
2015 IEEE International Conference on Big Data (Big Data)

978-1-4799-9926-2/15/$31.00 ©2015 IEEE 253

PANOPTICON: A lock broker architecture for scalable transactions in the datacenter

Serafettin Tasci and Murat Demirbas

Computer Science & Engineering Department

University at Buffalo, SUNY

Abstract—For datacenter applications that require tight
synchronization, transactions are commonly employed for
achieving concurrency while preserving correctness. Unfortu-
nately, distributed transactions are hard to scale due to the
decentralized lock acquisition and coordination protocols they
employ. We investigate the use of a centralized lock broker
architecture to improve the efficiency/scalability for distributed
transactions, and present the design and development of such
a framework, called PANOPTICON.

Panopticon achieves efficiency/scalability by divorcing locks
from the data items and migrating locks to improve lock access
locality. More specifically, the lock broker mediates the access
to data shared across servers by migrating the associated locks
like tokens, and in the process learns and improves the access
locality of transactions.

Our experiments show that Panopticon performs better than
distributed transactions as the number of data items and
number of servers involved in transactions increase. Moreover,
as the history locality (the probability of using the same
objects in consecutive transactions) increase, Panopticon’s lock
migration strategies improve lock-access locality and result in
significantly better performance. Finally, we also show that, by
employing simple learning techniques, the broker can further
improve the lock access locality and, hence, the performance
of distributed transactions.

I. INTRODUCTION

Concurrent execution is a big challenge for distributed

systems programming and datacenter computing in partic-

ular. For embarrassingly parallel data processing applica-

tions, concurrency is boosted and scalability is achieved

by adding more servers, as in MapReduce [12]. However,

for applications that require tighter synchronization, such as

large-scale graph processing [14], [21], distributed scientific

simulations [5], and backends of large-scale web-services,

boosting concurrency in an uncontrolled/uncoordinated man-

ner wreaks safety violations. In these applications, concur-

rent execution needs to be coordinated to prevent latent race

conditions and synchronization bugs.

Transactions offer a nice abstraction for distributed sys-

tems developers as they provide serializability guarantees

while allowing concurrency under the hood. Since trans-

actions are easy to use, they are employed by modern

distributed systems including Google Spanner [9], Google

Megastore [4], and AWS RDS [2]. Unfortunately, transac-

tions have some shortcomings. We identify the following

two issues as the main bottlenecks for the scalability of

distributed transactions.

Distributed transactions waste a lot of time in coordi-

nation. When several data items need to be locked at the

same time, test-and-set approaches become inapplicable.

Distributed coordination for setting locks (such as two phase

locking and two phase commit) do not scale as their costs

grow quickly with respect to the number of servers involved

in the transactions [3].

Distributed transactions also waste a lot of time due to

repetitive remote/nonlocal accesses. There is a big latency

difference between accessing a server-local item versus item

that is stored across the cluster. However, modern datacenter

computing systems focus on consistent hashing and load-

balancing of data to the servers and ignore access locality

when assigning data for storage. When locks are coupled and

tied to the data, this penalizes transaction latencies severely,

especially in the lock acquisition phase. Even after several

repetitions of the same transaction, each time the remote

lock-access costs are paid again and again.

Contributions. To address the above scalability problems

in transactional systems, we propose a lock broker architec-

ture, called PANOPTICON. Panopticon achieves scalability

by divorcing locks from the data items and tasking the broker

with caching hot locks and migrating certain locks to servers

to improve lock access locality.

Differing from centralized lock service solutions such as

Chubby [6] or Zookeeper [17], Panopticon does not keep

all the locks in the broker. Maintaining all the locks at the

broker is not desirable since it kills all opportunities for

local access: none of the servers can have local transactions

in that setup. Instead Panopticon employs the broker as a

cache for locks that receive across-server access. This way

the broker also gets to observe transaction access patterns

so that it can improve lock access locality of transactions by

migrating locks when appropriate. If a lock gets consecutive

accesses from one server, the broker migrates the locks to

that server to improve lock-access locality further. Moreover,

the broker can also learn some transaction access patterns

and can proactively migrate locks to the servers even before

they are requested by those servers.

We present Panopticon’s novel lock broker architecture

in Section II, where we detail the broker operations, lock

migration rules, and optimizations such as batch locking,

and lazy unlocking. We develop and build Panopticon lever-

aging the Hazelcast [16] platform, a popular lightweight

open-source in-memory data grid for Java. Hazelcast uses

254

traditional distributed transaction processing with decentral-

ized two phase locking protocol. We build on Hazelcast

to implement the Panopticon lock broker architecture. We

present our implementation of Panopticon in Section III and

then use this implementation to compare and contrast Panop-

ticon’s improvements over traditional distributed transaction

processing in Section IV. We discuss some design decisions

and extensions/improvements to Panopticon in Section V.

We compare and contrast Panopticon with other work on

distributed transaction processing in Section VI.

We make the code for Panopticon as well as the

TLA+ [19] specification for the lock-broker accessible freely

at https://github.com/serafett/panopticon.git.

