
A Transactional Framework for Programming Wireless Sensor/Actor Networks

Murat Demirbas
Department of Computer Science & Engineering

University at Buffalo, SUNY
demirbas@cse.buffalo.edu

Abstract

Effectively managing concurrent execution is one of the
biggest challenges for future wireless sensor/actor networks
(WSANs): For safety reasons concurrency needs to be
tamed to prevent unintentional nondeterministic executions,
on the other hand, for real-time guarantees concurrency
needs to be boosted to achieve timeliness. We propose
a transactional, optimistic concurrency control framework
for WSANs that enables understanding of a system exe-
cution as a single thread of control, while permitting the
deployment of actual execution over multiple threads dis-
tributed on several nodes. By exploiting the properties
of wireless broadcast communication, we propose a light-
weight and fault-tolerant implementation of our transac-
tional framework.

1 Introduction

Traditionally wireless sensor networks (WSNs) act
mostly as data collection and aggregation networks and
do not possess a significant actuation capability [2, 34].
However, as WSNs become increasingly more integrated
with actuation capabilities, they have the potential to play
a major role in our lives fulfilling the proactive comput-
ing vision [33]. Future wireless sensor/actor networks
(WSANs) will be instrumental in factory automation and
process control systems, such as vibration control of the as-
sembly line platforms or coordination of regulatory valves.
Another example of WSANs could be robotic highway
safety/construction markers [10], where robot cones move
in unison to mark the highway for the safety of workers.

The state of the programming technology for WSANs
is currently far behind that of the available physical tech-
nology for WSANs [33]. The research on WSN program-
ming methologies are not readily applicable in the context
of WSANs, as WSANs need a radically different software
than WSNs do. In contrast to WSNs, where a best-effort
(eventual consistency, loose synchrony) approach is suffi-

cient for most applications and services, consistency and
coordination are essential requirements for WSANs, since
in many WSAN applications the nodes need to consistently
take a coordinated course of action to prevent a malfunc-
tion. For example, in the factory automation scenario in-
consistent operation of regulator valves may lead to chemi-
cal hazards, and in the robotic highway markers example a
robot with an inconsistent view of the system may enter in
to traffic and cause an accident.

Due to the heavy emphasis WSANs lay on consistency
and coordination, we believe that concurrent execution, or
more accurately, nondeterministic execution due to concur-
rency will be a major hurdle in programming of distributed
WSANs. Since each node can concurrently change its state
in distributed WSANs, unpredictable and hard-to-reproduce
bugs may occur frequently. Even though it is possible to
prevent these unintentional and unwanted nondeterminis-
tic executions by tightly controlling interactions between
nodes and access to the shared resources [8,15,19], if done
inappropriately, this may deteriorate a distributed system
into a centralized one and destroy concurrency, which is
necessary for providing real-time guarantees for the system.

Contributions of the paper. To enable ease of program-
ming and reasoning in WSANs, and yet allow concurrent
execution, we propose a programming abstraction and an
associated framework, namelyTRANSACT: TRANsactional
framework for Sensor/ACTor networks. TRANSACT pro-
vides a simple and clean abstraction for writing robust
singlehop coordination and control programs for WSANs,
which can be used as building blocks for constructing mul-
tihop coordination and control protocols.

A major contribution of TRANSACT is that it simplifies
the reasoning and verification of a distributed WSANs pro-
gram. TRANSACT enables reasoning about the properties
of a distributed system execution as interleaving of single
transactions from its constituent nodes, whereas, in reality,
the transactions at each of the nodes are running concur-
rently. Consequently, under the TRANSACT framework, any
property proven for the single threaded coarse-grain execu-
tions of the system is a property of the concurrent fine-grain

executions of the system. (We call this the “conflict serial-
izability” theorem.) Hence, TRANSACT eliminates uninten-
tional nondeterministic executions and achieves simplicity
in reasoning while retaining the concurrency of executions.

