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CHAPTER 9

PURSUER-EVADER TRACKING IN
SENSOR NETWORKS

9.1 ABSTRACT

In this paper we present a self-stabilizing program forisgha pursuer-evader problem in
sensor networks. The program is a hybrid between two orthalgarograms, an evader-
centric program and a pursuer-centric program, and can redtfor tracking speed or
energy efficiency. In the program, sensor nodes close tovtmee dynamically maintain a
tracking tree of deptlR that is always rooted at the evader. The pursuer, on the bémet,
searches the sensor network until it reaches the trackéeg &#md then follows the tree to
its root in order to catch the evader.

9.2 INTRODUCTION

Due to its importance in military contexts, pursuer-evadeking has received significant
attention [6, 8, 23, 25] and has been posed by the DARPA n&teabedded software
technology (NEST) program as a challenge problem. Herepnsider the problem in the
context of wireless sensor networks. Such networks coingntentially many thousands
of low-cost and low-power wireless sensor nodes have rBcbatame feasible, thanks
to advances in microelectromechanical systems technoéogy are being regarded as a
realistic basis for deploying large-scale pursuer evadeking.
Previous work on the pursuer-evader problem is not direagiglicable to tracking in

sensor networks, since these networks introduce the follpehallenges: Firstly, sensor
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4 PURSUER-EVADER TRACKING IN SENSOR NETWORKS

nodes have very limited computational resources (e.g., AKIRnd 128K flash memory);
thus, centralized algorithms are not suitable for senstwarés due to their larger compu-
tational requirements. Secondly, sensor nodes are enengyrained; thus, algorithms that
impose an excessive communication burden on nodes are cgjitable since they drain
the battery power quickly. Thirdly, sensor networks ardtfatone: message losses and
corruptions (due to fading, collusion, and hidden nodectffeand node failures (due to
crash and energy exhaustion) are the norm rather than tlep#xe. Thus, sensor nodes
can lose synchrony and their programs can reach arbitr@ssd20]. Finally, on-site main-
tenance is not feasible; thus, sensor networks should béealing. Indeed, one of the
emphases of the NEST program is to design low-cost faudt-dolt, and more specifically
self-stabilizing, services for the sensor network domain.

In this paper we present a tunable and self-stabilizing ramgfor solving a pursuer-
evader problem in sensor networks. The goal of the pursuerdatch the evader (despite
the occurrence of faults) by means of information gatherethk sensor network. The
pursuer can move faster than the evader. However, the egamlaniscient —it can see the
state of the entire network— whereas the pursuer can onlghsestate of one sensor node
(say the nearest one). This model captures a simple, abstra@on of problems that arise
in tracking via sensor networks.

Tunability. We achieve tunability of our program by constructing it taleybrid between
two orthogonal programs: an evader-centric program andsupu-centric program.

In the evader-centric program, nodes communicate peadigiwith neighbors and dy-
namically maintain a tracking tree structure that is alwayded at the evader. The pursuer
eventually catches the evader by following this tree stngcto the root: the pursuer asks
the closest sensor node who its parent is, then proceedattndte, and thus, reaches the
root node (and hence the evader) eventually.

In the pursuer-centric program, nodes communicate witghieirs only at the request
of the pursuer: When the pursuer reaches a node, the nods itssecorded time of a
detection of an evader to zero and directs the pursuer t@alpeiing node with the highest
recorded time.

The evader-centric program converges and tracks the efzsler, whereas the pursuer-
centric program is more energy-efficient. In the hybrid pemg we combine the evader-
centric and pursuer-centric programs:

1. We modify the evader-centric program to limit the trackiree to a bounded depth
R to save energy.

2. We modify the pursuer-centric program to exploit theknag tree structure.

The hybrid program is tuned for tracking speed or energyieffy by selectingk
appropriately. In particular, for the extended hybrid peog in Section 9.7, the tracking
timeis3 « (D — R) + R x /(1 — «) steps, and at most communications take place at
each program step, whefedenotes the diameter of the netwarikis the ratio of the speed
of the evader to that of the pursuer, amds the number of sensor nodes included in the
tracking tree.

Self-stabilization. In the presence of faults, our program recovers from amyitstates
to states from where it correctly tracks the evader; thisafdiault-tolerance is commonly
referred to as stabilizing fault-tolerance. In particugtarting from any arbitrary state, the
trackingtime iR+ 3« (D — R) + R* /(1 — «) steps for our extended hybrid program.
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Organization of the paper. After presenting the system and fault model in the next
section, we present an evader-centric program in Sectibaril a pursuer-centric program
in Section 9.5. In Section 9.6, we present the tunable, Hyprdgram combining the
previous two programs. We present an efficient version ohtheid program in Section
9.7. We present implementation and simulation results ¢ti@e9.8. Finally, we discuss
related work and make concluding remarks in Section 9.9.

9.3 THE PROBLEM

System model. A sensor network consists of a (potentially large) numberssnsor
nodes. Each node is capable of receiving/transmitting messagegwits field of com-
munication. All nodes within this communication field are iteighbors; we denote this
set for nodej asnbr.j. We assume thebr relation is symmetric and induces a connected
graph. (Protocols for maintaining biconnectivity in semsetworks are known [12, 26].)

