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Abstract—This paper presents a survey on the timing perfor-
mance of Google Cloud Messaging (GCM). We evaluate GCM
in real world experiments, and at a reasonable scale involving
thousands of real users. Our findings reveal that the GCM
message delivery is unpredictable, namely having a reliable
connection to Google’s GCM servers on the client device does
not guarantee a timely message arrival. Therefore, GCM is
not suitable for time sensitive and/or “must-deliver-to-all” app
scenarios. On the other hand, GCM delivers the push messages
to a big portion of the subscribers (more than 40% in any
experiment scenario) in a reasonable timeframe (in 10 seconds).
Therefore, GCM may be a good fit for the application scenarios
where random multicasting is sufficient, such as crowdsourcing
systems. Our results provide a through evaluation of the GCM
performance, and will guide developers and researchers to decide
whether GCM is suitable for their intended use cases.

I. INTRODUCTION

With the advent of mobile and pervasive computing era,
smartphones became ubiquitous, and wearable devices are
getting traction. A significant portion of the applications for
these devices relies on remote servers on the cloud, and
Google Cloud Messaging (GCM) [1] is a popular service as a
client/server communication solution for Android. Today more
than half of the smartphones run Android OS. With the recent
release of Android Wear [2], Android extended its domain to
wearable devices. Both of these platforms use GCM for central
notifications. For example, Google Glass forwards most tasks
to a cloud-based solution called Mirror API [3], and Mirror
uses GCM for client/server communications.

GCM is a service which allows developers to send push
messages to Android devices from the server. GCM handles the
queuing of the messages as well as delivering those messages
to the target applications on the devices. GCM is a free
service by Google, and it has no quotas. It is the default push
messaging solution for the Android platform.

In this paper, we present a survey on GCM message
arrival times in order to investigate the realtime properties
of GCM. Our aim is to provide a better understanding of
this widely used service. Understanding the performance of
GCM is essential for developers especially while developing
applications for public avail, such as disaster alert apps, blood
donation notifications etc. It is also essential to understand the
realtime properties of GCM for researchers working on mobile
systems such as crowdsourcing, question answering and other
realtime systems.

GCM does not mention any time guarantee in its documen-
tation [1]. However there is a need to unveil the GCM message
delivery performance to caution developers and researchers
from over-relying on GCM (by assuming it is fast and reliable
for all cases). To this end, we evaluate GCM in real world

experiments, and at a reasonable scale involving thousands of
real users. Our contributions in this work are as follows:

• To the best of our knowledge, we provide the first
comprehensive GCM evaluation for a variety of real
world experiment scenarios, namely offline and on-
line experiments which are elaborated based on the
connection type (i.e. WiFi or cellular data) and data
service providers.

• Our experiments involve thousands of real users, and
the results let developers and researchers make a
supervised decision on whether GCM is suitable for
their intended use cases.

• We show that GCM delivers the push messages to a
big portion of the subscribers (more than 40% in any
experiment scenario) in a reasonable timeframe (in 10
seconds).

• We reveal that the GCM message delivery is un-
predictable, namely having a reliable connection to
Google’s GCM servers on the client device does not
by itself guarantee a timely message arrival.

• We conclude that GCM is not suitable for time sensi-
tive and/or “must-deliver-to-all” app scenarios.

Overview of Our Results: In order to analyze GCM, we
employ and piggyback on our CrowdReply app [4] which we
built for crowdsourcing research. CrowdReply is an Android
application which lets the crowd play the “Who wants to
be a millionaire?” game in realtime while TV show is live.
For our analysis, we collected anonymized timing data from
mobile participants who have our Android app installed on
their smartphones or tablets.

We define two different experiment scenarios. In the offline
experiment, we calculate the GCM message arrival latency
at a random time. Therefore, in this scenario, the server has
no knowledge of whether the devices are powered on, are in
use, or have network connection. In the online experiment,
we calculate the GCM message arrival time using the online
participants while the TV show is live on the TV and when
the participants are playing the game. Therefore, in the online
experiment, we know that the devices are powered on, actively
in use and have network connection. We also measure how
connection type affects the message arrival time, namely we
detail our evaluation based on the connection types: WiFi and
cellular data. Furthermore, we elaborate our experiments on
the cellular connection based on different cellular data service
providers.