Secondly, TRANSACT enables ease of programming for
WSANs applications. Building blocks for process control
and coordination programs (such as, leader election, mu-
tual exclusion, cluster construction, neighborhood discov-
ery, recovery actions, and consensus) are easy to denote
using TRANSACT (see Figure 1). Also, TRANSACT intro-
duces a novelconsistent write-allparadigm that enables a
node to update the state of its neighbors in aconsistentand
simultaneousmanner. We believe that this paradigm facil-
itates achieving consistency and coordination and may en-
able development of more efficient control and coordination
programs than possible using traditional models.

Thirdly, TRANSACT is novel in that it proposes an ef-
ficient and lightweight implementation of a transactional
framework in a distributed manner. Implementing trans-
actions in distributed WSANs domain diverges from that
in the database context significantly, and introduces new
challenges to address. In contrast to database systems, in
distributed WSANs there is no central database repository
or an arbiter; the control and sensor variables, on which
the transactions operate, are maintained distributedly over
several nodes. As such, it is infeasible to impose control
over scheduling of transactions at different nodes, and also
challenging to evaluate whether distributed transactions are
conflicting. However, by exploiting the properties of broad-
cast communication inherent in WSANs, TRANSACT over-
comes this challenge and provides a lightweight implemen-
tation of transaction processing. Since imposing locks on
variables and nodes may impede the performance of the dis-
tributed WSAN critically, TRANSACT implements an opti-
mistic concurrency control solution. Thus, the transactions
in the TRANSACT framework is free of deadlocks (as none
of the operations is blocking) and livelocks (as at least one
of the transactions needs to succeed in order to cancel other
incompatible transactions).

Finally, TRANSACT is robust to the face of node fail-
ures and message losses. Unreliable wireless communica-
tion (e.g., message losses and collisions) in WSANs is a big
challenge in the implementation of TRANSACT. By utiliz-
ing explicit acknowledgements and eventually-reliable uni-
casts efficiently, TRANSACT manages to provide a consis-
tent and atomic broadcast abstraction.

2 TRANSACT Framework

Overview of TRANSACT. The key idea of TRANSACT

can be traced to the optimistic concurrency control (OCC)
in database systems [21]. There are three phases in an OCC
transaction: 1.Read:Transaction begins by reading values

and writing to a private sandbox. 2.Validation: The data-
base checks if the transaction could have conflicted with
any other concurrent transaction. If so, the transaction is
aborted and restarted. 3.Write: Otherwise, the transac-
tions commits. Thus, transactions in OCC satisfy the ACID
(atomicity, consistency, isolation, durability) properties.

In TRANSACT, a thread, an execution of a nonlocal
method, is analogous to a transaction in OCC. A nonlo-
cal method (which requires inter-process communication) is
structured asread∗[write−all], i.e., a sequence ofread op-
erations followed, optionally, by awrite-all operation. Each
read operation reads variables from some nodes in single-
hop, and write-all operation writes to variables of a set of
nodes in singlehop. Read operations are always compatible
with each other: since reads do not change the state, it is al-
lowable to swap the order of reads across different threads
(and even within the same thread as we discuss later).

Similar to a write operation in OCC, a write-all operation
may fail to complete when a conflict with another thread
is reported. A conflict is possible only if two overlapping
threadst1 andt2 have a read-write incompatibility fromt1
to t2 and also a write-write or a read-write incompatibil-
ity from t2 to t1 with respect to some variables (defined in
Section 2.2). Conflicts are detected in an efficient manner
as nodes can snoop on broadcasted messages in singlehop
(see Section 2.3). If there are no conflicts write-all succeeds
by updating the state of the nodes involved in a consistent
and simultaneous manner. When a write-all operation fails,
the thread aborts without any side-effects. Since the write-
all operation—the only operation that changes the state—is
placed at the end of the thread, if it fails no state is changed
and hence there is no need for rollback recovery at any node.
An aborted thread can be retried later.

2.1 Language

A TRANSACT method consists of read and write-all op-
erations and is of the formread∗[write−all]. Each read
operation reads variables from a set of nodes in singlehop,
and write-all operation writes to variables of a set of nodes
in singlehop. Athread is an execution of a method, and can
span across many nodes.