II. PANOPTICON LOCK BROKER

Figure 1. Panopticon lock broker

Panopticon maintains a lock for every data item, which

can be any record in a key-value store. By default, the

lock is kept where the data is, and this is advantageous for

improving lock-locality and enabling server-local transac-

tions without the need for contacting the broker. The server

contacts the lock broker only if data at other servers needs

to be accessed as part of a transaction.

The lock broker coordinates across-server sharing of the

data in distributed transactions by migrating the correspond-

ing locks like tokens. A server can request a lock anytime

from the broker, and only from the broker. The broker gives

the locks in a first-come first-serve manner. If the requested

locks are at the broker, the broker responds immediately.

Otherwise, the broker requests the locks from the corre-

sponding servers first and forwards them to the requester

when they are made available. The broker can request a

lock back anytime from a server, and the server complies.

(If the server is currently using the lock in an executing

transaction, the server returns the lock after the transaction

completes.) As the centralized authority for mediating access

to data, the broker learns about the access patterns of

transactions at runtime and manages the migration of locks

to servers in a way that improves lock access locality as we

discuss in Section II-A. We discuss transaction initiation and

completion at the servers in more detail in Section II-B.

Note that when transactions involve multiple data items,

this centralized lock broker solution gains an edge over the

traditional distributed transaction processing. Decentralized

distributed transactions employ two phase locking to pre-

vent deadlocks, which require that the server initiating the

transaction to contact the other servers for locks serially

in a fixed order (in order to avoid deadlocks). Thus a

decentralized distributed transaction execution that involves

K other nodes completes at K round-trip times. Instead of

this, it is more efficient to go to the broker and test/set all

the locks at once when K is greater than 1. This is because

a transaction execution via the lock broker complete in 2

round-trip times, regardless of how many other servers are

involved in the transaction. In Panopticon, the lock request is

sent at once to the broker, and the broker orders the K locks

in parallel, so this takes only one round trip. The broker

takes care of deadlock prevention since the broker serializes

the transaction request order among transactions. We discuss

this in more detail in Section II-C.

A. Tradeoffs and lock migration

Storing all the locks at the broker is not desirable because

it kills all the lock-access locality for the servers. On the

other hand, not storing any locks at the broker makes it slow

for a server to request a lock it needs. Panopticon strives to

find the sweet point in this tradeoff spectrum. We notice that

there can be three types of locks hosted at the broker:

1) locks that receive across-server accesses,

2) locks that receive repetitive access from same server,

3) locks that receive no access for a long-time.

It is best to host type 1 locks (locks that keep receiving

across-server accesses) in the lock broker. And it is best

to assign the type 2 locks to the requesting server to avoid

the overheads of repetitive requests from that server to the

broker. We discuss the determination of the sweet point in

the tradeoff between type 1 and type 2 locks next. 1

In Panopticon, the broker gets to observe all transaction

access patterns at runtime so it can differentiate between

type 1 and type 2 locks given some rules for cut points. We

use the following rule of thumb for declaring a lock to be of

type 2 and migrating that lock to a server: If k consecutive

requests for a given lock l (held at the broker) comes from

the same server w, then the broker migrates lock l to server

w. From that point on, w treats l as its local lock. The lock

locality of w is improved with this move, since w does not

need to contact the broker for l again.

Note that this is not a permanent assignment. Later if

another server y requests l, the broker migrates l back to

1For space-saving at the broker, we can employ least recently used (LRU)
policy to expel type 3 locks (locks that have not seen an access for a long-
time) back to the original host (the server that hosts the corresponding data
item).

255

itself, and gives y access to the lock. At this point, l is

treated again as a type 1 lock. When y is done with l, l
is continued to be hosted at the broker (that is, until the

k-consecutive rule is satisfied and l is migrated to another

server). In our experiments, we observed that k = 2 is a

good choice for most scenarios.

B. Transaction execution at the servers

The broker is oblivious to the state of the transactions. The

broker maintains per lock information, but not per transac-

tion information. The servers are the transaction managers

and they maintain the transaction information. Transactions

are initiated and executed by the servers distributedly after

checking that all the locks are available at the server.

When a server initiates a transaction, it requests locks in

batch as we explain in the next subsection. The server, as

the transaction manager, is responsible for determining when

to enter the transaction. When the server checks and finds

that it has gotten all the locks, it starts the transaction and

authoritatively-owns those locks, deferring the requests for

these locks until the transaction ends. Within the time frame

of initiating the transaction and entering the transaction,

the server may have some of the locks but it may not

authoritatively-own all those locks. For example, if a server

requires locks of multiple data items {l1, l2, l3, .., ln} for

a transaction, it cannot authoritatively-own li until all data

items lj such that lj < li are locked in the current trans-

action. If the server is waiting for lock l3 and has l1, l2, l4;

while l1, l2 are authoritatively-owned by the server, l4 is

not authoritatively-owned by the server. Therefore if another

server asks for l4, the server will have to return l4 to the

broker and then the broker will forward it to the requesting

server. If the requesting server already authoritatively-owns

l3, it will authoritatively-own l4 immediately after it receives

it before replying any lock request. This way of managing

the locks ensures progress and guarantees that livelocks as

well as deadlocks are avoided.