Problem statement. Given are two distinguished processesgbtesuer and theevader,
that each reside at some node in the sensor network. Eachcaodenmediately detect
whether the pursuer and/or the evader are resident at tat no

Both the pursuer and the evader are mobile: each can atdymuoaye from one node to
another, but the speed of evader movement is less than thd epthe pursuer movement.

The strategy of evader movement is unknown to the networke Sirategy could in
particular be intelligent, with the evader omniscientlgpecting the entire network to
decide whether and where to move. By way of contrast, theupuistrategy is based only
on the state of the node at which it resides.

Required is to design a program for the nodes and the pursubasthe pursuer can
“catch” the evader, i.e., guarantee in every computatiagh@hetwork that eventually both
the pursuer and the evader reside at the same node.

Programming model. A program consists of a set of variables, node actions, pursuer
actions, and evader actions.

Each variable and each action resides at some node. Varigitdenodg can be updated
only by j's node actions. Node actions can only read the variablelsedf hode and the
neighboring nodes. Pursuer actions can only read the Vasialb their node. The evader
actions can read the variables of the entire program, hawthey cannot update any of
these variables.

Each action has the form:

(guarg — (assignment statement

A guard is a boolean expression over variables. An assighstai@ment updates one
or more variables.

A state is defined by avalue for every variable in the program, chésenthe predefined
domain of that variable. An action whose guard is true at sstaie is said to benabled
at that state.

We assume maximal parallelismin the execution of nodeastidt each state, each node
executes all actions that are enabled in that state. (Bweanitmultiple enabled actions in
a node is treated as executing them in some sequentialoMaximal parallelism is not
assumed for the execution of the pursuer and evader actatzll, however, that the speed
of execution of the former exceeds that of the latter. Foe @&gxposition, we assume that
evader and pursuer actions do not occur strictly in paraifigsl node actions.
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A computation of the program is a maximal sequence of program steps: insaph
actions that are enabled at the current state is executeddig to the above operational
semantics, thereby yielding the next state in the comprtaihe maximality of a compu-
tation implies that no computation is a proper prefix of arotomputation.

We assume that each node has a clock, that is synchronizedheitclocks of other
nodes. This assumption is reasonably implemented at leabti€a nodes [18]. Later, in
Section 9.8, we show how our programs can be modified to wattiowrt the synchronized
clocks assumption.

Notation. In this paper, we usg, k, and! to denote nodes. We user.; to denote the
variablevar residing atj. We use [ to separate the actions in a program and A to
denote that is assigned to an element of sét

Eachparameter in a program ranges over theér set of a node. The function of a
parameter is to define a set of actions as one parameteritied.a€or example, lek be
a parameter whose value is 0, 1, or 2; then an actigrof node; parameterized over
abbreviates the following set of actions:

act\(k=0) [ act\(k=1) [ act\(k=2)

whereact\ (k = ) is act with every occurrence df substituted with.

We describe certain conjuncts in a guard in Englifavader resides gt and{Evader
detected aj}. The former expression evaluates to true at all states wtherevader is at
whereas the latter evaluates to true only at the state inatedgifollowing any step where
the evader moves to nogieand evaluates to false in the subsequent states even yfallere
is still at j.

We useN to denote the number of nodes in the sensor netwrthe diameter of the
network, and\/ the distance between the pursuer and evader. We use distargfer to
hop-distance in the network; unit distance is the singlp-¢mmmunication radius. Finally,
we usex to denote the ratio of the speed of the evader to that of theupuar

Evader action. Ineach ofthe programsthat we presentin this paper, we adeltbwing
evader action.

{ Evaderresides gt} — Evadermovestd, [:€ {k|kenbrjU{j}}

When this action is executed, the evader moves to an arpitigighbor of;j or skips
a move. This notion of nondeterministic moves suffices totuwrapthe strategy of an
omniscient evader.

Recall from the discussion in the problem statement thagénathe evader moves to a
node, the node immediately detects this fact (i.e., thectieteactions have priority over
normal node actions and are fired instantaneously).

Fault model. Transient faults may corrupt the program state. Transaudtd may also
fail-stop or restart nodes (in a manner that is detectalitestio neighbors); we assume that
the connectivity of the graph is maintained despite thesksa

A programP is stabilizing fault-tolerant iff starting from an arbitrary state, provided
that no other faults occur during recovefyeventually recovers to a state from where its
specification is satisfied.
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9.4 AN EVADER-CENTRIC PROGRAM

In this section we present an evader-centric solution tptinsuer-evader problem in sensor
networks. In our program every sensor noglemaintains a value,s.j, that denotes the
latest timestamp thgtknows for the detection of the evader. Initially, for @ll¢s.j = 0.
If 7 detects the evader, it seitsj to its clock’s value. Every nodg periodically updates
its ts.j value based on th& values of its neighborsj assigns the maximum timestamp
value it is aware of a&s.j. We usep.j (read parent of) to record the node thatreceived
the maximum timestamp value. Initially, for gll p.;j is set to null, i.e.p.j = L. As
the information regarding the evader propagates throughetwork via gossipping of the
neighbors, the parent variables at these nodes are setlamglgr Note that the parent
relation embeds a tree rooted at the evader on the sensaosnketWe refer to this tree as
thetracking tree

In addition to above variables, we maintain a variableat each nodeg. Initially, for
all j, d.j = co. When the evader is detected at a ngdé.j is set to 0. Otherwisel.; is
updated by setting it to be the parent'value plus 1, i.e.d.j := d.(p.j) + 1. This way,
d.j at each node corresponds to the distancefodm the evader. In the case whekej is
equal tots values ofj’s neighbors; uses thel values of its neighbors to elect its parent to
be the one offering the shortest distance to the evader.