In Figure 1 we give some examples of TRANSACT meth-
ods for different tasks to illustrate the ease of programming
in this model. As an example consider thebecome leader
method. Here the initiator node reads all neighbors and
declares itself as the leader if none of its neighbors has a
leader. It is easy to see that in a single-threaded execution
of the system, this method ensures that there can be at most
one leader within a singlehop neighborhood. TRANSACT

automatically satisfies the same property for a concurrent
execution of the system. In a scenario where two nodes exe-
cutebecome leader concurrently, they may both decide to

declare themselves as the leader. However, since one of the
write-all broadcasts will precede that of the other (we dis-
cuss the case of collisions of broadcasts and the associated
message loss in Section 2.4), due to a reporting of a conflict
(which follows from read-write and write-write incompati-
bilities between the two transactions) the other transaction
is aborted.

boolbecome leader(){
LeaderSet=read(“*.leader”);//read all nbrs

if (LeaderSet = ∅) //declare self as leader

then return write-all(“*.leader=”+self.ID);
returnFAILURE; }

boolconsensus(){
VoteSet=read(“*.vote”);
if(|V oteSet| = 1) //act consistently

then return write-all(“*.decided=TRUE”);
returnFAILURE;}

bool recovery action() {
StateColl=read(“*.state”);//read state of nbrs

if(¬ legal(StateColl)) //state is corrupted

then return write-all(correct(StateColl));
returnSUCCESS;}

Figure 1. Sample methods in TRANSACT

TRANSACT methods return a boolean value denoting the
successful completion of the method. If the method execu-
tion is aborted (e.g., due to conflicts with other threads or
a lack of response to a read), it is the responsibility of the
caller (application) to retry. For example in theConsen-
sus method, upon failure to agree on the same value, the
initiator node may retry until consensus is achieved. When
consensus is achieved the value is decided consistently and
simultaneously by all the participating nodes.

2.2 Semantics

To keep the exposition simple we assume for the rest of
the text that nodes have single thread of control, and focus
on concurrent execution of threads only across nodes.

The read operations are compatible with respect to each
other, so swapping the order of any two concurrent read op-
erations results into an equivalent computation. A read op-
eration and a write operation at different and overlapping
threads to the same variable are incompatible, so it is dis-
allowed to swap the order of two such operations. In such
a case, a causality is introduced from the first to the sec-
ond thread. Two write operations to the same variable are
also incompatible with each other, and introduce a causal-
ity from the first thread to perform the write to the latter.
As in Figure 2 if a read-write incompatibility introduces a

causality fromt1 to t2, and a write-write incompatibility
introduces a causality fromt2 to t1, then we say thatt1
andt2 are conflicting. This is because, due to the causali-
ties the concurrent execution oft1 andt2 do not return the
same result as neither at1 followed byt2 nor at2 followed
by t1 execution. In this case, sincet2 is the first thread to
complete, whent1 tries to write-all,t1 is aborted due to
the conflict. Similarly, a read-write incompatibility fromt1
to t2, and another read-write incompatibility fromt2 to t1
(e.g.,t1 =read(l.x);write-all(l′.y) andt2 =read(l′.y);write-
all(l.x)) results in a conflict and abortion of one of the trans-
actions (the one with the later write-all operation).

write−write incompatibility

read−write incompatibility

t1.write−all(l.x)t1.read(l.x)

t2.write−all(l.x)
k

j

Figure 2. Conflicting transactions

TRANSACT provides guarantees on consistency and
safety, but cannot provide very tight timeliness guarantees
due to the contending nature of channel access. For exam-
ple, when the bandwidth limits of the network is stretched
due to a large number of communicating nodes in a re-
gion, it is not possible to provide tight real-time guaran-
tees. Precaution should be taken to ensure the bandwidth
limits are respected. Moreover, contention management
schemes [11, 36] can be used to improve the real-time per-
formance.