Our experiment results show that GCM falls short for
delivering the push messages to all subscribers in a timely
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manner. Moreover, the GCM message arrival latency is un-
predictable even when the device is connected to Google’s
GCM servers. This indicates that GCM is not suitable for time
sensitive and/or “must-deliver-to-all” application scenarios,
such as fire alert, instant messaging, disaster alert etc. On
the other hand, GCM delivers the messages to a big portion
of the subscribers (nearly 80% in the online and 40% in the
offline experiments) in a reasonable timeframe (in 10 seconds
for both experiments). Therefore, GCM may be a good fit
for the application scenarios where random multicasting is
sufficient, such as crowdsourced question answering systems,
blood donation notifications etc.

Outline of the paper: We present related work in Sec-
tion II. In Section III, we detail our Android application
and GCM data collection. We show comparative results in
Section IV, and we conclude the paper by discussing our
findings and future work in Section V.

II. RELATED WORK

Today, all popular mobile operating systems support push
notification services [1], [5], [6], [7]. There is still ongoing
work to optimize publish/subscribe model for ever-developing
mobile technology. For example, Mobius [8] from Yahoo!
Research and MIT uses caching and makes more efficient use
of ad hoc hardware for that purpose. MobilePush [9] proposes
a design for an internet-scale system that supports mobile
devices connected to both wireless LAN and GPRS network,
and in [10], authors present an evaluation of their mobile
publish/subscribe setting. To the best of our knowledge, only
one retrospective study evaluates the performance of the push
notification services for popular mobile operating systems [11].
In this work, the performance of Android Cloud to Device
Messaging (C2DM), i.e. the deprecated predecessor of GCM,
is compared to some other push notification services which
are configurable to work with Android clients. Their findings
reveal that, C2DM gets around 4 to 6 seconds response time
given that the device which receives the push notification
initiates the message, i.e. the push notification bounces back
to the same device. Therefore, their results are limited to
periodic notifications to a single device, and lacks comparative
performance analysis of mass push notifications.

III. CROWDREPLY: OUR CROWDSOURCED QUESTION
ANSWERING APP

In this section, we explain the architecture of CrowdReply,
our crowdsourced “Who wants to be a millionaire?” (WWT-
BAM) application. CrowdReply enables the audience watching
WWTBAM on the TV to play along on their Android smart-
phones in realtime.

We targeted the Turkish audience due to the high popularity
of the TV show there. Our app has been installed more than
311,000 times [12]. The game enables us to build a large-
scale crowdsourcing dataset. Using this data, we test several
crowdsourcing algorithms in real life, and we also evaluate the
GCM performance in real world experiments.

The overall architecture of the CrowdReply is shown in
Figure 1. CrowdReply consists of two main parts, a mobile
side for presenting the questions to the users and letting them

Fig. 1. CrowdReply system architecture

answer the questions, and a server side for typing and dis-
patching the questions, collecting the answers, and providing
useful statistics. We described the design, implementation, and
deployment of the CrowdReply in a previous work [4]. In this
paper, we leverage this app and the data for evaluating the
GCM timing performance.

A. GCM Messages in CrowdReply

In WWTBAM game show, the questions appear on the
TV in arbitrary moments. Because of this, CrowdReply uses
push messages to send the questions, instead of the client
device polling the questions from the server. This design lets
CrowdReply use the connection only when there is a new
question, and it delegates the data pushing job to GCM in order
to resolve any scalability issues CrowdReply might encounter.

TABLE I. CROWDREPLY GCM MESSAGE TYPES

Message Type Action Target

B Begin the game all users

E End the game all users

Q Send question online users

S Send statistics / answers online users

T Time Synchronization all users

Table I shows the types of the GCM messages which
CrowdReply defines and uses. At the start of the TV show,
CrowdReply sends a GCM message of type B which lets all
the registered devices know that the game is started. When
a game is started and a participant decided to play (i.e.
opened the corresponding screen), the app notifies the server
to receive the questions. If a participant is not online (i.e.
for that particular device, no “activity running” notification
is arrived on the server side), then CrowdReply does not send
the questions to her device in order to reduce the workload on
the server side as well as to save energy on the offline devices.

