. However, if the fast
quorum detects a conflict between the commands, EPaxos
defaults back to the traditional Paxos mode proceeds with a
second phase to establish order on the conflicting commands.
The main advantage of EPaxos is the ability to commit non-
interfering commands in just a single round trip time. This
works well when the cluster operates on many objects, and
the probability of any two nodes operating on the same
objects is small. As an example of a leaderless approach
like EPaxos, MDCC [23] has used Fast Paxos and General-
ized Paxos (before EPaxos) to implement multi-datacenter
strongly consistent replication.

3 PERFORMANCE MODEL
Modeling the performance of protocols provides an easy way
to test different configurations or ideas. In this section, we
develop our models for estimating latency and maximum
throughput of the strong consistency replication protocols.
Our models leverage queueing theory [3] and k-order statis-
tics to account for various delays and overheads due to the
message exchange and processing.

3.1 Assumptions
We make a number of assumptions about the machines and
network in order to constrain the scope of our models and
keep them simple and easy to understand.
We assume the round-trip communication latency (RTT)

in the network between any two nodes to be normally dis-
tributed. This assumption simplifies the reasoning about the
effects of network latency on the consensus performance.
Exponential distribution is often used to model network la-
tencies [6], however, our experiments conducted in AWS
EC2 point to an approximately normal latency distribution
in local area in AWS cluster, as shown in Figure 3.

We assume all nodes to have stable, uniform network band-
width. Our models do not account for bandwidth variations
among the nodes. For simplicity, we assume all nodes in the
modeled cluster to be of identical performance. In particular,
we assume identical CPU and network interface card (NIC)
performance. We only consider the case of a single process-
ing pipeline – our modeled machines have a single network
card and CPU.

0.30 0.35 0.40 0.45 0.50 0.55 0.60
Local Ping Latency (ms)

0

2

4

6

8

10

Pr
ob

ab
ilit

y

AWS Latency : μ= 0.4271, σ= 0.0476

Figure 3:Histogramof local areaRTTswithinAmazon
AWS EC2 region over a course of a few minutes

3.2 Simple Queueing Models
Queueing theory [3] serves as the basis for our analytical
study of consensus protocols. We treat each node in a system
as a single processing queue consisting of both NIC and CPU.
The protocols operate by exchanging the messages that go
through the queue and use the machine’s resources. Sending
a message out from a node requires some time to process
at the CPU and some time to transmit through the NIC.
Similarly, an incoming message first needs to clear the NIC
before being deserialized and processed by a CPU. When
a message enters a queue, it needs to wait for any prior
messages to clear and resources to become available.
Queueing models enable estimating the average waiting

time spent in the queue before the resources become avail-
able. To make such estimates, queueing models require just
two parameters: service time and inter-arrival time. Service
time describes how long it takes to process each item in the
queue once it is ready to be consumed. Inter-arrival time
controls the rate at which items enter the queue. With high
inter-arrival time, new items come in rarely, keeping the
queue rather empty. Low inter-arrival time causes the queue
to fill up faster, increasing the chance of items having to wait
for predecessors to exit the queue.

Since in our model messages immediately transition from
CPU to NIC (or vice-versa) and have no possibility of leaving
the system without bypassing either the CPU or NIC, we
treat these two components as a single queue. This simpli-
fies the “queueing network” significantly and facilitates our
modeling.

For our purposes we have considered four different types
of queue approximations:M/M/1,M/D/1,M/G/1 andG/G/1,
where the first letter represents the inter-arrival assumption,

Request Arrival Service Time Wq

M/M/1 Poisson Process rate λ Exponential Distribution rate µ ρ2

λ(1−ρ)
M/D/1 Poisson Process Constant s rate µ = 1/s ρ

2µ(1−ρ)

M/G/1 Poisson Process General Distribution λ2σ 2+ρ2

2λ(1−ρ)

G/G/1 General Distribution General Distribution ≈ ρ2(1+Cs)(Ca+ρ2Cs)
2λ(1−ρ)(1+ρ2Cs)

Table 1: Queue types and assumptions

second letter describes service time, and the number tells
how many queues are in the system. The simplest model,
M/M/1 assumes both inter-arrival and service time to be
approximated by a Poisson process. M/D/1 model makes
the service time to be constant, andM/G/1 queue assumes
service time to follow a general distribution. The most gen-
eral model we have considered isG/G/1. It assumes both the
service-time and inter-arrival time as any given distributed
random variables. We summarize and compare each queue-
ing type in Table 1.

3.3 Modeling Consensus Performance
To model consensus performance, we are interested in esti-
mating the average latency of a consensus round as perceived
by the client. For such latency estimates, we consider the
parameters outlined in Table 2. The average latency is com-
prised of a few different components: round’s queue waiting
timewQ , round’s service time ts , and network delays DL and
DQ :

Latency = wQ + ts + DL + DQ

For Paxos, the network delays consist of a round-trip time
(RTT) between the client and the leader DL , and between the
leader and some follower that sends the message forming
a quorum of replies at the leader DQ . For the network de-
lays, we assume only the time-in-transit for messages, since
the time to clear NIC is accounted in our service time com-
putations. To calculate DQ in Paxos, we need to consider
the quorum size Q of the deployment. For a cluster with N
nodes, the quorum size isQ = ⌊ N2 ⌋ + 1, making a self-voting
leader wait for Q − 1 follower messages before reaching a
majority quorum. The RTT for this (Q − 1)th follower reply
is DQ . In LAN we assume the RTTs between all nodes to be
drawn from the same Normal distribution, therefore we use a
Monte Carlo method approximation of k-order-statistics [14]
to compute the RTT for (Q−1)th reply. InWAN, however, the
RTTs between different nodes may be significantly different,
therefore we pick the (Q − 1)th smallest RTT between the
leader and its followers.
Round service time ts is a measure of how long it takes

the leader to process all messages for a given round. For

Table 2: Model parameters

N Number of nodes participating in a Paxos phase
Q Quorum size. For a majority quorum Q = ⌊ N2 ⌋ + 1
DL RTT between client and the leader node.
DQ RTT between the leader and (Q − 1)th follower
b Network bandwidth available at the node
sm Message size
ti Processing time for incoming message
to Processing time for outgoing message
ts Service time. For Paxos: ts = 2to + Nti +