Thus, the actions fof (parameterized with respect to neighldpin the evader-centric
program is as follows.

{ Evaderresides gt} — p.j :=j; ts.j :=clock.j; d.j =0
I
ts.k>tsj V (tsk=tsj N dk+1<d.j)
— pj:=k; ts.j = ts.(p.j);
dj:=d.(pj)+1

Once a tracking tree is formed, the pursuer follows this toeach the evader simply
by querying its closest node for its parent and proceedintgegarent node. Thus, the
pursuer action is as follows.

{Pursuer resides @ —  Pursuer moves tp.;

9.4.1 Proof of correctness

As Figure 9.1. illustrates, if the evader is moving it may bet possible to maintain a
minimum distance spanning tree.

e.<—o<—o -~ O=—0

1] el ]
e

Figure9.1. Minimum spanning tree is not maintained when evader is ngpvin
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Note that this is a worst-case scenario and occurs when taeegpeed is as fast as
the communication speed of the nodes. (Tracking is not aahle if the evader is faster
than the communication speed of the nodes.) In practices noshmunication (25msec) is
faster than the evader movement and construction of a mmidiistance spanning tree is
possible.

However, even in this worst case scenario, we can still pttogéollowing properties in
the absence of faults.

Theorem 1. The tracking tree is a spanning tree rooted at the node wtherevader
resides and is fully constructed in at ma@gsteps.

Proof. From the synchronized clocks assumption and the privileggedction action,
{Evader resides at}, it follows that the node where the evader resides has the highest
timestamp value in the network. Observe from the second actien that the.k variable
at every nodé& embed a logical tree structure over the sensor network.eSyannot occur
since(Vk : ts.k > 0 : d.(p.k) < d.k) 1. Since(Vk : ts.k > 0 : ts.(p.k) > ts.k), the
network is connected, and the nofleshere the evader resides has the highest timestamp
value in the network, it follows that there exists only oretm the network and it is rooted
atj. Within at mostD steps all the nodes in the network receives a message fromea no
that is already included in the tracking tree (due to the makiparallelism model and the
second node action), and a tracking tree covering the ergirgork is constructed. 0O

Lemma 3. The distance between the pursuer and evader does notseareae the
constructed tree includes the node where the pursuer seside

Proof. Once the constructed tree includes the nbgdahere the pursuer resides, there
exists a pathk, ko, ..., k, suchthatVi : 1 <i <z :p.k; = k;_1) and the evader resides
atk;. At any program step, if the evader moves to a neighboringnthe: pursuer, being
faster than the evader, also moves to the next node in the path

Note that at each program step, any négdmm this path may choose to change its parent,
rendering a different path between the pursuer and the evlldevever, observe from the
second node action that; changes its parent to be the neighbor that has a shortergath t
the evader (higher timestamp implies shorter path sincadlde where evader resides has
the highest timestamp and nodes execute under maximalgi@ralmodel). Thus, the net
effect is that the path length can only decrease but notasere O

Theorem 4. The pursuer catches the evader in at nddst 2M « [a/(1 — «)] steps.

Proof. Since the initial distance between the evader and the puisue, after M
program steps the tracking tree includes the node at whilptinsuer resides. Since the
evader’s speed is below unit time step of the protocol executvithin this period the
evader can move to at mast hops away, potentially increasing the distance between the
evader and pursuer @\V/. From Lemma 3, it follows that this distance cannot increase
in the subsequent program steps. Since the pursuer is faatethe evader, it catches the
evader in at mos2M * [a/(1 — «)] steps (follows from solving: = X/(X + 2M) for
X). |

9.4.2 Proof of stabilization

In the presence of faults variables of a ngamn be arbitrarily corrupted. However, for the
sake of simplicity we assume that even in the presence défend following two conditions
hold:

1The predicatdVi : R.i : X.i) may be read as “for afl that satisfyR.i, X.i is also true”.



A PURSUER-CENTRIC PROGRAM 9

1. always ts.j < clock.j

2. always {p.j € {nbrj U {j}U{L}}

The first condition states that the timestamp for the dedacif evader at nodgis always
less than the local clock gtf(i.e.,ts.j cannot be in the future). The second condition states
thatthe domain gb.j is restricted to the sétbr.jU{j } U{ L} } wherep.j; = L denotesthat
j does not have any parent. These are both locally checkathkrdiarceable conditions; in
order to keep the program simple we will not include the cewomding correction actions
in our presentation.

Lemmab. The tracking tree stabilizes in at mdststeps.