During the game, CrowdReply sends message of type Q,
which includes the question, whenever the question appears
on the TV and our project members type it. The client app
parses the message upon arrival and updates the user interface
accordingly. Type S message is sent when a question is
answered on the TV, and it consists of the correct answer and
the statistics of the previous question. Type E message notifies
the participant devices that the TV show and thus the game is
ended. Finally, type T message is designed to synchronize the
local time of the client devices with the server side in order
to have accurate timestamps in CrowdReply system.
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B. GCM Data Collection

Here we explain how we collected the time data in our
experiments. We leverage our time synchronization mechanism
(i.e. GCM message type T ) to collect our data on the GCM
message arrival times. To calculate precise times, we use
network time protocol (NTP)1 [13].

The GCM message arrival time is defined as the difference
between the time the GCM message is initiated from our
servers, and the time the client device receives that message.
Therefore, in our type T GCM message flow, the difference
between the server NTP time of the message initiation, and
the client NTP time of the message arrival gives us precise
GCM message arrival time for each device.

The client devices bounce-back to our type T message with
message arrival NTP timestamp, and we calculate per device
GCM message arrival times in our server. We evaluate these
arrival times to elaborate how GCM performs.

In addition to this time data, we also record the network
connection type (WiFi or cellular data) of the client devices as
well as the cellular service provider in order to test the effects
of the connection type and the data service provider.

IV. EXPERIMENTS AND RESULTS

In this section, we present our data and then we evaluate
the timing performance of GCM. We measured the GCM
message arrival times in two different experiment scenarios:
offline and online. In our offline experiment, we send the GCM
message at a random time. Therefore, in this scenario, the
server has no knowledge of whether the client devices are
powered on, are in use, or have network connection. On the
other hand, in our online experiment, we send the message to
the online participants while the show is live on the TV and
the participants are playing the game. Therefore, in our online
experiment, the client devices are powered on, actively in use
and have network connection.

A. The Dataset
TABLE II. NUMBER OF DEVICES IN EACH EXPERIMENT

Experiments

Offline Online

Connection

Type

WiFi 1656 199

Cellular 1299 165

Unidentified 163 18

Device

Type

Smartphone 2586 334

Tablet 532 48

Total 3118 382

Here we provide some statistics about our dataset. Table II
shows the number of devices by the connection type and the
device type for each experiment.

1NTP is a networking protocol for time synchronization which uses packet
switching delays to variable latency networks in order to synchronize the time.

TABLE III. POISSON MEAN NUMBER OF DEVICES AND
CHI-SQUARED GOODNESS-OF-FIT TEST P-VALUES

Experiments

Offline Online

λ 1.89 5.92

p 0 4.7334E-203

Fig. 2. Offline Experiment: Poisson Model using GLM

Fig. 3. Online Experiment: Poisson Model using GLM

We observed that the number of devices, which receive the
GCM message, per time follows Poisson distribution. To test
this hypothesis, we fitted Poisson distribution to the number
of devices per time, and conducted chi-squared goodness-of-
fit test on our models. Table III shows the mean number
of devices (λ) and chi-squared goodness-of-fit test results
(p− value), and Figures 2 and 3 show the residual vs. fitted
values for each experiment. As seen on the Table III, the
p−value’s are low which suggests that Poisson distribution is a
plausible fit to the number of devices per time. This indicates
that, message arrivals occur with an average rate in a large
period. It also shows that the number of devices receiving
the GCM messages is independent from the previous GCM
message arrivals.

In order to calculate the average message arrival time in
our experiments, we used inter-quartile range (IQR) [14] based
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outlier removal method2. In our calculation, any arrival time
beyond (1.5∗ IQR)+(3rdQuartile) is considered as outlier.
Table IV shows the percentages of the number of outliers based
on the experiment and the connection type in our dataset. The
percentage of the outliers can be regarded as dead message
delivery rate in most cases.

TABLE IV. PERCENTAGE OF IQR OUTLIERS IN EACH EXPERIMENT

Experiments

Offline Online

Overall 10% 14%

Connection

Type

WiFi 7% 17%

Cellular 20% 13%

Cellular

Data

Provider

AVEA 21% 16%

Turkcell 18% 17%

Vodafone 19% 7%

B. Offline and Online Experiments

Here we evaluate the GCM message arrival times in
our offline and online experiments. We first give an overall
performance of GCM in those experiments, and then we detail
our evaluation by comparing the message arrival times based
on the network type, namely WiFi or cellular data. Finally, we
elaborate the GCM performance among different cellular data
providers in order to show how the network infrastructure and
the data service coverage affect the message arrival times.