2Nsm
b

µ Max throughput or service rate. µ = 1
ts

λ Workload throughput or arrival rate in rounds per second
ρ Queue utilization. ForM/D/1 queue: ρ = λ

µ

wQ Queue wait time for a round. ForM/D/1 queue:wQ =
ρ

2µ(1−ρ)

simplicity, we assume that each message, incoming and out-
going, needs to be processed by both the NIC and CPU.
The round’s service time ts is then a sum of tN IC and tCPU :
ts = tN IC + tCPU . We compute tN IC as the time required to
push all round’s messages of size sm through the network of
some bandwidth b: tN IC =

2Nsm
b . CPU portion of the service

time is estimated as the sum of costs for processing incom-
ing messages ti and outgoing messages to . For Paxos, each
phase-2 round requires the leader to receive a message from
the client (ti), broadcast one outgoing message (to because
the CPU serializes the broadcast message once), receive N −1
messages from the followers ((N − 1) ∗ ti), and reply back to
the client (to). As a result, we have tCPU = 2to + N ∗ ti .

Note that only service time impacts themaximum through-
put of the system, since it alone governs how much of the
processing resources are consumed for each round. The pro-
tocol reaches its peak throughput when it fully saturates the
queue and leaves no unused resources in it. The maximum
throughput is the reciprocal of service time:

µ =
1
ts

Finally, we estimate the queueing costswQ by computing
average queue wait time.
To select the most appropriate queue approximation, we

used all four queuing models described earlier to estimate

3000 4000 5000 6000 7000 8000
Throughput (requests/sec)

0

1

2

3

4

5

6

La
te

nc
y

(m
s)

MM1
MD1
MG1
GG1
Paxi

Figure 4: Comparison of different queueing models to
a reference implementation in Paxi framework

the performance of Paxos protocol in LAN. We used empir-
ically obtained values for all relevant parameters, such as
network RTTs, serialization/deserialization costs, etc. Figure
4 shows the comparison between the models and a real Paxos
implementation in Paxi. Based on our findings,M/D/1 and
M/G/1 models perform nearly identical and most similar to
our reference Paxos implementation. SinceM/D/1 model is
simpler, we use it for all our further analysis.

3.4 Expanding Models Beyond Paxos and
LANs

The other protocols, albeit being more complicated, share
the same modeling components with the Paxos described
above. Thus, we rely on the same queuing model and round
latency computation principles for them as well.

Multi-leader protocols add a few additional parameters to
consider. In such protocols a node can both lead the round
and participate in concurrent rounds as a follower, there-
fore we account for the messages processed as a follower
in addition to the messages processed as round’s leader to
estimate queue waiting time. The total number of requests
coming to the system is spread out evenly (we assume uni-
formworkload at each leader for simplicity) across all leaders.
This allows us to compute per-leader latency based on each
leader’s processing queue.

The performance of leaderless protocols, such as EPaxos,
varies with respect to the command conflict ratios. A conflict
typically arises when two or more replicas try to run a com-
mand against the same conflict domain (e.g., the same key)
concurrently. The conflict must be resolved by the protocol,
which leads to extra message exchanges. Therefore, we intro-
duce a conflict probability parameter c for EPaxos to compute
different latencies for conflicting and non-conflicting com-
mands. The overall average latency of a round accounts for
the ratio of conflicting to non-conflicting commands as fol-
lows: Latency = c(Latencyconflict) + (1 − c)(Latencynonconflict).

Figure 5: Paxi modules usage where user implements
Messages and Replica type (shaded)

WANmodeling also requires changes over the LANmodel.
In particular, communication latency between nodes inWAN
cannot be drawn from the same distribution, since the dat-
acenters are not uniformly distanced from each other. For
example, in a 3-node Paxos configuration with replicas in
Eastern U.S., Ireland and Japan, the communication latency
between US and Ireland is significantly smaller than that of
Ireland and Japan or US and Japan. For that reason, our WAN
modeling no longer assumes the same Normal distribution of
latency for all nodes, and instead we use a different distribu-
tion for communication between every pair of datacenters.

4 PAXI FRAMEWORK
In order to provide empirical comparisons of different pro-
tocols in the same platform under the same conditions, we
developed a prototyping framework for coordination/repli-
cation protocols called Paxi. Leveraging our observation
that strongly consistent replication protocols share com-
mon parts, Paxi provides implementations for these shared
components. Each component resides in its own loosely cou-
pled module and exposes a well-designed API for interaction
across modules. Modules can be extended or replaced easily,
provided that a new version a module follows the interface.
We show the architectural overview of Paxi framework in
Figure 5. The developer can easily prototype a distributed
coordination/replication protocol by filling in the missing
components shown as the shaded blocks. Often the engi-
neers only need to specify message structures and write the
replica code to handle client requests.

4.1 Components
Configurations. Paxi is a highly configurable framework
both for the nodes and benchmarks. A configuration in Paxi
provides various vital information about the protocol under
examination and its environment: list of peers with their
reachable addresses, quorum configurations, buffer sizes,
replication factor, message serialization and networking pa-
rameters, and other configurable settings. The framework
allows to manage configuration in two distinct ways: via a
JSON file distributed to every node, or via a central master
that distributes the configuration parameters to all nodes.

Quorum systems. A quorum system is a key abstrac-
tion for ensuring consistency in fault-tolerant distributed
computing. A wide variety of distributed coordination algo-
rithms rely on quorum systems. Typical examples include
consensus algorithms, atomic storage, mutual exclusion, and
replicated databases. Paxi implements and provides multiple
types of quorum systems, like simple majority, fast quorum,
grid quorum, flexible grid and group quorums. The quorum
system module only needs two simple interfaces, ack() and
quorum satisfied(). By offering different types of quorum
systems out of the box, Paxi enables users to easily probe
the design space without changing their code.