Proof. Since we havalways ts.j < clock.j, even at an arbitrary state (which might be
reached due to transient faults) the node where the evagidesshas the highest timestamp
value in the network. From Theorem 1 it follows that a fregttking tree is constructed
within at mostD steps and this tracking tree is a spanning tree rooted attiewhere the
evader currently resides. |

Theorem 6 . Starting from an arbitrarily corrupted state, the purszches the evader
inatmostD + 2D x o/ (1 — «).
Proof. The proof follows from the proofs of Lemma 5 and Theorem 4 . |

9.4.3 Performance metrics

The evader-centric program is not energy efficient sinceyavede communicates with its
neighbor at each step of the program. Thatis)N communications occur each step, where
w denotes the average degree of a node. The communicatiobs ta@ated as broadcasts,
and hence, the number of total communications per stepastefély V.

On the other hand, the tracking time and the convergencedintiee evader-centric
programisfast: starting from an arbitrarily corruptedstttakes atmosb+2Dxa/(1—a)
steps for the pursuer to catch the evader.

9.5 A PURSUER-CENTRIC PROGRAM

In this section we present a pursuer-centric solution tetlrsuer-evader problem in sensor
networks. Here, similar to the evader-centric programryegensor nodej, maintains a
value,ts.j, that denotes the latest timestamp th&nhows for the detection of the evader.
Initially, for all j, ts.; = 0. If j detects the evader, it sets; to its clock’s value.

In this program, nodes communicate with neighbors only atrdguest of the pursuer:
When the pursuer reaches a noiej resetsts.j to zero and directs the pursuer to a
neighboring node with the highest recorded time (werusé.j to denote this neighbor).
Note that if allts values of the neighbors are the same (e.g., zero), the pusssent to an
arbitrary neighbor. Also, if there is no pursuerjatiext.j is set toL (i.e.,undefinejl

Thus, the actions for nodgin the pursuer-centric program is as follows:

{ Evader detected gt} — ts.j := clock.j

I
{ Pursuer detected gt} — next.j:€ {k|k e nbrj A

ts.k =max({tsl|l enbrj}};
ts.j =0
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The pursuer’s action is as follows.

{Pursuer resides g — Pursuer moves taext.j

9.5.1 Proof of correctness

In the absence of faults, our pursuer-centric programfeeithe following properties.

Lemma 7. If the pursuer reaches a noglevherets.j > 0, the pursuer catches the
evader in at mosV * /(1 — «) steps.

Proof. If the pursuer reaches a noglevherets.j > 0, then there exists a path between
the pursuer and the evader that is at most of ledgthThis distance does not increase in
the following program steps (due to maximal parallel execusemantics and the program
actions). O

In [10], it is proven that during a random walk on a graph thpested time to find
N distinct vertices iSD(N?3). However, a recent result [19] shows that by using a local
topology information (i.e., degree information of neighigertices) it is possible to achieve
the cover timeD(N2logN) for random walk on any graph. Thus, we have:

Lemma8. The pursuer reaches a nogdeherets.;j > 0 within O(N2logN) stepsO

Theorem 9. The pursuer catches the evader withiiV2logN) steps. O

9.5.2 Proof of stabilization

Since each nodgresetss.j to zero upon a detection of the pursuer, arbitrary values
eventually disappear, and hence, the pursuer-centricgmo self-stabilizing.

Theorem 10. Starting from an arbitrary state, the pursuer catchesvhdez within
O(N?logN) steps. 0

9.5.3 Performance metrics

The pursuer-centric program is energy efficient. At each sféhe program only the node
where the pursuer resides communicates with its neighbbrat is,w communications
occur at each step.

On the other hand, the tracking and the convergence timegfilsuer-centric program
is slow: O(N?logN) steps.

9.6 A HYBRID PURSUER-EVADER PROGRAM

In the hybrid program we combine the evader-centric andysursentric approaches:

1. We modify the evader-centric program to limit the tragkiree to a bounded depth
R to save energy.

2. We modify the pursuer-centric program to exploit theknag tree structure.

We limit the depth of the tracking tree # by means of the distancé, variable.
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{ Evaderresides gt} — p.j :=j; ts.j :=clock.j; d.j =0
[
dk <R A (tsk>tsj V (tsk=tsj N dk+1<d.j))
— pJji=k; ts.j := ts.(p.j);
dj:=d.(pj)+1

By limiting the tree to a deptlk we lose the advantages of soft-state stabilization: there
is no more a flow of fresh information to correct the state &f ttodes that are outside
the tracking tree. To achieve stabilization, we add exjpéitabilization actions. Next we
describe these two actions.

Starting from an arbitrarily corrupted state where the grambedded by the parent
relation on the network has cycles, each cycle is detectddeamoved by using the bound
on the length of the path from each process to its root procetf®e tree. To this end,
we exploit the way that we maintain thievariable: j setsd.j to bed.(p.j) + 1 whenever
p.j € nbr.j andd.(p.j) + 1 < R. The net effect of executing this action is that if a cycle
exists then thd.j value of each procegsn the cycle gets “bumped up” repeatedly. Within
at mostR steps, somé.(p.j) reachesk, and since the length of each path in the adjacency
graph is bounded bi, the cycle is detected. To remove a cycle that it has deteftats
p.j to L (undefined) and..;j to oo, from whereon the cycle is completely cleaned within
the nextR steps. Note that this action also takes care of pruning #uokitng tree to height
R (e.g., when the evader moves and as a result a padth d.j = R becomedk + 1 away
from the evader).