2.3 Read and Write-all operations

Broadcast communication opens novel ways for optimiz-
ing the implementation of read and write operations in OCC
transactions. We identify these as follows:

1. A broadcast is received by the recipients simultane-
ously

2. Broadcast allows snooping

Property 1 follows from the characteristics of wireless
communication: the receivers synchronize with the trans-
mission of the transmitter radio and the latency in recep-
tion is negligible (limited only by the propogation speed of
light). As such Property 1 gives us a powerful low-level
atomic primitive upon which we build the threads. Using
Property 1, it is possible to order one transaction ahead of
another, so that the latter is aborted in case of a conflict.
(Property 1 does not rule away collisions nor asserts that a
broadcast message should be reliably received by all the in-
tended nodes; it just asserts that for all the nodes that receive

the message, the reception occurs simultaneously. We rele-
gate the discussion of how we cope with message losses and
collisions to Section 2.4.) We use Property 2, i.e., snooping,
for detecting conflicts between transactions without the help
of an arbiter.

Implementation of Read operation : Since read opera-
tions are compatible with other read operations, it is possi-
ble to execute read operations—even those from the same
thread—concurrently. Moreover, exploiting the broadcast
nature of communication the node initiating the transaction
can broadcast a read-request where all variables to be read
are listed. To avoid collisions of the reply, it is possible to
exploit the order the variables are listed in the read-request
message. For example, ifj.x occurred at the first place
andk.y occurred at the second in read-request,j knows it
should reply some time between 0-40ms of the read-request,
andk knows it should reply some time between 40-80ms of
the read-request. This scheduling scheme is possible since
the broadcasted read-request message is received by all re-
cipients simultaneously.

Implementation of Write-all operation : The write-all
broadcast performs a tentative write (a write to a sandbox)
at each receiver. Each receiver replies back with a smallac-
knowledgmentmessage. Such control messages are easily
implementable under some WSN MACs [30, 37]. Again,
to avoid collision of acknowledgments, the order the vari-
ables are listed in the write-all message can be used. If after
the broadcast, the writer receives aconflict-detectedmes-
sage (we discuss how below), the write-all operation fails,
and the writer notifies all the nodes involved in the write-all
to cancel committing. This is done by a broadcasting of a
cancellationmessage, and the writer expects acancel-ack
from each node to avoid an inconsistency due to loss of a
cancellation message. The cancellation process may be re-
peated a few times until the writer gets a cancel-ack from
each node involved in the write-all (the above scheme can
be used for avoiding collision of cancel-acks). The com-
mit is time-triggered: If after the write-all, the writer node
does not cancel the commit, the write-all is finalized when
the countdown timer expires at the nodes. Since write-all
is received simultaneously by all nodes, it is finalized at the
same time at all nodes –if it completes successfully.

Snooping for detecting conflicts: As mentioned in Sec-
tion 2.2, any two threadst1 andt2 are conflicting if and only
if a read-write incompatibility introduces a causality from
t1 to t2, and a write-write or a read-write incompatibility
introduces a causality fromt2 to t1. Detection of a conflict
over distributed variables is a hard problem, further compli-
cated by the case where the read-write and write-write in-
compatibilities are for different variables at separate nodes.

To enable low-cost detection of conflicts, we use nodes
to act as proxies for detecting incompatibilities between

conflict_msg

t1:write−all(l’.x)

t2:write−all(l.y,l’.x)

t1:read(l.y)

Execution order:

l’

k

l

j

t1:write−all t2:write−all

t2:write−all
t1:read

Figure 3. Snooping for detecting conflicts

transactions by snooping over broadcast messages. Figure 3
demonstrates this technique. Herej is executing threadt1
which consists ofread(l.y);write−all(l′.x) operations that
operate on its 1-hop neighbors,l andl′. Simultaneously, an-
other nodek within 2-hops ofj is executing threadt2 which
write−all(l.y, l′.x). In this scenariol′ is the key. Whent1
readsl, l′ learns about the pendingt1 thread via snooping.
Whent2 writes tol′, l′ takes note of the simultaneous write
to l.y (since that information appears at the write-all mes-
sage) and notices the read-write incompatibility betweent1
andt2. Later, whent1 writes tentatively tol′.x, l′ notices
the write-write incompatibility betweent2 and t1. Thus,
l′ complains and abortst1. Had there been multiple nodes
written by t1, the affected nodes may schedule transmis-
sion of the conflict-messages in a collision-free manner by
taking the write-all broadcast as a reference point.