Networking. When designing Paxi framework, we re-
frained from any blocking primitives such as remote proce-
dure calls (RPC), and implemented a simple message passing
model that allows us to express any algorithmic logic as a set
of event handlers [36, 38]. The networking module transpar-
ently handles message encoding, decoding, and transmission
with a simple Send(), Recv(), Broadcast() and Multicast() in-
terface. The transport layer instantiates TCP, UDP, or Go
channel for communicationwithout any changes to the caller
from an upper layer. Paxi supports both TCP and UDP to
eliminate to eliminate any bias for algorithms that benefit
from different transport protocols. For example, the single
leader approach may benefit from TCP as messages are reli-
ably ordered from leader to followers. Whereas conflict-free
updates in small messages gain nothing from ordered de-
livery and pay the latency penalty in congestion control.
Such system might perform better on UDP. Paxi also imple-
ments the intra-process communication transport layer by
Go channels for a cluster simulation, where all nodes run
concurrently within a single process. The simulation mode
simplifies the debugging of Paxi protocols since it avoids a
cluster deployment step.

Data store. Many protocols separate the protocol-level
outputs (e.g. operation commits) from the application state
outputs (e.g operation execution result) for versatility and
performance reasons. Therefore, evaluating for either one is
insufficient. Paxi can be used to measure both protocol and
application state performance. To this end, our framework

Parameter Default Value Description
T 60 Run for T seconds
N 0 Run for N operations (if N>0)
K 1000 Total number of keys
W 0.5 Write ratio

Concurrency 1 Number of concurrent clients
LinearizabilityCheck true Check linearizability at the end of benchmark

Distribution "uniform" Name of distribution used for key generation
include uniform, normal and zipfian

Min 0 Random: minimum key number
Conflicts 100 Random: percentage of conflicting keys

Mu 0 Normal: Mean
Sigma 60 Normal: Standard Deviation
Move false Normal: Moving average (mu)
Speed 500 Normal: Moving speed in milliseconds

Zipfian_s 2 Zipfian: s parameter
Zipfian_v 1 Zipfian: v parameter

Table 3: Benchmark parameters

comes with an in-memory multi-version key-value datastore
that is private to every node. The datastore is used as a
deterministic state machine abstraction commonly used by
coordination protocols. Any other data model can be used
for this purpose as long as Paxi node can query current
state, submit state transform operation and generate directed
acyclic graph (DAG) of past states.

RESTful client. The Paxi client library uses a RESTful
API to interact with any system node for read and write
requests. This allows users to run any benchmark (e.g. YCSB
[11]) or testing tools (e.g. Jepsen [22]) against their imple-
mentation in Paxi without porting the client library to other
programming languages.

4.2 Paxi Benchmark Components
Benchmarker. The benchmarker component of Paxi serves
as the core of our benchmarking capabilities. The bench-
marker both generates tunable workloads with rich features
including access locality and dynamicity and collects per-
formance data for these workloads. Similar to YCSB [11],
Paxi provides a simple read/write interface to interact with
the client library. The workload generator reads the con-
figuration to load the workload definition parameters, as
summarized in Table 3.
Benchmark component can generate a variety of work-

loads by tuning the read-to-write ratios, creating hot ob-
jects, conflicting objects and locality of access. The locality
characteristic in workload is especially important in WAN
distributed protocols as each region has a set of keys it is
more likely to access. In order to simulate workloads with
tunable access locality patterns across regions, Paxi uses a
normal distribution to control the probability of generating
a request on each key, and denotes a pool of K common
keys with the probability function of each region, as shown
in Figure 6. In other words, Paxi introduces locality to the
evaluation by drawing the conflicting keys from a Normal

0 1 2 3 … K

Po
pu
la
rit
y

Uniform

0 1 2 3 … K

Po
pu
la
rit
y

Zipfian

0 1 2 3 … K

Po
pu
la
rit
y

Normal

0 1 2 3 … K

Po
pu
la
rit
y

Exponential

Figure 6: Probability distributions with total number
of data records equal to K

distribution N(µ,σ 2), where µ can be varied for different re-
gions to control the locality, and σ is shared between regions.
The locality can be visualized as the non-overlapping area
under the probability density functions in Figure 6.

Paxi benchmarker is capable of testing and evaluating four
different aspects of coordination/replication protocols behav-
ior: performance, scalability, availability, and consistency.

Performance. Paxi measures performance via the latency
and throughput metrics. The latency of every individual
request is stored and output to a file for future analysis. Since
it is important to show how a protocol perform in terms of
tail latency under stress, Paxi supports this by increasing
the benchmark throughput (via increasing the concurrency
level of the workload generator) until the system is saturated
and throughput stops increasing or latency starts to climb.
The user may conduct this benchmark tier with different
workloads to understand how a protocol performs or use
the same workload with increasing throughput to find a
bottleneck of the protocol.

Scalability.One of the most desirable properties for cloud
native protocols is the elastic scalability: when the applica-
tion grows/shrinks, the underlining protocol should be able
to adapt to load by expanding/reducing number of servers. In
Paxi, we support benchmarking scalability by adding more
nodes into system configuration and by increasing the size
of dataset (K).

Availability.High availability is an indispensable require-
ment for distributed protocols, as they are expected to main-
tain progress under a reasonable number of failures. While
testing for availability seems straightforward, it requires la-
borious manual work to simulate all combinations of failures.
Many failure types are hard to produce in an uncontrolled
runtime environments without utilizing third party tools
specific to their operating systems. Typical examples include
asymmetric network partition, out of order messages and
random message drop/delay, to name only a few. Several
projects have automated fault injection procedures, but with
limitations. For instance, Jepsen [22] issues "tc" (traffic con-
trol) commands to manipulate network packets on every
node, but can only run on Linux systems. ChaosMonkey [32]
is a resiliency tool that only randomly terminates virtual
machine instances and containers. Paxi, being a prototyping
framework, can make it easy to simulate any node or net-
work failure. We provide four special commands in the Paxi
client library and realize those in the networking modules:

• Crash(t) will “freeze” the node for t seconds.
• Drop(i, j, t) function drops every message send from
node i to node j.

• Slow(i, j, t) function delays messages for a random pe-
riod.

• Flaky(i, j, t) function drops messages by chance.

Consistency. For the consistency checker component of
Paxi, we implement the simple offline read/write lineariz-
ability checker from the Facebook TAO system [28]. Our
linearizability checker takes a list of all the operations per
record sorted by invocation time as an input. The output of
the checker is a list of all anomalous reads, i.e., read oper-
ations that returned results they would not be able to in a
linearizable system. Our checker maintains a graph whose
vertices are read or write operations, and edges are con-
straints. It checks for cycles as it adds operations to the
graph. If the graph is acyclic, then there exists at least one
total order over the operations with all constraints satisfied.
Else linearizability violation is reported.