Table V shows the statistical measures of the message
arrival times in our offline and online experiments. As it is
seen in the Table V, 1st Quartile’s are within reasonable
range in both experiments. However, the median and the
average message arrival times indicate that the latency in the
offline experiment is significantly high compared to the online
experiment.
TABLE V. OFFLINE AND ONLINE EXPERIMENTS MESSAGE ARRIVAL

TIMES (IN SECONDS)

Experiments

Offline Online

1st Quartile 5 1

3rd Quartile 8032 5

Median 334 2

Average 2996 2.8

Figure 4 shows the cumulative message arrival times in our
experiments. The graph reads as follows:

The point A on the offline experiment plot means that the
message did not reach to 58% of the devices in 10 seconds
in our offline experiment. Similarly, the point B on the online
experiment plot means that the message did not reach to 16%
of the devices in 10 seconds in our online experiment. Hence,
the message arrives to a significantly bigger portion of the

2IQR is defined as the difference between 1stQuartile and 3rdQuartile,
namely IQR = |1st Quartile− 3rd Quartile|

devices in the online experiment than in the offline experiment
within the same time interval.

Following the Table V, Figure 4 also reveals that the GCM
message arrival latency significantly differs by the experiment
type, namely having the devices powered on, in use, and
connected to network have a significant effect on the message
arrival time.
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Fig. 4. Complementary CDF of Message Arrival Times for Offline and Online
Experiments

In our second analysis, we analyzed how the connection
type of the client device affects the message arrival time. Ta-
ble VI shows the statistical measures of the arrival times based
on the connection type for each experiment. As the median
message arrival times indicate, when there is a connection
available, the message arrival time is within reasonable range
for the app scenarios which are not time sensitive, such as
crowdsourced question answering. However, as 3rdQuartile’s
in the offline experiment indicate, the message is not able to
reach to a big portion of the users in a timely manner. Hence,
GCM is not suitable for time and mission critical app scenarios
where message arrival to all users in a short time is required,
such as emergency alerts.

TABLE VI. WIFI AND CELLULAR DATA CONNECTION MESSAGE
ARRIVAL TIMES (IN SECONDS)

Experiments

Offline Online

WiFi Cell WiFi Cell

1st Quartile 4 5 1 2

3rd Quartile 11724 1759 4 6

Median 2449 8 2 4

Average 5594 328 2 3

Figure 5 shows how the device connection type affects
the message arrival time in our offline experiment. As figure
suggests, the message arrival times are less when cellular
data connection is available. Namely, more than half of the
messages arrive in less than 10 seconds when cellular data
connection is available. However, the remaining half of the
messages still arrives too late to consider GCM as an alterna-
tive communication channel for time sensitive applications.

Figure 6 shows how the message arrival times change
by connection type in our online experiment. As the figure
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Fig. 5. Complementary CDF of Message Arrival Times for Cellular Data
and WiFi Connections in Offline Experiment

suggests, when the devices are powered on, actively in use,
and have network connection, then the network connection
type does not have any significant effect on the message arrival
time.
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Fig. 6. Complementary CDF of Message Arrival Times for Cellular Data
and WiFi Connections in Online Experiment

In Turkey (CrowdReply’s target country), there are three
carriers providing cellular service, which are AVEA [15],
Turkcell [16] and Vodafone [17]. All three providers have 3G
networks in most of the crowded cities and towns. Here we
evaluate how these providers affect the message arrival latency.
Table VII shows the message arrival times in our experiments
based on the cellular data providers. Recall from the Table VI
that, the median message arrival time is reasonably small for
the cellular data in both the offline and the online experiment
scenarios. However, Table VII indicates that the median mes-
sage arrival time in the offline experiment significantly differs
based on the network infrastructure (149 seconds difference
between the best and the worst performing cellular network
providers).