Nodej also sety.j to L (undefined) andi.j to co if p.j is not a valid parent (e.g.
dj#d(pj)+1lorts.j>ts.(pj)or(pj=3j A dj#0)).

We add another action to correct the fake tree roots. If a riasispuriously corrupted
top.j=j A d.j=0,thisis detected by explicitly asking for a proof of the ezadt;.

Thus the stabilization actions for the bounded length fragicee is as follows.

pi#L AN (pj=7 N dj#0) VvV ts.j>ts(p.j)
V dj#d(pj)+1 Vv d.(pj)>R)
— p.j:i=_1;dj:=00
I
pj=j AN dj=0 A —{Evaderresides gt}
— p.g:=1;dj:=0

We modify the node action in the pursuer-centric prograny slightly so as to exploit
the tracking tree structure.

{ Pursuer detected gt} —
if (p.j # L) thennext.j :=p.j

else
next.j :€ {k |k €nbrj A tsk=max({ts.l|l € nbr.j})};
ts.j:=0

Finally, the pursuer action is the same as that in Section 9.5
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9.6.1 Proof of correctness

In the absence of faults, the following lemmas and theordlovidrom their counterparts
in Sections 9.4 and 9.5.

Lemma1l. The tracking tree is fully constructed in at mdssteps. O
Belown denotes the number of nodes included in the tracking tree.

Lemma 12. The pursuer reaches the tracking tree withif(N — n)%log(N — n))
steps. O

Theorem 13 . The pursuer catches the evader withif( N — n)2log(N —n)) stepsO

Since the evader is mobile, the number of nodes in the trgdkée of depthR varies
over time depending on the location of the evader and thetgerisiodes within theR-hop
neighborhood. However, the numbemwe use in the)() notation depends only on the
number of nodes included in the first tracking tree constdictMore specifically, in the
O() notation we uséV — n to denote the number of nodes that the pursuer needs to perfor
a random walk on to reach a node that was once involved in élo&itrg tree, i.e.ts > 0.
Even though, the maximum number of nodes that the pursuesneeisit monotonously
decreases as the evader moves and new tracking trees ateictats in our analysis we
still use N — n, that resulted from the construction of the first trackiregirto capture the
worst case scenario.

9.6.2 Proof of stabilization

Lemma 14 . The tracking tree structure stabilizes in at m2Rtsteps.

Proof. Stabilization of the nodes within the tracking tree folloinam Lemma 5 . The
discussion above about the stabilization actions of theilylrogram states that a cycle
outside the tracking tree is resolved witlli® steps. These two occur in parallel, thus
system stabilization is achieved with® steps. O

Theorem 15. Starting from an arbitrary state, the pursuer catches\thdez within
O((N —n)%log(N — n)) steps. m|

9.6.3 Performance metrics

The hybrid program for the nodes can be tuned to be energiestfity decreasing since
it decreases. At each step of the program at mest w communications take place.
The hybrid program can also be tuned to track and convertgr fagincreasingr since
it increases:, and the timeO((IN — n)2log(N — n)) steps, a random walk takes to find
the tracking tree. From that point on it takes oy /(1 — «) steps for the pursuer to
catch the evader.
Note that there is a tradeoff between the energy-efficiemcythe tracking time. In
Section 9.8, we provide an example where we choose a suitahle for R to optimize
both energy-efficiency and tracking time concurrently.

9.7 AN EFFICIENT VERSION OF THE HYBRID PROGRAM

In this section we present a communication- and, hencegeredficient version of the
hybrid program. We achieve this by replacing the random wétke pursuer with a more
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energy-efficient approach, namely that of constructingaactetree rooted at the pursuer.
To this end, we first present the extended and energy-effiggesion of the pursuer-centric
program, and then show how this extended pursuer-centigram can be incorporated
into the hybrid program.

Extended pursuer-centric program. Inthe extended version of the pursuer-centric pro-
gram, instead of the random walk prescribed in Sectionl®eqtrsuer usementdo search
the network for a trace of the evader. The pursuer agentcalede implemented by con-
structing a (depth-first or breadth-first) tree rooted atrtbde where the pursuer resides.
If a nodej with ts.; > 0 is included in thispursuer tree the pursuer is notified of this
result along with a path tg. The pursuer then follows this path to regch-rom this point
on, due to Lemma 7 , it will take at moat « «/(1 — «) steps for the pursuer to catch the
evader.

This program can be seen as an extension of the original @ucguntric program in that
instead of a 1-hop tree construction (i.e., the nédehere the pursuer resides contacts
nbr.k) embedded in the original pursuer-centric program, we nmpley a D-hop tree
construction. To this end we change the original pursuegnaim as follows. The node
where the pursuer resides setset.j to L if none of its neighbors has a timestamp value
greater than 0, instead of settingxt.;j to point to a random neighbor gf The pursuer
upon reading a_ value for thenext variable, starts a tree construction to search for a trace
of the evader. Note that by using a de@@hthe pursuer tree is guaranteed to encounter a
nodej with ts.j > 0.