Unlike the linearizability checker, our consensus checker
validates whether the consensus for every state transition has
been reached among the nodes in a replicated state machine.
External, client-observed, linearizability can be reached with-
out having a consensus among the state machines, however,
satisfying consensus is vital for consensus algorithms, such
as Paxos. To test for consensus, Paxi includes a multi-version
datastore as the state machine. We implement a special com-
mand in client library to collect entire history of some data
record H r from every system node, then verify if all history
H r
i from node i shares a common prefix.

0
1
2
3
4
5
6
7
8

0 2000 4000 6000 8000 10000

Av
er

ag
e

La
te

nc
y

(m
s)

Throughput (ops/s)

etcd/Raft
Paxi/Paxos

Figure 7: Single leader consensus protocol imple-
mented in Paxi versus etcd

5 EVALUATION OF THE PROTOCOLS
We perform protocol evaluations using both simulated ex-
periments with our model and deployed experiments with
Paxi framework in LANs and WANs. In Paxi, we carry out
all experiments on AWS EC2 [5] m5.large instances with 2
vCPUs and 8 GB of RAM. For WAN evaluations, we use AWS
datacenter topology with the N.Virginia (VA), Ohio (OH),
California (CA), Ireland (IR) and Japan (JP) regions. Our
modeling effort is calibrated to CPU speed of the m5.large
instances and uses the communication delays corresponding
to latencies within an AWS region and across regions.
In WPaxos, we limit the number of nodes that can act as

leaders to just one per region; in a 9-node 3-region cluster
WPaxos will have only 3 leaders. This gives WPaxos similar
and comparable deployment to WanKeeper that is restricted
by its design to have just a single leader in each region. In
EPaxos, every node can become an opportunistic leader. Ad-
ditionally, EPaxos model penalizes the message processing
to account for extra resources required to compute depen-
dencies and resolve conflicts. For all protocols we assume
full-replication scheme in which a leader node replicates the
commands to all other nodes.

5.1 Paxi Performance
The Paxi framework serves the primary goal of comparing
many different consensus and replication protocols against
each other under the same framework with the same imple-
mentation conditions. However, to show that our Paxi imple-
mentation of protocols are representative of Paxos variant
implementations used in other real-world production grade
systems, we compared the Paxos protocol implemented in
Paxi against Raft [33] implemented in etcd [15]. The etcd
project provides a standalone sample code in Go1 that uses
Raft and exposes a simple REST API for a key-value store,

1https://github.com/etcd-io/etcd/tree/master/contrib/raftexample

allowing us to directly run Paxi benchmark against etcd
without any changes.

Without considering reconfiguration and recovery differ-
ences, Paxos and Raft are essentially the same protocol with
a single stable leader driving the command replication. As a
result, they should exhibit similar performance in the normal
case. We ran each system with 9 replicas within the same
availability zone. For a fair comparison with Paxi, we dis-
abled persistent logging and snapshots and increased the
maximum number of inflight messages to 10,000 in etcd. The
client request is replied only after the request is committed
in Raft. In Figure 7, we show that both systems converge to
similar maximum throughput around 8000 operations per
second due to the single leader bottleneck, but Paxi exhibits
lower latency when the system is not saturated. The latency
difference is likely due to etcdâĂŹs use of http for inter-node
communication instead of TCP sockets and differences in
message serialization.

5.2 Protocol Comparisons in LANs
We perform a set of experiments studying the performance
of the consensus protocols in LANs. Figure 8 shows the re-
sults obtained from our model for LANs. We present the
Paxi evaluation in Figure 9 using uniformly random work-
load against Paxi’s internal key-value store on 1000 objects
with 50% read operations. Both figures show how latency of
protocols change as the throughput increases.

Single leader bottleneck. Both the model and Paxi eval-
uations point to the scalability limitation of the single leader
solutions. Several papers [20, 27, 29, 39] observed—but failed
to analyze further— that the single leader becomes a bottle-
neck in Paxos protocol, having to do with sending/receiving
N messages and the CPU utilization at the leader. The bot-
tleneck is due to the leader getting overwhelmed with the
messages it needs to process for each round. For example,
from our modeling effort, we estimate a Paxos leader to han-
dle N incoming messages, one outgoing message and one
outgoing broadcast2, for a total of N + 2messages per round.
At the same time, the follower nodes only process 2 mes-
sages per round, assuming phase-3 is piggybacked to the
next phase-2 message. For a cluster of 9 nodes, this trans-
lates in 11 messages per round at the leader against just 2
messages at the replicas, making the leader the bottleneck.
Multi-leader protocols, such as WPaxos and WanKeeper

perform better than single leader protocols. Their advantage
comes from the ability to process commands for indepen-
dent objects in parallel at different nodes. While multi leader

2For the broadcast, the CPU is involved for serialization just once, and then
the message is send to the other nodes individually by the NIC (amounting
to N-1 transmission). Since NIC is much faster than the CPU processing,
the NIC cost becomes negligible for small messages.

0 2000 4000 6000 8000 10000 12000 14000
Throughput (rounds/sec)

0

1

2

3

4

5

6

La
te

nc
y

(m
s)

MultiPaxos
FPaxos 9 Nodes (|q2|=3)

EPaxos
WPaxos

(a) Max throughput

0 1000 2000 3000 4000 5000 6000 7000 8000
Throughput (rounds/sec)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

La
te

nc
y

(m
s)

MultiPaxos
FPaxos 9 Nodes (|q2|=3)

EPaxos
WPaxos

(b) Latency at lower throughput

Figure 8: Modeled performance in LANs

0

1

2

3

4

5

6

7

8

0 5000 10000 15000

La
te

nc
y

(m
s)

Throughput (op/s)

Paxos
FPaxos
WPaxos
EPaxos
WanKeeper

Figure 9: Experimental performance in LAN

solutions can take advantage of the capacity left unused
at the single-leader protocol replicas, they still suffer from
the relatively high number of messages to process, so they
don’t scale linearly: the 3-leader WPaxos does not perform 3
times better than Paxos. Our model showed a roughly 55%
improvement in maximum throughput in WPaxos, which is
consistent with our experimental observations in Paxi.