Figure 7 visualizes the changes on the message arrival
times in the offline experiment by cellular data providers. These
results suggest that the cellular data connection infrastructure
has an effect on the message arrival times. Although Turkcell
is the market leader and has the largest cellular data coverage
area in Turkey, the GCM message arrival latency is the biggest
for the client devices using the Turkcell cellular data service.

Figure 8 shows the cumulative message arrival times by

TABLE VII. CELLULAR DATA SERVICE PROVIDERS MESSAGE
ARRIVAL TIMES (IN SECONDS)

Experiments

Offline Online

AVEA Turkcell Vodafone AVEA Turkcell Vodafone

1st Quartile 5 6 5 2 2 2

3rd Quartile 836 2870 1994 6.5 6 5

Median 6 155 7 4 4 4

Average 110 677 427 4 3.8 3.5
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Fig. 7. Complementary CDF of Message Arrival Times for Cellular Data
Service Providers in Offline Experiment
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Fig. 8. Complementary CDF of Message Arrival Times for Cellular Data
Service Providers in Online Experiment

cellular data service providers in the online experiment. It is
clear from the figure that, in the online experiment, all cellular
data providers perform similar. However, even in the online
experiment, where we know that all devices are powered on,
actively in use, and have network connection, some devices
(10% of the devices in the AVEA network, and 20% of the
devices in the other two networks) do not receive the GCM
messages in a reasonable time, namely it takes more than 10
seconds for a message to arrive (and some devices receive the
message in hours).

C. Double Message Offline Experiment

Our experimental results show that the GCM message
arrival time is significantly less in the online experiment than in
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the offline experiment. To further investigate the late message
arrival in the offline scenario, we conducted another experiment
which we name as double message. In this run, we send two
GCM messages initiated at the same time on our server. Then,
this time, instead of measuring the message arrival time, we
measure the difference between the arrival time of the first
message and the arrival time of the second message. Therefore,
we know that, at the time the first message is arrived to a
device, the device is reachable by Google’s GCM servers.

Table VIII shows the statistical measures of the arrival time
difference between the two messages in our double message
experiment. As it is seen, although the messages are initiated at
the same time, the median arrival time difference is more than
260 seconds overall, and it is 78 seconds for the cellular data
connection. Moreover, Figure 9 shows that some of the devices
receive the second message hours after receiving the first one.
These results reveal that the GCM message arrival latency
is unpredictable, namely even the connection is established
between Google’s GCM servers and the client devices, two
GCM messages in a message queue are being sent on different
times.

TABLE VIII. DOUBLE MESSAGE EXPERIMENT: PER DEVICE
MESSAGE ARRIVAL TIME DIFFERENCE (IN SECONDS)

Connection Type

Overall Cell WiFi

1st Quartile 28.5 30.5 24

3rd Quartile 11611 1483 20172

Median 264 78 631

Average 3228 344 7947
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Fig. 9. Complementary CDF of Message Arrival Differential in Double
Message Experiment

V. CONCLUDING REMARKS

In this paper, we evaluated the timing performance of
Google Cloud Messaging (GCM) using our CrowdReply app.
We conducted three different experiments in two different
experiment scenarios (i.e. offline and online). Our results
indicate that GCM is not suitable for time sensitive and/or
“must-deliver-to-all” application scenarios. Furthermore, the
GCM message arrival latency is unpredictable, namely having
a reliable connection to Google’s GCM servers on the client
device does not by itself guarantee a timely message arrival.

While GCM performs fairly well in our online experiment
scenario, not all the devices receive the GCM messages in
a timely manner. Hence, GCM may be a good fit for the
application scenarios where random multicasting is enough,
such as crowdsourced question answering systems [4] includ-
ing location based services [18], [19], and blood donation
notifications etc. However, GCM is not a good fit for the
applications where the broadcasting is mission critical, i.e.
the message arrival to all client devices is vital, such as
emergency alert services, fire alert systems, instant messaging
apps, disaster alert services etc.

As a future work, we will investigate other push notification
options available for Android including Extensible Messaging
and Presence Protocol (XMPP) [20], and Message Queue
Telemetry Transport (MQTT) [21] in terms of performance
and energy efficiency, and compare them with GCM for time-
sensitive app scenarios. Although such external protocols need
more implementation time and maintenance, we will evaluate
whether they can be a good fit for the apps where GCM does
not satisfy the performance requirements.
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