After a transaction is finished, the server needs to unlock

the data items, which means returning the locks back to the

broker. In this phase we propose an optimization where the

server performs a lazy unlock. Lazy unlocking means that the

locks are released locally, but not transmitted back to broker

until δ time elapses, where δ is empirically determined.

Lazy unlocking provides efficiency benefits for cases when

the server needs to access the same data items used in the

terminated transaction immediately in the next transaction.

Recall that if the same lock is requested by the same

server k times in a row, that lock is migrated from the

broker to that server. Therefore lazy unlock provides benefits

between the first and kth consecutive requests of a lock

by the server. Instead of returning the lock back to the

broker only to request it back afterwards, the lazy unlock

mechanism provides a grace period at the server to avoid

that inefficiency. This optimization is verifiably safe because

if lazy-unlocked data is requested, the lock is immediately

given back to the broker.

C. Transaction serialization at the broker

In Hazelcast transactions, two phase locking is employed

to prevent deadlocks. Two phase locking requires that the

server initiating the transaction needs to contact the other

servers for locks in a total order. The server cannot contact

another server until the current requested lock is acquired.

Therefore, if the transaction needs to get the locks of

multiple data items, this forces lock acquisition to be serial in

nature and causes a significant increase in transaction time.

In Panopticon the servers are not prone to this problem.

The servers can make the requests for all locks in batch

and at once, because the broker takes care of serializing

requests and deadlock prevention. When a server initiates a

transaction, it requests locks in batch as we explain in the

next subsection. The broker coordinates assigning/delivering

of the requested locks in a first come first serve basis

of the transaction requests. And when processing a lock

request for a transaction, the broker assigns the locks in

an increasing order to prevent deadlocks. The broker sorts

the lock requests to form a total order based on the data

item ID. When processing in this increasing order of locks,

if the broker holds the lock, it forwards it to the requesting

server. If the broker does not have the lock, it adds this

server’s name to the request-queue of the lock, and forwards

the lock requests to the server that holds the lock. This is

non-blocking but the replies may arrive in different order.

When a lock becomes available, the broker will forward

this lock to the server that is at the head of the queue it

maintains for that lock. By employing batch requests to

the broker, Panopticon avoids incremental lock requests in

traditional decentralized distributed transactions and gains a

big advantage in transaction execution time.

To test the protocol for correctness, we modeled the lock

broker with TLA+ [19] and tested for the mutual exclusion

invariants and deadlock. TLA+ is a tool for specifying

distributed algorithms and model checking them. A TLA+

specification simply describes the set of all possible legal

behaviours (execution traces) of a system. AWS reports [23]

that they recently adopted TLA for use in many of their key

distributed systems, including S3, DynamoDB, EBS, and a

distributed lock manager.

Modeling with TLA+ helped us get a better understanding

of the correctness reasoning for Panopticon. The proof of

safety specification is relatively straightforward as in any

token-based mutual exclusion algorithm: There is one token

per data item, and it cannot be created/destroyed, and it can

belong to one server at a given time. The liveness/starvation-

freedom proof, on the other hand, is achieved by projecting

a total order on requests and releases: Nodes form queues

on this order, and waiting nodes raise on the order and make

step by step progress towards the critical section. Our TLA+

256

model for the Panopticon lock broker is available at https:

//github.com/serafett/panopticon.git.

D. Transaction Prediction

Due to access locality between transactions, applications

often contain some correlations between consequent trans-

actions. We say that there is a correlation between two

data items i and j, when it is highly probable that the

next transaction will include item j given that the current

transaction uses i. For such workloads, time series prediction

can be employed to predict the items in the next transaction

by looking at the items in the current transaction.

In particular, we use a first-order Markov model for

prediction of the items in the next transaction. For this

purpose, the broker uses a prediction table C which keeps

at location C[i, j] the number of times an item j is requested

in the next transaction after item i is requested in the current

transaction by the same server. With each new transaction

request to the broker, the counts in the table are updated.

Then the probability of an item dj to be used in the next

transaction is given by the equation:

Pr(j ∈ Tt+1) =
C[i, j]

∑N
k=1 C[i, k]

(1)

Then

argmaxj Pr(dj ∈ Tt+1)

is selected as the final prediction candidate. To avoid the cost

incurred by incorrect predictions, we approve a candidate

j only if its probability is significantly higher than other

candidates and C[i, j] � 0 .

Transaction prediction has two main benefits: First, it

helps a server to receive locks for a transaction even before

requesting them. When a server receives all item locks

and starts a transaction, the predicted locks for the next

transaction are also sent to the server if they are available

at the broker. Secondly, when the predicted item locks are

received, the server can read and cache data of those items.

By this way, a server can avoid the latency of data reading

from distributed storage after the transaction starts.