0 5000 10000 15000 20000 25000
Aggregate Throughput (rounds/sec)

0

25

50

75

100

125

150

175

200

La
te

nc
y

(m
s)

MultiPaxos (CA Leader)
FPaxos (CA Leader)
EPaxos (Conflict=0.3)

EPaxos (Conflict= [0.02, 0.70])
WPaxos (Locality=0.7)

Figure 10: Modeled performance in WANs

The figures also show that the 3-leader WanKeeper per-
forms better than the 3-leaderWPaxos. By taking a hierarchi-
cal approach, WanKeeper reduces the number of messages
each leader processes, alleviating the leader bottleneck fur-
ther.

Leaderless solutions suffer from conflict. EPaxos is
an example of a leaderless consensus, where each node can
act as an opportunistic leader for commands, as long as
there are no collisions between the commands from different
nodes. Command conflicts present a big problem for such
opportunistic approaches. The ability to identify and resolve
conflicts increases the message size and processing capacity
needed for messages. The conflict resolution mechanism
also requires an additional phase, making conflicting rounds
default to a two-phase Paxos implementation. These result
in EPaxos performing the worst in Paxi LAN experiments. It
is worth mentioning that EPaxos shows better throughput
(but not latency) than Paxos in our model even with 100%
conflict, since it does not have a single-leader bottleneck
problem. However, when we add message processing penalty
to account for extra weight of finding and resolving conflict,
EPaxos’ performance degrades greatly.

Small flexible quorumsbenefit.Ourmodel results show
a modest average latency improvement of just 0.03 ms due
to using single-leader flexible quorums solution (FPaxos).
Our Paxi evaluation shows a slightly bigger improvement
for going from Paxos to FPaxos.

5.3 Protocol Comparison in WANs
In this set of experiments, we compare protocols deployed
across theWANs.WAN deployments present many new chal-
lenges for consensus and replication protocols originating
from large and non-uniform latencies between datacenters
and nodes: the inter-datacenter latency can vary from a few
to a few hundred milliseconds.

In Figure 10 we show the modeled throughput and latency
results for different consensus algorithms.

Unlike LAN models, wide area network models differ
greatly in the average latency, with more than a 100 ms differ-
ence in latency between the slowest (Paxos) and the fastest
(WPaxos) protocols. Flexible quorums make a great differ-
ence in latency in this environment – they allow WPaxos to
commit many commands with near local latency, and reduce
the overall quorum wait time for FPaxos.

To combat the adversarial effects of WAN, many protocols
try to optimize for various common aspects of operation in
such environment: some assume the objects over which a
consensus is needed get rarely accessed from many places
at once, while others may go even further and assume a
strict placement of the objects in certain regions for better
locality of access.When these assumptions break, algorithms’
performance often degrades. We designed our experiments
to test these conflict and locality assumptions.

Conflict Experiments. We define conflict as commands
accessing the same object from different region. To study
the protocol performance under the conflict workload, we
create one “hot” conflicting key that will be accessed by all
clients. We control the ratio of conflicting requests and make
every conflicting request perform an operation against the
designated conflict objects. For instance, 20% conflict mean
that 20% of requests issues by the benchmarker clients target
the same object.

The results of our conflict experiments, shown in Figure 11,
reveal the following observations:

(1) The protocols that does not tolerate entire region fail-
ure (WPaxos fz = 0, WanKeeper, VPaxos) exhibit the same
performance in every location. This is because when fz = 0,
the non-interfering commands are able to commit by a quo-
rum in the same region. The interfering command is for-
warded to the object’s current leader region.

(2) When the protocol embraces a leader/owner concept,
the leader’s region of the conflicting object is at an advantage
and experience optimal latency for its local quorum. In this
case, the Ohio region is the leader of conflicting object, and
thus have a low steady latency. On the contrary, EPaxos, a
leaderless approach, experiences latency due to interfering
commands even in the Ohio region.

(3) Among the protocols which can tolerate entire region
failure, including Paxos, EPaxos, and WPaxos fz = 1, WPaxos
performs best until 100% interfering commands where it
starts to provide the same latency as Paxos.

(4) Unlike other protocols, EPaxos average latency is a non-
linear function of conflicting ratio. This is because even with
low conflict rate like 20%, the previous conflicting command
may not have been committed yet when the new requests
arrive, leading to more rounds of RTT delays to resolve the
conflict. The situation gets worse when the region is far from
other regions, such as California region in our experiment.

0
5

10
15
20
25
30

0% 20% 40% 60% 80% 100%

La
te

nc
y

(m
s)

WPaxos (fz=0) WPaxos(fz=1) WanKeeper
EPaxos VPaxos Paxos

(a) Virginia

0
5

10
15
20
25
30

0% 20% 40% 60% 80% 100%

La
te

nc
y

(m
s)

(b) Ohio

0

20

40

60

80

100

0% 20% 40% 60% 80% 100%

La
te

nc
y

(m
s)

(c) California

Figure 11: Comparison of protocols under a conflict
workload

0 20 40 60 80 100
Conflict %

0

5000

10000

15000

20000

25000

Th
ro

ug
hp

ut
 (r

ou
nd

s/
se

c)

EPaxos Throughput
Paxos Throughput

Figure 12: Model of EPaxos maximum throughput in
5-nodes/regions deployment

Our model also suggests the maximum throughput of
EPaxos is severely affected by the conflict ratio, with as much

0

50

100

150

200

250

300

T C O V I

Wpaxos fz=0 WanKeeper VPaxos WPaxos fz=2 Paxos Epaxos

(a) Average latency per region

0 50 100 150 200 250 300
LDWenFy (PV)

0.0

0.2

0.4

0.6

0.8

1.0

CD
)

LoFDlLWy WorkloDd

WDn.eeper
W3DxoV
V3DxoV
3DxoV
(3DxoV
W3DxoV(fz 2)

(b) Latency distribution

Figure 13: WPaxos, WanKeeper and Vertical Paxos in
WAN with locality workload

as 40% degradation in capacity between no conflict and full
conflict scenarios, as illustrated in Figure 12.