2.4 Fault-tolerance

Even when singlehop neighbors are chosen conserva-
tively to ensure reliable communication (we assume an un-
derlying neighbor-discovery service to this end—one that
may potentially be implemented as a TRANSACT method),
unreliability in broadcast communication is still possible
due to message collisions and interference. Here, we de-
scribe how TRANSACT tolerates unreliability in wireless
communication via utilizing explicit acknowledgements
and eventually-reliable unicast.

Occasional loss of a read-request message or a reply to a
read-request message is detected by the node initiating the
transaction when it times-out waiting for a reply from one
of the nodes. After a second try of the read-request, the
initiator node aborts the transaction before a write-all is at-
tempted. In this case, since the initiator never attempted the
write-all, no cancellation messages are needed upon abort-
ing. Retrying the method later, after a random backoff, is
less likely to be susceptible to message collisions due to
similar reasons as in CSMA with collision avoidance ap-
proaches [1].

Similarly, loss of a write-all message is detected by the
initiator node when it times-out on an acknowledgment
from one of the nodes included in the write-all. In this

case, to avoid some intricate consistency issues that may
be raised due to a re-broadcast of a write-all, a second try
is not attempted and the initiator aborts its transaction by
broadcasting a cancellation message as discussed above in
the context of conflict-resolution.

For the loss of a conflict-detected or cancellation mes-
sage we depend on the eventual reliability of unicast mes-
sages. Upon detection of a loss via timeout on an acknowl-
edgement, if a conflict-detected or cancellation message is
repeated a number of times, it should be delivered success-
fully to the intended recipient. It follows from the impossi-
bility of solving the “coordinated attack problem” [13] in
the presence of arbitrarily unreliable communication, the
above assumption is necessary even for solving a most ba-
sic consensus problem in a distributed system [5]. Such
an eventually-reliable unicast assumption is realistic under
reasonable network loads as the MAC protocols [30,37] can
resolve collisions via carrier-sense and back-offs.

Failure of an initiator node after it broadcasts a write-
all may lead to inconsistent decisions among the nodes in-
volved in the transaction. Even though this is a very rare
fault compared to message losses and may not incite a so-
lution, it is possible to handle this case by devising a de-
centralized abort mechanism using snooping. The node that
reported the conflict may act as a shepherd and cancels the
transaction in case the initiator is down and does not take
any action. Note that failures of other nodes are readily tol-
erated and do not lead to inconsistencies.

3 Related Work

Distributed systems community has invested significant
effort on coping with concurrency issues. The researchers in
distributed systems mostly considered wired, point-to-point
network topologies, and preferred to use high-level models
to think about atomicity at a coarser granularity than the
underlying message-passing communication. For example,
the shared memory model uses a read and a write primitive:
The read primitive reads atomically from all the neighbor-
ing nodes, and the write primitive writes only to the local
state of the node. In the guarded-command model [4, 7],
each action (a combination of read from neighbors and write
to local state) is deemed atomic. Finally, Linda [3] intro-
duced a tuple-space based programming model with two
communication primitive: “in” (blocking) and “out” opera-
tion. Unfortunately, none of these models provide built-in
support for the serializability of the method executions —in
contrast TRANSACT provides conflict-serializabilty via the
transaction abstraction. Especially for adaptations of Linda
to ad hoc networks domain [28], our TRANSACT framework
can be instrumental for implementing and maintaining the
consistency of the underlying distributed tuple-space.

Similar to the conflict-serializability theorem in TRANS-

ACT, the Seuss programming discipline [26] provides a
reduction theorem to the same effect. In contrast to the
TRANSACT model where the only allowed methods are
“read” and “write-all” primitives in theread∗[write−all]
format and the only allowed call depth is one node, Seuss’s
remote procedure call based programming model is more
general: call-depth is not-restricted, and the method struc-
ture is less constrained. On the other hand, the Seuss disci-
pline requires a compile-time semantic compatibility check
to be performed across nodes and allow only semantically
compatible methods across nodes to run concurrently by as-
serting pre-synchronization inserted between incompatible
methods. This hinders compositionality and ad hoc inter-
operability gravely. Note that in TRANSACT we take an
optimistic approach to concurrency control, and do not as-
sert such restrictions. Also Seuss requires a proof of partial
orders on methods at the compile-time in order to prevent
the case where a method can be called malformedly as part
of its execution.