III. IMPLEMENTATION

In this section, we explain how we implement Panopticon

over the Hazelcast platform. Hazelcast is an in-memory data

grid (IMDG) which is designed to store data in the main

memories of a cluster of machines. It ensures scalability by

simple, on-the-fly cluster management. A typical deploy-

ment ensures that the data is evenly partitioned across all

nodes in the cluster and automatic fail-over in case of a

node failure.

As stated earlier, in this paper we use Hazelcast as the

implementation choice. While it shares a similar feature set

with other IMDGs, Hazelcast stands out as a lightweight,

open-source solution with an easy to use Java API. Using

Hazelcast is as simple as adding the Hazelcast jar file to

the classpath and writing Java programs using distributed

counterparts of java.util.Queue, Set, List, Map. By using an

IMDG, we shift the burden of managing data items on a dis-

tributed cluster to the underlying data management platform

(i.e. Hazelcast) and we only focus on lock management for

distributed transactions.

A. Broker actions and data structures

All instances (i.e. machines) in a Hazelcast cluster have

unique IDs, and we set the instance with ID 0 (which is

denoted as the oldest node and special node in Hazelcast)

as the broker and the other instances as servers. The broker

does not perform computation and is responsible solely for

lock management. The Panopticon broker has the following

core data structures:

1) LockTable: keeps the current owner for each item lock.

2) RequestTable: keeps track of the requests for each

lock. When a lock request arrives, if the lock is already

available at the broker, the broker gives the lock to

the requester. Else, it inserts the requester ID to the

requestTable and sends a request to get the lock from

the hosting server (only if a request has not been sent

before). The requestTable stores multiple requests for

the same data item in a FIFO queue.

3) LeaseTable: keeps track of the locks which were

migrated to the servers.

B. Server actions and data structures

A server keeps the list of locks it owns in lockList. When

the server initiates a transaction and requests locks with the

lockAll() method, it first checks the lockList and sends a

lock request to the broker only if it does not find some of

the requested locks in this list. In addition the server keeps

a boolean requestList to keep track of the list of requests

for the locks it has. Note that these data structures are Lists,

compared to the Table data structures in the broker, because

for these locks, the other party is clear and unique: the

broker. The servers interact only with the broker and not

with other servers.

Whenever a server commits and exits a transaction, it calls

unlockAll() method which checks its requestList and gives

the requested locks to the broker. For the locks that are not

requested, the server can keep them if the broker gave a

lease for the lock (i.e., migrated the lock to this server) or

if the locks are originally hosted at this server.

C. Communication and messaging

Messaging between the servers and the broker is done

via ITopic publish-subscribe mechanism in Hazelcast which

guarantees message ordering. We use n+1 topics where n is

the number of servers. For server-to-broker communication

we use a shared channel called toBroker. However broker-

to-server communication uses separate channels for every

257

serveri to ensure messages are published only to relevant

servers. Whenever a new message from a registered ITopic

arrives to a server or the broker, the message is parsed and

handled based on the message type.

There are three types of messages in Panopticon: A

request message is used to send a lock request to the broker

or server holding the lock. Of course a server cannot send

request messages to other servers directly; the broker does

it on behalf of the server. A reply message is sent, to submit

the lock to the requester when the lock becomes available.

(Again, these messages might only be sent between a server-

broker pair, never a server-server pair.) Finally, a lease
message is used by broker to give/cancel leases of locks. For

this purpose broker keeps a consecutive request list called

conseqList that holds the consecutive requests to data items

along with the id of the requesting server.

Finally, Panopticon does not assume reliable channels and

is robust against message loss. To handle message losses,

Panopticon employs message reply timeouts. If a request

is not answered in a specified time, the server assumes

the message is lost and resends the request. If the request

message is sent successfully but the reply message is lost,

then the replying server understands it when an identical

request is received and resends the reply. Side effects of

resending are avoided since the lock request and reply

messages are idempotent.

IV. EXPERIMENTS AND EVALUATION

A. Setup

To evaluate the performance of Panopticon, we performed

experiments on AWS EC2 using up to 33 medium Linux

instances, which have two EC2 compute units and 3.75 GB

of RAM each. In our experiments, one instance is designated

as the broker, and the remaining instances are servers. In all

experiments, the transaction time is measured by averaging

1000 such transactions after a warmup period.

We compare Panopticon with the decentralized two phase

locking based Hazelcast transactions. Panopticon-L denotes

the basic Panopticon framework with lazy unlocking opti-

mization that we described in Section II-B. In this Panopti-

con implementation, to save messages, we made the broker

batch lock-replies and grant them together in one mes-

sage to the server. We also performed experiments with

Panopticon-S, which improves Panopticon with read staging.

In Panopticon-S the broker sends lock-replies to the server

as locks become available. And when a server receives a

lock, it reads the data item immediately to stage a copy of

the data-item at its cache before it receives all the locks

and enters the transaction. By this way, it is possible to

avoid delays incurred by costly distributed reads during a

transaction. Panopticon-LS denotes the Panopticon-S version

with lazy unlocking optimization.