Locality Experiments. For these experiments, we study
the performance of protocols that take advantage of locality
(WPaxos, WanKeeper, and our augmented version of Verti-
cal Paxos) across a WAN with a locality workload. We use a
locality workload with object access locality controlled by a
normal distribution, as described earlier. We start the experi-
ment by initially placing all objects in the Ohio region and
then running the locality workload for 60 seconds. All three
protocols are deployed with fault-tolerance level fz = 0 and
the simple three-consecutive access policy to adapt to opti-
mal performance. Figure 13a compares per-region latency,
while Figure 13b shows a CDF for operation latencies.

In WanKeeper, the Ohio region is the higher level region
that will keep the tokens for any objects shares access from
another region. Thus, Ohio shows the best average latency
close to local area RTT, at the cost of suffering at the other
two regions. WPaxos and VPaxos are more balanced and
share very similar performance in this deployment. This is
because when stabilized, both protocols balance the num-
ber objects in each region in the same way, as confirmed by

Name Protocols
L Leaders EPaxos. WPaxos
c Conflicts Generalized Paxos, EPaxos
Q Quorum FPaxos, WPaxos
l Locality VPaxos, WPaxos, WanKeeper

Table 4: Parameters explored

almost identical CDFs in Figure 6.4. When we look at all re-
quests globally, WanKeeper experience more WAN latencies
than WPaxos and VPaxos.

6 DISCUSSION
In this section, we examine the evaluation results from Sec-
tion 5 and distill those performance results into simple through-
put and latency formulas for uniformly distributed work-
loads. These formulas present a simple unified theory of
strongly-consistent replication throughput in Section 6.1,
and latency in Section 6.2. Finally, in Section 6.3, we demon-
strate how these formulas allow us to perform back-of-the-
envelope performance forecasting of the protocols.

6.1 Load and Capacity
The capacity of the systemCap(S) is the highest request pro-
cessing rate that system S can handle. As we have observed
from Paxi experiments, the capacity of a given protocol is
determined by the busiest node in the system with load L [?
], such that

Cap(S) = 1/L(S). (1)

Definition 6.1. Load of the system L(S) is the minimum
number of operations invoked on the busiest node for every
request on average, where an operation is the work required
to handle round-trip communication between any two nodes.
For example, for every quorum access, the leader must han-
dle Q number of outgoing and incoming messages, which
correspond to a total of Q operations. Whereas in single-
leader protocols, the busiest node is typically the leader,
multi-leader algorithms have more than one busiest node. In
such protocols, nodes that have the leader capabilities tend
to be under greater load than others.

L(S) = 1
L
(1 + c)(Q − 1) + (1 − 1

L
)(1 + c) (2)

=
(1 + c)(Q + L − 2)

L
(3)

where 0 ≤ c ≤ 1 is probability of conflicting operations, Q
is the quorum size chosen by leader, and L is the number of
operation leaders. The derivation is as follows. There is a 1/L
chance the node is the leader of a request, which induces one

Do you need distributed
consensus?

Yes

Are you deploying in
WAN?

Consensus protocols implement SMR for critical coordination
tasks. Consensus is not required to provide read/write

linearizability in clients.
Consider: Atomic Storage, Chain Replication, Eventual

consistent replications

Is there locality in the
workload?

No

Are there more read
operations than write

operations?

No
Deployment with small number of nodes in LAN preserves
decent performance even with single leader protocols,
meanwhile benefits from simple implementation.

Consider: MultiPaxos, Raft, Zab

No

More frequent read operations mean less
interfering commands, thus benefits from

leaderless approach.
Consider: Generalized Paxos, EPaxos

Yes Yes

Yes

Is locality in the
workload dynamic?

Static locality means a sharding technique
works in the best case scenario.

Consider: Paxos Groups

Is datacenter failure a
concern?

Yes

The group of replicas can be deployed in
one region and managed by master or

hierarchical architecture.
Consider: Vertical Paxos, WanKeeper

No

No
A multileader protocol with ability to dynamically adapts
to locality and tolerate datacenter failures is the best fit.

Consider: WPaxos, Vertical Paxos with cross region Paxos
group deployment.

Yes

No

Figure 14: Flowchart for identifying the suitable consensus protocol

round of quorum access withQ−1 communication, plus extra
round of quorum access if there is conflict. The probability
of the node being a follower is 1− 1/L, where it only handles
one received message in the best case. From the simplified
form, it is easy to see that the protocols that utilize more
leaders reduce the load (and hence increase capacity) because
the user requests are shared between multiple leaders. On
the other hand, this also increases the chance of extra round
to resolve any conflicts between leaders. Equation 3 uses
thrifty optimization where leader only communicates with
minimum number of nodes to reach the quorum of size Q .
In the general case, however, the leader communicates with
all N − 1 followers, making Q = N − 1 for the purpose of
this equation.

In the below equations, we present the simplified form of
load for three protocols, and calculate the result for N = 9
nodes. The protocols perform better as the load decreases.

L(Paxos) = ⌊N
2
⌋ = 4 (4)

L(EPaxos) = (1 + c)(⌊N
2
⌋ + N − 1)/N =

4
3
(1 + c) (5)

L(WPaxos) = (N
L
+ L − 2)/L =

4
3

(6)

In the single leader Paxos protocol (Equation 4) with N
nodes, c = 0 as the conflicting operation is serialized by the
single leader, and L = 1, and quorum size Q = ⌊N /2⌋ +
1. In contrast, EPaxos (Equation 5) uses every node as an
opportunistic leader, and uses L = N . WPaxos (Equation
6) utilizes a flexible grid quorum system, such that every
leader only accesses its own phase-2 quorum with size N /L.
In a 3 × 3 grid, the load of WPaxos is only 4/3, giving it the
smallest load (and as a result the highest capacity) among
the three consensus protocols.

6.2 Latency
The expected latency of a protocol in WAN is determined by
the location, minimum quorum latency DQ , and the locality
l of the requests.

Latency(S) = (1 + c) ∗ ((1 − l) ∗ (DL + DQ) + l ∗ DQ) (7)

where DL is the distance from where the request is gener-
ated and the operation leader. When a request is local with
probability l , it only requires time of the quorum access with
closest neighbors DQ . For non-local requests occurred with
probability of 1 − l , a round trip of distance to leader DL
also contributes to the average latency. For EPaxos l = 1 but
c is workload specific, in contrast for the other consensus
protocols we study, we have c = 0 and l is workload specific.