A cached sensor transform (CST) that allows simulation
of a program written for interleaving semantics in WSNs
under concurrent execution is introduced in [17]. CST ad-
vocates a push-based communication model: Nodes write
to their own local states and broadcast so that neighbors’
caches are updated with these values. This is not directly
equivalent to writing neighbor’s state, due to complications
arising from concurrency and not being able to directly hear
writes from 2-hop neighbors to a 1-hop neighbor. CST im-
poses a lot of overhead for updating of a continuous en-
vironmental value (e.g., a sensor reading changing with
time) due to the cost of broadcasting the value every time
it changes. In contrast to the CST model, TRANSACT uses
pull-based communication, and hence it is more efficient
and suitable for WSANs. CST targets WSN platforms and
supports only a loosely-synchronized, eventually-consistent
view of system states. TRANSACT is more amenable for
control applications in distributed WSANs as it guarantees
consistency even in the face of message losses and provides
a primitive to write directly and simultaneously to the states
of neighboring nodes.

Several programming abstractions have been proposed
for sensor networks, including Kairos [14] and Hood [35].
Kairos allows a programmer to express global behavior of
a WSN in a centralized sequential program and provides
compile-time and runtime systems for executing the pro-
gram on the network. Hood provides an API that facilitates
exchanging information among a node and its neighbors.
In contrast to these abstractions that provide best-effort se-
mantics (loosely-synchronized, eventually consistent view
of system states), TRANSACT focuses on providing a de-
pendable framework for WSANs with well-defined consis-
tency and conflict-serializability guarantees.

Virtual node infrastructure [9] provides an overlay net-

work of fixed virtual nodes (VNs) on top of a mobile ad hoc
network to abstract away the challenges of unpredictable
mobility and unpredictable reliability of the mobile nodes.
Each VN is simulated by the real mobile nodes in the VN’s
region in the network. The implementation assumes reliable
communication channels and uses a round-robin approach
to achieve robust replication of the state of the VN over the
real nodes. The network of VNs serve as a fixed backbone
infrastructure for the mobile ad hoc network and allows ex-
isting routing and tracking algorithms for static networks to
be adopted for these highly dynamic environment. TRANS-
ACT framework is orthogonal to the VN idea and provides
a lightweight abstraction for implementing VNs over unre-
alistic communication channels.

Software-based transactional memory (STM) approach
has been proposed in earlier work [16, 32], however, the
scope of those work is limited to threads interacting through
memory in a single process. In that domain, STM func-
tions as an alternative to lock-based synchronization and
offers optimistic synchronization, achieving increased con-
currency. In contrast, TRANSACT focuses on transactions
among distributed nodes and inter-node concurrency issues,
and exploits singlehop wireless broadcast primitive to effi-
ciently implement distributed transaction processing.

Finally, concurrency control in TRANSACT diverges
from that in the database context significantly as we dis-
cuss in the Introduction. Recently, there has been a lot of
work on transactions for mobile ad hoc networks [6,22–24,
29, 31], however, these work all assume a centralized data-
base and arbiter at the server, and try to address the consis-
tency of hidden read-only transactions initiated by mobile
clients. Work on distributed databases use two-phase lock-
ing for concurrency control and employ two-phase com-
mit for ensuring correct completion of distributed transac-
tions [13, 27]. In contrast to OCC, which performs a lazy
evaluation to resolve conflicts (if any), two-phase locking
takes a speculative approach and prevents any possibility
of conflictsby forbidding any read-write or write-write in-
compatibilities in the first place. However, this aggressive
strategy takes its toll on the concurrency of the system and
limits number of simultaneous transactions the system can
support. Two-phase locking is also prone to deadlocks, and
is not composable.

4 Concluding Remarks

We presented TRANSACT, a transactional, optimistic
concurrency control framework for WSANs. TRANSACT

provides ease of programming and reasoning in WSANs
without curbing the concurrency of execution, as it enables
reasoning about system execution as a single thread of con-
trol, while permitting the deployment of actual execution
over multiple threads distributed on several nodes. TRANS-

ACT offers a simple and clean abstraction for writing robust
singlehop coordination and control programs for WSANs,
which can be used as building blocks for constructing multi-
hop coordination and control protocols. We believe that this
paradigm facilitates achieving consistency and coordination
and may enable development of more efficient control and
coordination programs than possible using traditional mod-
els. By providing a library of patterns [12] for efficient con-
trol and coordination among nodes, we can help the pro-
grammers to reuse these patterns and achieve the same im-
provements in their code quickly.