We measure the effect of several parameters in Panopti-

con. History probability, Pr Hist, denotes the probability

of using the same objects in consecutive transactions. For

example Pr Hist = 0.7 means that if a transaction uses

100 shared objects, 70 of them would be among the objects

accessed by the previous transaction from the same server.

Lease acquisition threshold, N conseq, is used to determine

the number of requests for giving a lease (i.e. migrating

the lock). If the same server makes N consecutive requests

to an object without any other server requesting it in the

meanwhile, then the lease of the object is given to the

server and the server can keep it until another request comes.

Otherwise, it immediately returns the lock to the broker after

its transaction finishes. TxnSize denotes the number of data

items accessed in a transaction. In all experiments, one read

and one write operation is performed on each data item in a

transaction. TotalSize denotes the total number of shared

data items between transaction servers. Note that decreasing

totalSize increases the contention in a workload. Therefore,

despite we tested Panopticon with up to 64K shared data

items, in these experiments we keep totalSize ≤ 16K to

reveal the performance of Panopticon under contention.

B. Experiment Results

In our first set of experiments, by varying Pr Hist, we

measured the effect of the probability of selecting the same

items in consecutive transactions. Since Hazelcast does not

exploit the history of accesses, the results remain stable in

Hazelcast regardless of the history probability. Figure 2.a

shows that when the number of data items in a transaction is

low (txnSize = 10), Panopticon performs better than decen-

tralized transactions even with very low history probability.

As the history probability increases, Panopticon benefits

more from lock migration and data staging which causes

the performance gap between Panopticon and decentralized

transactions to increase. When the number of objects in a

transaction is high (txnSize = 100), despite the increase in

contention, the superiority of Panopticon becomes even more

significant (Figure 2.b). In addition, we observe that while

lazy unlocking (Panopt-L) helps more than data staging

(Panopt-S), combining both optimizations (Panopt-LS) has

an aggregated benefit.

In our second set of experiments, we evaluated the effect

of N conseq, the required number of consecutive requests

for lease acquisition. When N conseq = 1, servers will

keep the locks they acquired unless they receive a new

request for this lock. When N conseq becomes very high,

servers will probably never attain enough consecutive re-

quests to acquire the lease of the lock. As a result, locks

will always be returned to the broker after a transaction

completes in a server.

In Figure 3.a and Figure 3.b, we see the effect of

N conseq for history probabilities of 0.1 and 0.9 respec-

tively. When Pr Hist = 0.1, setting the lease acquisition

threshold to 1 will significantly hurt the transaction perfor-

mance for all Panopticon variants. In this case, since servers

258

Panopt

Panopt-L

Hz

Panopt-S Panopt-LS

1

2

4

8

0.01 0.1 0.5 0.9 0.99

Ti
m

e
(m

s)

History Probability

Panopt

Panopt-L

Hz

Panopt-S

Panopt-LS

8

16

32

64

0.01 0.1 0.5 0.9 0.99

Ti
m

e
(m

s)

History Probability

Figure 2. Change in time as the history probability increases with txnSize=10 (left) and txnSize=100 (right) using 4 servers and 1024 total data items

will not return the locks after transactions, whenever a new

transaction starts, they will not be able to find the locks at

the broker. Therefore, for most locks the cost of getting the

lock will be 2 round-trip times. When N conseq ≥ 2, this

problem disappears since the servers will not be able to get

any lease now.

On the other hand, when Pr Hist = 0.9, since servers

will mostly have consecutive accesses to data items, earlier

migration of locks to servers is desired. Therefore when

N conseq gets bigger, more locks are returned to the broker

and performance deteriorates. servers will continue to access

the same objects for more consecutive transactions. Note that

Panopt-L and Panopt-LS always keep a good performance

regardless of N conseq, since both methods use the lazy-

unlock optimization. With this optimization even when a

server does not have the lease, by waiting until the next

transaction starts, it avoids unnecessary returning of the

locks to the broker.

In Figure 4, we varied txnSize, the number of data items

accessed in a transaction, to see the effect of contention.

Naturally, as the number of locked items increase, the

duration of the transactions and also the contention for

locks increases in all methods. However, as Figure 4 shows,

Panopticon scales better than decentralized locking due to

its batch locking and non-busy lock holding capabilities. In

addition, in all experiments we have consistently observed

that lazy unlocking and read staging optimizations improve

the performance of Panopticon. This improvement becomes

more evident as the number of locked objects in a transaction

increases.

To evaluate the scalability of Panopticon, we kept the

number of objects in a transaction fixed and measured

the average transaction time with an increasing number of

servers. While in Figure 5.a each transaction uses 4 data

Figure 4. Comparison of Panopticon with decentralized locking as the
number of locked items in a transaction changes

items from a pool of 1024 total items, Figure 5.b uses 4x

more items per transaction from a 16x larger item set. In

both figures, since the total number of objects is constant,

the lock contention among servers increases significantly as

more servers are employed.