Several extant self-stabilizing tree construction praggfl, 11, 13] suffice for construct-
ing the pursuer tree i steps and to complete the information feedback within ardth
steps. Also since the root of the pursuer tree is static @oet not change dynamically
unlike the root of the tracking tree), it is possible to aghiself-stabilization of pursuer
tree withinD steps in an energy efficient manner. That is, in contrasta@tader-centric
tracking tree program where all nodes communicate at eamgrqm step, in the pursuer
tree program only the nodes propagating a (tree construatimformation feedback) wave
need to communicate with their immediate neighbors.

Extended hybrid program. It is straightforward to incorporate the extended versibn o
the pursuer-centric program into the hybrid program. THg orodification required is to
set the depth of pursuer tree to be—- R hops instead oD hops. Note thaD — R hopsis
enough for ensuring that the pursuer will encounter a trétiesoevader (i.e., pursuer tree
will reach a node included in the tracking tree). After a ntide is/has been in the tracking
tree is reached, the pursuer program in Section 9.6 ap@iss a

9.7.1 Performance metrics

The extension improves the tracking and the convergenaedinthe pursuer-centric pro-
gram fromO(N2logN) steps to3D + N * a/(1 — «) steps 2D steps for the pursuer
tree construction and information feedback, dndteps for the pursuer to follow the path
returned by the pursuer tree program). The extended pucsmric program remains en-
ergy efficient; the only overhead incurred is the one-tim@aation of the pursuer tree
construction.

In the extended hybrid program, it takes at mdst(D — R) steps for the pursuer to
reach the tracking tree. (Compare thisQ0(N — n)?log(N — n)) steps in the original
hybrid program.) From that point on it takés* «/(1 — «) steps for the pursuer to catch
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the evader. At each step of the extended hybrid program att snoe@mmunications take
place. Due to the pursuer tree computation, a one time cd${ ef n) is incurred.

1-pursuer O-evader scenario. The evader-centric program is energy efficient in a sce-
nario where there is no evader but there is a pursuer in thherayso energy is spent since
no communication is needed. On the other hand, the pursmric program performs
poorly in this case: at each step the pursuer queries thénlb@iong nodes incurring a
communication cost ofo. The hybrid program, since it borrows the pursuer actiomfro
the pursuer-centric program, also performs badly in thémado.

The extended pursuer-centric program fixes this problem agifying the pursuer tree
construction to require that an answer is returned onlyefdliader tree is encountered.
Thatis, if there is no evader in the network, the pursuerpregram continues to wait for
the information feedback wave to be triggered, and hendegs not waste energy.

O-pursuer 1-evader scenario. By enforcing that pursuers authenticate themselves when
they join the network and notify the network when they leave can ensure that a tracking
tree is maintained only when there is a pursuer in the systehaehieve energy-efficiency.

9.8 IMPLEMENTATION AND SIMULATION RESULTS

In this section, we present implementation and simulatsuits, and show an example of
tuning our tracking program to optimize both energy-efficipand tracking time concur-
rently.

9.8.1 Implementation

We have implemented an asynchronous version of the evariecprogram on the Berke-
ley’s Mica node platform [18] for a demonstration at the J@0®2 DARPA-Network
Embedded Systems Technology (NEST) retreat held in Bardigkaine.

Asynchronous program. Even though we assumed an underlying clock synchronization
service for our presentation, it is possible to modify thadsr-centric program slightly
(only 1 line is changed) to obtain an asynchronous versidre modification is to use, at
every nodej, a counter variableal.j that denotes the number of detections of the evader
that j is aware of, instead aofs.j that denotes the latest timestamp thd&nows for the
detection of the evader. Whendetects the evader, instead of settirgj to clock.j, j
increasesal.j by one.

The extended pursuer program is also made asynchronousaightforward manner,
since the idea of pursuer agents (a tree rooted at the plrsueadily implemented in the
asynchronous model [1,11,13].

In our demonstration, a Lego Mindstorfié robot serving as a pursuer used our program
to catch another Lego Mindstorms robot serving as an evaderg by 4 grid of nodes
subject to a variety of faults. Figure 9.2. shows a snapsbat bur demo.

The sensor nodes are embedded in a foam panel under the bdhede are small
rectangular holes in the board corresponding to sensatidmsa A node detects an evader
via its optic sensor: When the evader reaches a sensordocis body closes the hole and
triggers a “darkness” reading. The pursuer avoids thisotietethanks to the glow sticks
attached under its body.
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Figure9.2. Snapshot from our demo

The colored lines on the board encode the four directiogs, ‘®.ong Yellow” followed
by a “Short Black” indicates North. The pursuer calculatdéscl direction it is heading
after a complete line traversal.

We have soldered infrared (IR) LEDs on the nodes. Nodes BRhEDs at four different
frequencies to communicate the four directions. On rearchinode, the pursuer detects
the frequency of emitted IR signals and decides how to turn.