In this paper we also outlined an efficient and light-
weight implementation of TRANSACT in WSANs in a dis-
tributed manner. The major challenge for this implementa-
tion has been that, in contrast to database systems, in dis-
tributed WSANs there is no central database repository or
an arbiter; the control and sensor variables, on which the
transactions operate, are maintained distributedly over sev-
eral nodes. We overcome this challenge by exploiting the
properties of broadcast communication: a broadcast is re-
ceived by the recipients simultaneously, and broadcast al-
lows snooping. The first property gives a low-level atomic
primitive that we use to order a transaction ahead of another,
and the second property allows snooping for detecting con-
flicts between transactions in a distributed manner, without
the help of an arbiter. Another challenge has been the un-
reliable nature of wireless communication. We overcome
this challenge by utilizing explicit acknowledgements and
eventually-reliable unicasts efficiently.

We are currently working on implementing TRANSACT

in TinyOS [18]. TinyOS currently does not provide any
mechanism for handling inadvertent nondeterministic ex-
ecutions across the nodes. (The “atomic” keyword and
compile-time race condition detection in TinyOS helps only
for preventing intra-node race conditions.) To achieve
conflict-serializability for distributed TinyOS applications,
we will implement theread and write-all operations of
TRANSACT as a TinyOS library component. By asserting
that the programmer use only TRANSACT-style methods (of
the formread∗[write−all]) for inter-process communica-
tion, we will provide the benefits of TRANSACT framework
for a TinyOS application. As a demonstration, we plan to
implement a decentralized traffic-light control application1.
In this application, a number of remote-controlled toy cars
(each carrying a Mica2 mote [25]) will be arriving at an
intersection from different directions. By running a leader-
election method using TRANSACT, only one of the cars will
get to proceed at a time while the others are stopped safely.

In future work, we plan to integrate verification support
to TRANSACT in order to enable the application developer
to check safety and progress properties about her program.
Since TRANSACT already provides conflict serializability,

1This demo idea is due to Nancy Lynch.

the burden on the verifier is significantly reduced. Hence,
for verification purposes it is enough to consider asingle-
threaded coarse-grain executionof a system rather than in-
vestigating all possible fine-grain executions due to concur-
rent threads. Another advantage TRANSACT provides is the
simplistic format of the methods, which facilitates transla-
tion between TRANSACT methods and existing verification
toolkits, such as model checkers [20].

References

[1] Wireless lan medium access control(mac) and physical layer
(phy) specification. IEEE Std 802.11, 1999.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci. A survey on sensor networks.IEEE Commu-
nications Magazine, 2002.

[3] N. Carriero and D. Gelernter. Linda in context.Commun.
ACM, 32(4):444–458, 1989.

[4] K. M. Chandy and J. Misra. Parallel Program Design.
Addison-Wesley Publishing Company, 1988.

[5] G. Chockler, M. Demirbas, S. Gilbert, C. Newport, and
T. Nolte. Consensus and collision detectors in wireless ad
hoc networks. InPODC, pages 197–206, 2005.

[6] I. Chung, B. K. Bhargava, M. Mahoui, and L. Lilien. Au-
tonomous transaction processing using data dependency in
mobile environments.FTDCS, pages 138–144, 2003.

[7] E. W. Dijkstra.A Discipline of Programming. Prentice Hall,
1976.

[8] E. W. Dijkstra. Cooperating sequential processes. pages
65–138, 2002.

[9] S. Dolev, S. Gilbert, L. Lahiani, N. Lynch, and T. Nolte.
Timed virtual stationary automata for mobile networks.9th
International Conference on Principles of Distributed Sys-
tems (OPODIS), 2005.

[10] S. Farritor and S. Goddard. Intelligent highway safety mark-
ers. IEEE Intelligent Systems, 19(6):8–11, 2004.