Figure 5 shows that Panopticon performs remarkably

well when the contention is low thanks to the data and

lock caching mechanisms employed in Panopticon. When

the number of servers increases, Panopticon scales linearly

preserving its edge over decentralized locking all the time. In

this figure, we did not include Panopticon and Panopticon-

L since they are consistently outperformed by Panopticon-S

and Panopticon-LS, that use read staging.

Finally, Figure 6 shows the effect of prediction on Panop-

ticon’s transaction performance. For this experiment, we

used a specific workload in which for every item i, there is

an item j such that probability of requesting j is significantly

higher than other items in the next transaction if the current

259

Panopt

Panopt-L
Hz

Panopt-S

Panopt-LS

40

80

1 2 4 8 16 32

Ti
m

e
(m

s)

Lease Acquisition Threshold

Panopt

Panopt-L

Hz

Panopt-S

Panopt-LS

8

16

32

64

1 2 4 8 16 32

Ti
m

e
(m

s)

Lease Acquisition Threshold

Figure 3. Change in time as the lease acquisition threshold increases with Pr Hist = 0.1 (left) and Pr Hist = 0.9 (right) using 4 servers and 1024
total data items

Hz

Panopt-S

Panopt-LS

0

10

20

30

40

50

60

70

1 2 4 8 16 32

Ti
m

e
(m

s)

Number of Servers (txnSize=4, totalSize=1024)

Hz

Panopt-S Panopt-LS

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16 32

Ti
m

e
(m

s)

Number of Servers (txnSize=16, totalSize=16384)

Figure 5. Scalability of Panopticon as the number of servers in the cluster increases

transaction includes i. The results show that prediction

consistently improves transaction completion times.

Optimizations like lazy unlocking cannot replace pre-

diction since they assume repeated access to same data

items while prediction only requires a data access pattern

in time. In other cases where there is no such pattern, using

prediction may even hurt the performance of the system due

to incorrect movement of locks.

These experiments also show that the single lock broker

in Panopticon can scale well, since it does not keep track

of transaction state information and it is not contacted for

heavy-weight operations.

V. DISCUSSION

By leveraging the simplified topology of the Panopticon,

fault-tolerance to partitions can be added to the system.

While there is no global agreement on a partition in a general

distributed system setup (some nodes may detect a partition

while others do not), the Panopticon setup simplifies the

partition detection and handling significantly. Detection is

very simple and there are no dissenting opinions on it, since

it is dictated by the broker. Furthermore, unlike a general

distributed system setup which is prone to arbitrary shaped

partitioning, the partitions in the Panopticon are always

simple and uniform. There are only 2 cases for a partition: 1)

the broker is in the partition, and 2) the broker is not in the

partition. We call the partition with the broker as the main

partition. If the broker is not in the partition, this means the

260

Panopt

Panopt-P

8

16

32

64

128

256

512

1 2 4 8 16 32 64

Ti
m

e
(m

s)

Number of Objects in a Transaction

Figure 6. Effect of prediction on Panopticon performance (16 servers,
16384 total items)

server is partitioned away as an isolated single node and we

call this as a single partition.

Similarly, in order to improve congestion control in

Panopticon, the broker can also employ some simple rules.

Since the broker gets to observe every across-server trans-

action request, it can notice when contention is increasing

by just monitoring its requestTable entry queues. In future

work, we will consider how to use this information to take

corrective actions.

Finally, in order to achieve more scalability and avoid

bottlenecks when using extremely large number of servers

and locks, we plan employ a hierarchical composition of

the brokers. For this we have k level-0 lock brokers each

overseeing a cluster of servers and a top-level lock broker

overseeing these k lock brokers. In this case, the level-0

brokers take on the role of servers for the top-level broker,

and take on the role of tracking information for across cluster

(i.e., across level-0 broker boundary) transactions.

Using hierarchical composition extends scalability of

Panopticon. With such a setup, we can make Panopticon

manage extremely large lock spaces which may not fit into

the memory of a single broker. Moreover, using hierarchical

composition of brokers at different datacenters, the Panop-

ticon system can provide a partial answer to the across-

datacenter/WAN transactions problem. Providing an efficient

and complete system for across-datacenter transactions re-

mains part of our future work.

VI. RELATED WORK

A. Lock services

Google Chubby [7] is a centralized lock service that

provides an interface similar to a distributed file system with

advisory locks. Chubby depends on manual locking from

the developers and is prone to the disadvantages of locking

Figure 7. Hierarchical composition of Panopticon lock brokers

approaches. To keep the load light, Chubby provides coarse-

grained locks instead of finer-grained locks. This locking

scheme is more appropriate for loosely-coupled distributed

systems: The Google File System [15] and BigTable [8] use

Chubby as a lock service. ZooKeeper [17] is an opensource

clone of Chubby.

The lock token idea has been employed in the distributed

filesystems domain [22], [24]. GPFS [24] employs a cen-

tralized global lock manager in conjunction with local lock

managers in each file system node, where the global lock

manager can lease locks to local lock managers.