6.3 Comparing the Protocols
By using the two formulas 3 and 7 we present in the previous
subsections, we discuss how these protocols compare with
each other and how we can provide back-of-the-envelope
performance forecasting of these protocols.
EPaxos and Generalized Paxos try to make single leader

Paxos more scalable by extending the leadership to every
replica therefore sharing the load; this increases L to its max-
imum value of all nodes in the system and reduces L(S).
But it comes with a complication: any conflicting commands
from two replicas require extra round of quorum acknowl-
edgement for order resolution before the requests can be
executed and replied. This extra round puts more load to
the system, reducing throughput and increasing latency. Our
evaluations show that the problem becomes even worse in
WANs: since requests take much longer time to finish in
WANs, that also contributes to an increase in the probability

of contention. In the worst case, even with 25% of conflicting
requests, system can experience c = 100% load.

Flexible-Paxos andWPaxos benefits from flexible quorums
such that both Q and DQ are reduced for phase-2.
The three WAN protocols we evaluated in this work ex-

ploit the locality l in the workload to optimize latency for
wide area. When the locality is static, and an optimal policy
is used for placing the data close to most requests, these
protocols will experience the same WAN latency.
In Table 4, we show the parameters each protocol aims

to explore. Given that each protocol emphasizes a couple of
these parameters and trades them off with others, there is
no one protocol that fits all needs/expectations. Our results
and formulas are also useful for deciding which category of
Paxos protocols would be optimal under given deployment
conditions. In Figure 14, we give a flowchart to serve as a
guideline to identify which consensus protocol would be
suitable for a given deployment environment.

7 CONCLUDING REMARKS
Wepresented a two pronged approach to analyze the strongly-
consistent replication protocols. We distilled the throughput
and latency performance to simple formulas that generalize
over Paxos protocols, uniting them, as well as emphasizing
the different design decisions and tradeoffs they take.

We anticipate that the simple exposition and analysis we
provide will lead the way to the development of new proto-
cols, especiallyWAN coordination protocols. The unbalanced
topology with respect to obtaining a quorum causes compli-
cations in WAN deployments, and achieving good locality as
well as load balancing remains an open problem for efficient
strongly-consistent WAN replication. In addition, as part of
future work, we aim to extend our analytical model to cover
replication protocols with relaxed consistency guarantees,
such as bounded-consistency and session consistency.

ACKNOWLEDGMENTS
This project is in part sponsored by the National Science
Foundation (NSF) under award number CNS-1527629 and
XPS-1533870.

REFERENCES
[1] Ailidani Ailijiang, Aleksey Charapko, Murat Demirbas, and Tevfik

Kosar. 2017. Multileader WAN Paxos: Ruling the Archipelago with
Fast Consensus. arXiv preprint arXiv:1703.08905 (2017).

[2] Ailidani Ailijiang, Aleksey Charapko, Murat Demirbas, Bekir Oguz
Turkkan, and Tevfik Kosar. 2017. Efficient Distributed Coordination
at WAN-scale. In Distributed Computing Systems (ICDCS), 2017 37th
International Conference on. IEEE.

[3] Arnold O. Allen. 2014. Probability, statistics, and queueing theory.
Academic Press.

[4] Deniz Altinbuken and Emin Gun Sirer. 2012. Commodifying replicated
state machines with openreplica. Technical Report.

[5] Amazon Inc. 2008. Elastic Compute Cloud.
[6] Peter Bailis, Shivaram Venkataraman, Michael J Franklin, Joseph M

Hellerstein, and Ion Stoica. 2012. Probabilistically bounded staleness
for practical partial quorums. Proceedings of the VLDB Endowment 5, 8
(2012), 776–787.

[7] William J Bolosky, Dexter Bradshaw, Randolph B Haagens, Norbert P
Kusters, and Peng Li. 2011. Paxos replicated state machines as the basis
of a high-performance data store. In NSDI 8th USENIX Symposium on
Networked Systems Design and Implementation (NSDI ’11).

[8] Jim Campigli and Yeturu Aahlad. 2018. The Distributed Coordination
Engine (DConE). WANDisco, Inc (2018).

[9] Aleksey Charapko, Ailidani Ailijiang, and Murat Demirbas. 2018.
FleetDB: Follow-the-workload Data Migration for Globe-Spanning
Databases. Technical Report. https://cse.buffalo.edu/tech-reports/
2018-02.pdf

[10] Clustrix. 2017. A New Approach to Scale-out RDBMS:
Massive Transactional Scale for an Internet-Connected
World. https://www.clustrix.com/wp-content/uploads/2017/01/
Whitepaper-ANewApproachtoScaleOutRDBMS.pdf. (2017).

[11] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking Cloud Serving Systems with
YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing
(SoCC ’10). ACM, New York, NY, USA, 143–154. https://doi.org/10.
1145/1807128.1807152

[12] J. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, JJ. Furman, S. Ghe-
mawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak,
E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quin-
lan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor, R. Wang, and
D. Woodford. 2012. Spanner: Google’s globally-distributed database.
Proceedings of OSDI (2012).

[13] Citus Data. 2016. Master-less Distributed Queuewith PG Paxos. https://
www.citusdata.com/blog/2016/04/13/masterless-distributed-queue/.
(2016).

[14] Herbert Aron David and Haikady Navada Nagaraja. 2004. Order
statistics. Encyclopedia of Statistical Sciences 9 (2004).

[15] etcd [n. d.]. etcd: Distributed reliable key-value store for the most
critical data of a distributed system. https://coreos.com/etcd/.

[16] Matt Freels. 2018. FaunaDB: An Architectural
Overview. https://fauna-assets.s3.amazonaws.com/public/
FaunaDB-Technical-Whitepaper.pdf

[17] Google. 2018. The Go Programming Language. https://golang.org/
https://golang.org/.

[18] Heroku. 2018. Doozerd. https://github.com/ha/doozerd.
[19] Ezra N Hoch, Yaniv Ben-Yehuda, Noam Lewis, and Avi Vigder. 2017.

Bizur: A key-value consensus algorithm for scalable file-systems. arXiv
preprint arXiv:1702.04242 (2017).