The evader is remotely controlled by a human playing theafd® omniscient adversary.
We showed, in our demo, that despite node failures or tratsgeruption of the nodes, the
tracking tree stabilizes to a good state, and the pursuelnesthe evader by following the
tree.

The pursuer robot could get disoriented on the grid or lcesektof the gridlines, so we
also built in stabilization in the robot program to find thédgjnes from an arbitrary state.
The pursuer converges to the grid from any point within thardpwithout falling off the
edge. Upon converging, the pursuer regains its sense atidinevithin one complete line
traversal, and starts to track the tree by following di@tsignals from the nodes.

Due to incorrect interaction between the motes and the pursiot, the robot could
be driven into bad states. The stabilizing robot programdesssgned to tolerate such bad
interactions. For example, if the pursuer reaches a failetepit cannot get a direction
signal. The pursuer then chooses a random direction toAiolfcthis direction leads it off
the grid, it backs up and retries till it finds a grid directiddn reaching the next non-failed
node, the pursuer gets a proper direction to follow and essttie evader eventually.

We have recently ported our TinyOS sensor node code to négtlig source code for
the sensors, the pursuer and evader robots (written in Ng@)yideo shots for the demo
are available atww.cis.ohio-state.edu/~demirbas/peDemo/.

9.8.2 Simulation results

In the preceding sections we have presented analyticatwwas® bounds on the perfor-
mance of our tracking service. In this section we considearalom movement model
for the evader and compare and contrast the average casenpanices of our tracking
programs through simulation.

For our simulations, we use Prowler [24], a MATLAB based,ravdriven simulator for
wireless sensor network. Prowler simulates the radio inésson/propagation/reception
delays of Mica2 motes [18], including collisions in ad-hadio networks, and the operation
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Figure9.3. Simulation for evader-centric program

of the MAC-layer. The average transmission time for a patskatound 25 milliseconds.
Our implementations are per node and are message-passtnguded programs. Our
code for the simulations is also available fr@ . cis.ohio-state.edu/~demirbas/
peDemo.

In our simulations, the network consists of 100 nodes amdng a grid topology of
10-by-10. The distance between two neighboring nodes ogrttiés a unit distance. The
node communication radius is approximately 2 units. Thelevaakes a move every 2
sec, and the pursuer every 1 sec. The average move distafgeiohe pursuer and evader
iS 2 units.

Table 9.1. shows the number of total messages and the cgtiimes for the evader-
centric program, the pursuer-centric program, hybrid progwith R = 1, and hybrid
program withR = 2. These averages are calculated using 30 runs of these pregrith
random starting locations for the pursuer and the evader.

| | Evader-centrid Pursuer-centrid Hybrid R=1 | Hybrid R=2 |

Total # of mesgs| 256 21 286 208
Catch time (sec)| 3.3 15.7 10.7 3.9

Table9.1. Number of messages and catching times

Figure 9.3. shows a snapshot from the simulation of the eveslgric program. The
direction of the arrows denote the parent pointers at thesadthe two numbers nextto a
node correspond taul andd (in hops) variables at that node. The tracking tree is roated
the evader; the evader happens to reside at the middle ofithenghat run. The tracking
tree spans the entire network and may have up to 4 hops. Istly¢o maintain this tree:
on average a total of 256 messages are sent before the evadetured.

Since the transmission time of a message (25msec) is mudlesthan the speed of
the evader, the tracking tree is effectively a minimum sjragntree. (The irregularities
and long links are due to the nondeterministic nature of #ukormodel, fading effects,
and collusions.) Hence, the pursuer catches the evadenwiliout 3-4 moves: average
catching time is 3.3 sec.

Figure 9.4. shows a snapshot from the pursuer-centric anogin this run, the evader
started in the middle of the network and moved to the updécéener within 16 moves.
The pursuer started at the lower-left corner, randomly eaed around for a while, found
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Figure9.4. Simulation for pursuer-centric program
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Figure9.5. Simulation for hybrid program for R=1

a node that was visited by the evader, and followed thesksitaccatch the evader at the
upper-left corner (a dot in the rectangle denotes that putsas visited the corresponding
node).

Since the pursuer-centric program does not maintain aitrgttee, the total number of
messages sent is low (21). On the other hand, it takes moeeftinthe pursuer to find a
track of the evader, hence catching time is high (15.7 sec).

Figure 9.5. shows a snapshot from the hybrid program Rith 1 (hybrid1), and Figure
9.6. shows the hybrid program with = 2 (hybrid2). Our simulations show that hybrid2
performs better than hybrid1: Both the total number of mgssaent and the catching time
of hybrid2 is significantly smaller than those of hybrid1.