Differing from centralized lock servers, the Panopticon

lock broker does not maintain all the locks, and rather it is

a cache for locks that receive across-server access requests.

Differing from previous work on lock brokers, Panopticon

lock broker supports distributed transactions on multiple

objects.

B. Transaction processing

Single-key transactional support. Since distributed

transactions are costly and fail to satisfy the scalability

requirements of web applications, several system designs

have sacrificed the ability to support distributed transactions

in lieu of supporting single key/object transactions in a

statically partitioned setup. ElasTraS [10] provides ACID

guarantees for transactions that are limited to a single object

and single partition.

Limited multi-key transactional support. Since several

applications requires collaboration, scalable and consistent

multi-key access is critical for them. Google Megastore [4]

and Megastore defines “entity groups” to partition the dis-

tributed datastore and provides ACID semantics to multi-

key transactions that are confined within a predefined entity

group. Megastore still has a limit of “a few writes per

second per entity group” because higher write rates will

cause even worse performance due to the conflicts and retries

of the multiple leaders of the Paxos protocol employed for

performing transactions. Many applications in Google used

261

Megastore (despite its relatively low performance) because

its data model is simpler to manage than Bigtable’s, and

because of its support for synchronous replication across

datacenters. Examples of well-known Google applications

that used Megastore are Gmail, Picasa, Calendar, Android

Market, and AppEngine.

Limited wider transactional support. Relaxing the

static entity groups restriction, Gstore [11] allows dynamic

group formation. Key grouping requires a two-phase locking

protocol which is a costly protocol, and Gstore prohibits

transactions across these formed groups. To provide trans-

actions over a distributed key-value store, Scalaris [25]

employs Paxos. Similarly, CloudTPS [28] employs two-

phase commit protocol to implement transactions over a

distributed key-value store. CloudTPS makes the assumption

that applications access only a few partitions in any of their

transactions.

Sinfonia [1] provides multi-key transactional support by

limiting the allowed operations in a transaction to support

only a small subset of compare, and conditional read/write

operations on the memory nodes. These “minitransactions”

tradeoff expressivity of transactions with improved per-

formance. The “ordering transactions with prediction” pa-

per [13] proposes a similar architecture to Sinfonia, but

address transactions that can have conflicts. Instead of using

locks, they use OCC transactions, and suggests a prediction

based ordering of them in advance (making reservations

at the Object Managers), in order to reduce abort rates of

transactions.

General distributed transactions. Recently a number

of systems attempted to provide general unrestricted trans-

actions. H-Store [18] partitions the database in to disjoint

subsets that are assigned to a single-threaded execution

engine assigned to one core on a node. H-Store’s scal-

ability relies on careful data partitioning across executor

nodes, such that most transactions access only one executor

node. Deuteronomy [20] introduces a distributed database

architecture that emphasizes decoupling of transactional

component from the data component. Calvin [27] employs

a deterministic ordering guarantee to reduce the prohibitive

costs associated with distributed transactions.

Spanner [9] is Google’s multiversion distributed database

that allows distributed transactions. Spanner employs Paxos

at coordinators and two-phase commit across coordinators

and uses accurate timekeeping with tightly synchronized

atomic clocks as a means to improve the performance of

distributed transactions. The coordinators manage and coor-

dinate locks for data items by maintaining lock lists. Since

many coordinators need to be coordinated for serialization

of distributed transactions, two phase commit is employed

for coordinating the coordinators. While distributed coordi-

nator transactions using two phase commit inevitably take

their toll, the Spanner team believes “it is better to have
application programmers deal with performance problems

due to overuse of transactions as bottlenecks arise, rather
than always coding around the lack of transactions”. Ap-

plications that use Spanner, such as Google’s F1 advertising

backend [26], can specify which datacenters contain which

bits of data so that frequently read data can be located near

users to reduce write latency.

Panopticon as compared to previous work. Most

of the systems described above rely on some form of

limitation on transactions that allows for an acceptable per-

formance. Panopticon keeps things simple with a lock broker

architecture, and eschews costly protocols for distributed

coordination. As a result, Panopticon does not limit trans-

actions and allows arbitrary multi-key/object transactions.

Also different from these existing work, Panopticon divorces

locks from the data items in an effort to improve lock access

locality. Finally, different from the systems described above,

Panopticon learns the access pattern of transactions on-the-

fly and adaptively migrates locks and data items in order to

improve access/lock locality in the system.

VII. CONCLUSION

Panopticon achieves scalability by divorcing locks from

the data items and striving to improve lock access locality.

The lock broker mediates the access to data shared across

servers by migrating the associated locks like tokens, and

in the process gets to learn about the access patterns of

transactions.

We implemented Panopticon leveraging the Hazelcast

in-memory data grid platform. Our experiments demon-

strated Panopticon’s improvements over Hazelcast’s dis-

tributed transactions. The lock broker architecture performed

significantly better as the number of data items and number

of servers involved in transactions increase. This is because

it is more efficient to go to the broker and test/set all the

locks at once, instead of contacting other servers trying to

acquire locks in increasing order in a serial manner. Also

as the history locality (the probability of using the same

objects in consecutive transactions) increase, Panopticon’s

lock migration strategies improved lock-access locality and

resulted in significantly better performance.