[20] Heidi Howard, Dahlia Malkhi, and Alexander Spiegelman. 2016.
Flexible paxos: Quorum intersection revisited. arXiv preprint
arXiv:1608.06696 (2016).

[21] F. Junqueira, B. Reed, and M. Serafini. 2011. Zab: High-performance
broadcast for primary-backup systems. In Dependable Systems & Net-
works (DSN). IEEE, 245–256.

[22] Kyle Kingsbury. 2017. Jepsen Tests. https://jepsen.io/ https://jepsen.
io/.

[23] Tim Kraska, Gene Pang, Michael J Franklin, Samuel Madden, and Alan
Fekete. 2013. MDCC: Multi-data center consistency. In Proceedings of
the 8th ACM European Conference on Computer Systems. ACM, 113–
126.

[24] Cockroach Labs. 2018. CockroachDB: The SQL database for
global cloud services. https://www.cockroachlabs.com/docs/stable/
architecture/overview.html.

https://cse.buffalo.edu/tech-reports/2018-02.pdf
https://cse.buffalo.edu/tech-reports/2018-02.pdf
https://www.clustrix.com/wp-content/uploads/2017/01/Whitepaper-ANewApproachtoScaleOutRDBMS.pdf
https://www.clustrix.com/wp-content/uploads/2017/01/Whitepaper-ANewApproachtoScaleOutRDBMS.pdf
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://www.citusdata.com/blog/2016/04/13/masterless-distributed-queue/
https://www.citusdata.com/blog/2016/04/13/masterless-distributed-queue/
https://coreos.com/etcd/
https://fauna-assets.s3.amazonaws.com/public/FaunaDB-Technical-Whitepaper.pdf
https://fauna-assets.s3.amazonaws.com/public/FaunaDB-Technical-Whitepaper.pdf
https://golang.org/
https://golang.org/
https://github.com/ha/doozerd
https://jepsen.io/
https://jepsen.io/
https://jepsen.io/
https://www.cockroachlabs.com/docs/stable/architecture/overview.html
https://www.cockroachlabs.com/docs/stable/architecture/overview.html

[25] L. Lamport. 2001. Paxos made simple. ACM SIGACT News 32, 4 (2001),
18–25.

[26] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. 2009. Vertical paxos
and primary-backup replication. In Proceedings of the 28th ACM sym-
posium on Principles of distributed computing. ACM, 312–313.

[27] Jialin Li, Ellis Michael, Naveen Kr Sharma, Adriana Szekeres, and
Dan RK Ports. 2016. Just Say {NO} to Paxos Overhead: Replacing
Consensus with Network Ordering. In 12th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 16). 467–483.

[28] Haonan Lu, Kaushik Veeraraghavan, Philippe Ajoux, Jim Hunt,
Yee Jiun Song, Wendy Tobagus, Sanjeev Kumar, and Wyatt Lloyd.
2015. Existential consistency: measuring and understanding consis-
tency at Facebook. In Proceedings of the 25th Symposium on Operating
Systems Principles. ACM, 295–310.

[29] Yanhua Mao, Flavio Paiva Junqueira, and Keith Marzullo. 2008. Men-
cius: building efficient replicated state machines for WANs. In OSDI,
Vol. 8. 369–384.

[30] Iulian Moraru, David G Andersen, and Michael Kaminsky. 2013. There
is more consensus in egalitarian parliaments. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM,
358–372.

[31] Neo4j. 2012. Neo4j - The WorldâĂŹs Leading Graph Database. http:
//neo4j.org/

[32] Netflix. 2017. Chaos Monkey. https://github.com/Netflix/
chaosmonkey https://github.com/Netflix/chaosmonkey.

[33] Diego Ongaro and John Ousterhout. 2014. In search of an understand-
able consensus algorithm. In 2014 USENIX Annual Technical Conference
(USENIX ATC 14). 305–319.

[34] Sebastiano Peluso, Alexandru Turcu, Roberto Palmieri, Giuliano Losa,
and Binoy Ravindran. 2016. Making fast consensus generally faster. In
Dependable Systems and Networks (DSN), 2016 46th Annual IEEE/IFIP
International Conference on. IEEE, 156–167.

[35] Denis Rystsov. 2018. CASPaxos: Replicated State Machines without
logs. arXiv preprint arXiv:1802.07000 (2018).

[36] Yee Song, Robbert Van Renesse, Fred Schneider, and Danny Dolev.
2008. The building blocks of consensus. Distributed Computing and
Networking (2008), 54–72.

[37] Robbert Van Renesse and Deniz Altinbuken. 2015. Paxos made moder-
ately complex. ACM Computing Surveys (CSUR) 47, 3 (2015), 42.

[38] Robbert Van Renesse and Deniz Altinbuken. 2015. Paxos made moder-
ately complex. ACM Computing Surveys (CSUR) 47, 3 (2015), 42.

[39] Hanyu Zhao, Quanlu Zhang, Zhi Yang, Ming Wu, and Yafei Dai. 2018.
SDPaxos: Building Efficient Semi-Decentralized Geo-replicated State
Machines. In Proceedings of the ACM Symposium on Cloud Computing.
ACM, 68–81.

[40] Jianjun Zheng, Qian Lin, Jiatao Xu, Cheng Wei, Chuwei Zeng, Pingan
Yang, and Yunfan Zhang. 2017. PaxosStore: high-availability storage
made practical in WeChat. Proceedings of the VLDB Endowment 10, 12
(2017), 1730–1741.

http://neo4j.org/
http://neo4j.org/
https://github.com/Netflix/chaosmonkey
https://github.com/Netflix/chaosmonkey
https://github.com/Netflix/chaosmonkey

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Results
	1.3 Outline of the rest of the paper

	2 Protocols
	3 Performance Model
	3.1 Assumptions
	3.2 Simple Queueing Models
	3.3 Modeling Consensus Performance
	3.4 Expanding Models Beyond Paxos and LANs

	4 Paxi Framework
	4.1 Components
	4.2 Paxi Benchmark Components

	5 Evaluation of the Protocols
	5.1 Paxi Performance
	5.2 Protocol Comparisons in LANs
	5.3 Protocol Comparison in WANs

	6 Discussion
	6.1 Load and Capacity
	6.2 Latency
	6.3 Comparing the Protocols

	7 Concluding Remarks
	References