[11] R. G. Gallager. A perspective on multiaccess channels.
IEEE Transactions on Information Theory, 31(2):124–142,
1985.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional Computing Series. Addison-
Wesley, 1995. GAM e 95:1 1.Ex.

[13] J. Gray. Notes on data base operating systems. Technical
report, IBM, 1978.

[14] R. Gummadi, O. Gnawali, and R. Govindan. Macro-
programming wireless sensor networks usingkairos. In
DCOSS, pages 126–140, 2005.

[15] P. B. Hansen, editor.The origin of concurrent program-
ming: from semaphores to remote procedure calls. Springer-
Verlag, 2002.

[16] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy. Compos-
able memory transactions. InProceedings of the tenth ACM
SIGPLAN symposium on Principles and practice of parallel
programming, pages 48–60, 2005.

[17] T. Herman. Models of self-stabilization and sensor net-
works. IWDC, 2003.

[18] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for network sen-
sors.ASPLOS, pages 93–104, 2000.

[19] C. A. R. Hoare. Monitors: an operating system structuring
concept.Commun. ACM, 17(10):549–557, 1974.

[20] G. Holzmann.The Spin Model Checker, Primer and Refer-
ence Manual. Addison-Wesley, 2003.

[21] H. T. Kung and J. T. Robinson. On optimistic methods for
concurrency control.ACM Trans. Database Syst., 6(2):213–
226, 1981.

[22] K.-Y. Lam, M.-W. Au, and E. Chan. Broadcast of consistent
data to read-only transactions from mobile clients. In2nd
IEEE Workshop on Mobile Computer Systems and Applica-
tions, 1999.

[23] V. C. S. Lee and K.-W. Lam. Optimistic concurrency control
in broadcast environments: Looking forward at the server
and backward at the clients.MDA, pages 97–106, 1999.

[24] V. C. S. Lee, K.-W. Lam, S. H. Son, and E. Y. M. Chan. On
transaction processing with partial validation and timestamp
ordering in mobile broadcast environments.IEEE Trans.
Computers, 51(10):1196–1211, 2002.

[25] Crossbow technology, Mica2 platform.www.xbow.com/
Products/Wireless Sensor Networks.htm .

[26] J. Misra. A discipline of multiprogramming.ACM Comput-
ing Surveys, 28(4):49–49, 1996.

[27] M. T. Ozsu and P. Valduriez.Principles of distributed data-
base systems. Prentice-Hall, Inc., 1991.

[28] G. P. Picco, A. L. Murphy, and G.-C. Roman. Lime: Linda
meets mobility. InICSE ’99: Proceedings of the 21st inter-
national conference on Software engineering, pages 368–
377, 1999.

[29] E. Pitoura. Supporting read-only transactions in wireless
broadcasting. In9th Int. Workshop on Database and Expert
Systems Applications, page 428, 1998.

[30] J. Polastre, J. Hill, and D. Culler. Versatile low power media
access for wireless sensor networks. InSenSys ’04: Pro-
ceedings of the 2nd international conference on Embedded
networked sensor systems, pages 95–107, 2004.

[31] J. Shanmugasundaram, A. Nithrakashyap, R. Sivasankaran,
and K. Ramamritham. Efficient concurrency control for
broadcast environments. InSIGMOD ’99, pages 85–96,
1999.

[32] N. Shavit and D. Touitou. Software transactional memory.
In Proceedings of the fourteenth annual ACM symposium
on Principles of distributed computing (PODC), pages 204–
213, 1995.

[33] D. Tennenhouse. Proactive computing.Commun. ACM,
43(5):43–50, 2000.

[34] M. Tubaishat and S. Madria. Sensor networks : An
overview. IEEE Potentials, 2003.

[35] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood: a
neighborhood abstraction for sensor networks. InMobiSys,
pages 99–110, 2004.

[36] D. E. Willard. Log-logarithmic selection resolution pro-
tocols in a multiple access channel.SIAM J. Comput.,
15(2):468–477, 1986.

[37] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient
mac protocol for wireless sensor networks. InINFOCOMM,
pages 1567–1576, 2002.