REFERENCES

[1] M. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Kara-
manolis. Sinfonia: a new paradigm for building scalable
distributed systems. In ACM SIGOPS Operating Systems
Review, volume 41, pages 159–174. ACM, 2007.

[2] Amazon web services.”. http://aws.amazon.com/rds.

[3] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M.
Hellerstein, and I. Stoica. Coordination avoidance in database
systems. VLDB, 2015.

[4] J. Baker, C. Bond, J. Corbett, JJ Furman, A. Khorlin, J. Lar-
son, JM Léon, Y. Li, A. Lloyd, and V. Yushprakh. Megastore:
Providing scalable, highly available storage for interactive
services. CIDR, pages 223–234, 2011.

262

[5] S. Braun. A cloud-resolving simulation of hurricane bob
(1991): Storm structure and eyewall buoyancy. Mon. Wea.
Rev., 130(6):15731592, 2002.

[6] M. Burrows. The chubby lock service for loosely-coupled
distributed systems. In OSDI, pages 335–350. USENIX
Association, 2006.

[7] M. Burrows. The chubby lock service for loosely-coupled
distributed systems. In OSDI, pages 335–350. USENIX
Association, 2006.

[8] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. Gruber. Bigtable:
A distributed storage system for structured data. ACM
Transactions on Computer Systems (TOCS), 26(2):4, 2008.

[9] J. Corbett, J. Dean, et al. Spanner: Google’s globally-
distributed database. Proceedings of OSDI, 2012.

[10] S. Das, D. Agrawal, and A. El Abbadi. Elastras: An elastic
transactional data store in the cloud. USENIX HotCloud,
2009.

[11] S. Das, D. Agrawal, and A. El Abbadi. G-store: a scalable
data store for transactional multi key access in the cloud. In
Proceedings of the 1st ACM symposium on Cloud computing,
pages 163–174. ACM, 2010.

[12] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. OSDI, page 13, 2004.

[13] I. Eyal, K. Birman, I. Keidar, and R. van Renesse. Order-
ing transactions with prediction in distributed object stores.
LADIS, 2013.

[14] Facebook graph search. http://www.facebook.com/about/
graphsearch/.

[15] S. Ghemawat, H. Gobioff, and S-T. Leung. The google file
system. In ACM SIGOPS Operating Systems Review, volume
37/5, pages 29–43. ACM, 2003.

[16] Hazelcast, in-memory data grid. http://www.hazelcast.com/.

[17] P. Hunt, M. Konar, F. Junqueira, and B. Reed. Zookeeper:
Wait-free coordination for internet-scale systems. In USENIX
ATC, volume 10, 2010.

[18] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin,
S. Zdonik, E. Jones, S. Madden, M. Stonebraker, Y. Zhang,
et al. H-store: a high-performance, distributed main memory
transaction processing system. Proceedings of the VLDB
Endowment, 1(2):1496–1499, 2008.

[19] L. Lamport. The temporal logic of actions. ACM Transactions
on Programming Languages and Systems, 16(3):872–923,
May 1994.

[20] J. Levandoski, D. Lomet, M. Mokbel, and K. Zhao. Deuteron-
omy: Transaction support for cloud data. In CIDR, pages
123–133, 2011.

[21] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. Hellerstein. Distributed graphlab: a framework for machine
learning and data mining in the cloud. Proc. VLDB Endow.,
5(8):716–727, 2012.

[22] A. Mohindra and M. Devarakonda. Distributed token man-
agement in calypso file system. In Parallel and Distributed
Processing, 1994. Proceedings. Sixth IEEE Symposium on,
pages 290–297, 1994.

[23] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker,
and M. Deardeuff. Use of formal methods at amazon web
services. 2013.

[24] F. Schmuck and R. Haskin. Gpfs: A shared-disk file system
for large computing clusters. In FAST, volume 2, page 19,
2002.

[25] T. Schütt, F. Schintke, and A. Reinefeld. Scalaris: reliable
transactional p2p key/value store. In Proceedings of the 7th
ACM SIGPLAN workshop on ERLANG, pages 41–48. ACM,
2008.

[26] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey,
E. Rollins, M. Oancea, K. Littlefield, D. Menestrina, S. Ellner,
et al. F1: A distributed sql database that scales. VLDB,
6(11):1068–1079, 2013.

[27] A. Thomson, T. Diamond, S. Weng, K. Ren, P. Shao, and
D. Abadi. Calvin: fast distributed transactions for partitioned
database systems. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, pages 1–
12. ACM, 2012.

[28] W. Zhou, G. Pierre, and C-H. Chi. Cloudtps: Scalable trans-
actions for web applications in the cloud. IEEE Transactions
on Services Computing, pages 525–539, 2012.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