Hybrid1 cannot provide a good coverage over the networkitgthne-hop tracking tree.
Hence the pursuer wanders around for 5-10 moves before &megunter a node that had
some info about the evader (a node that is/has been part tfitléng tree). Due to this
wandering around time, the catching time increases andjgiemasted for maintaining
a tracking-tree for an elongated time. (Note that the maemee of a 1-hop tree is not
achievable only by a broadcast of the root node. The leafsiald® broadcasts messages;
these broadcasts are required for informing the nodes thdbde pruned, i.e., the nodes
that were included in the previous tracking tree, but thatartside the new tracking tree
as a result of evader movement and accompanying root nodgeha
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Figure9.6. Simulation for hybrid program for R=2

Hybrid2, on the other hand, provides a reasonable coveragdite network, hence the
pursuer discovers the track of the evader earlier than thhylarid1. The tracking tree
is maintained taR = 2, and thus, after each evader move hybrid2 sends more massage
than hybrid1l. But since the catching time is significantlgrséned in hybrid2, the 2-hop
tracking tree is maintained only for this shorttime. As alieshe total number of messages
sent by hybrid2 is less than that of hybrid1.

Hybrid2 optimizes both energy-efficiency and tracking tiowncurrently. The total
number of messages sent by hybrid2 is less than that of tlieeeeantric program (208
versus 256), and the catching time of hybrid2 is comparabtbat of the evader-centric
program (3.9 sec versus 3.3 sec). (Hybrid program Wit 3 gives similar results to the
evader-centric program, and is omitted from our discusyion

9.9 DISCUSSION AND RELATED WORK

In this paper we have investigated a pursuer-evader garserisor networks. More specif-
ically, we have presented a hybrid, tunable, and self4&aiy program to solve this prob-
lem. We proved that the pursuer catches the evader even prékence of faults.

For the sake of simplicity, we have adopted a shared-memogeirin our presenta-
tion; our results are still valid for message passing memnmoglel. We have provided
message-passing implementations of our programs in $e2i80 Note that the semantics
of the message-passing program is event-based executipnujgon receiving a message
or detecting an evader/pursuer), rather than maximal lgéisah.

Energy efficiency. We have demonstrated that our program is tunable for trgcdpeed
or energy efficiency. Our program is also tunable for stahilon speed or energy efficiency.
The periodicity of soft-state updates for stabilizatiomwsld be kept low if the faults are
relatively rare in the network. For example, in the abserfdaudts, the first action (i.e.,
{Evader resides gt} action) need not be executed unless the evader moves tcesediff
node. Similarly, the stabilization actions (actions 3 anaf 4he hybrid program) can be
executed with low frequency to conserve energy.

Another way to improve the energy-efficiency is to maintdia tracking tree over a
small number of nodes. For example, hierarchical strusguran be employed to maintain
tracking information with accuracy proportional to thetdisce from the evader. Also
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maintaining the tracking tree in a directional manner anly aip to the location of the
pursuer will help conserve energy.

Related work. Several self-stabilizing programs exist for tree congtono[1,11,13]to
name a few). However, our evader-centric program is uniquke sense that a spanning
tree is maintained even though the root changes dynamically

A self-stabilizing distributed directory protocol based path reversal on a network-
wide, fixed spanning tree is presented in [17]. The spanm@®is initialized to guarantee
a reachability condition: following the links from any noldads to the evader. When the
evader moves from a nodeto another nodé, all the links along the path from to k&
in the spanning tree are reversed. This way, the tree alwagsagtees the reachability
condition. This protocol suffers from a nonlocal updatelgbeon because it is possible to
find at least two adjacent nodgsk in the network such that the distance betwgemd
k in the overlayed spanning tree structure is twice the heigttie tree (i.e., equal to the
diameter of the network). An evader that is dithering betwisese two nodes may cause
the protocol to perform nonlocal updates for each small mawe would resultin a scenario
where the pursuer is never able to catch the evader. In @ntnar protocol maintains a
dynamic tree and does not suffer from the nonlocal updatel@no.

In our program, we choose to update the location of the evadeediately. In [9], three
strategies for when to update the location the evader (Hased, number of movements-
based, and distance-based) are evaluated with respeeirtetergy efficiency.

Relating to the idea of achieving energy efficiency by usirggreall number of nodes,
Awerbuch and Peleg [6] present a local scheme that maintieinking information with
accuracy proportional to the distance from the evader. 8bhieve this goal by maintaining
a hierarchy oflogD regional directories (using the graph-theoretic concépegional
matching where the purpose of théh level regional directory is to enable a pursuer to
track the evader residing with2f distance from it. They show that the communication
overhead of their program is within a polylogarithmic facbd the lower bound. Loosely
speaking, their regional matching idea is an efficient radilbn of our pursuer-centric
program and their forwarding pointer structure is analagowur tracking tree structure.

By way of contrast, their focus is on optimizing the comptgxduring the initialized
case, whereas we focus on optimizing complexity duringiktakion as well. That is, we
are interested in (a) tracking that occurs while initidii@ais occuring; in other words, soon
after the evader joins the system, and (b) tracking thatredrzam inconsistent states; in
other words, if the evader moves in an undetectable/unaragslmanner for some period
of time yielding inconsistent tracks. Their complexity oitialization is O(E log*N)
whereF is the number of edges in the graph aNds the number of nodes. Thus, brute
force stabilization of their structure completesME log* N) time as compared with the
2R steps it takes in our extended hybrid program.

We have recently found that [14] if we restrict the problermaan to tracking in planar
graphs, it is possible to optimize the tracking time in thegence of faults as well as the
communication cost and tracking time in the absence offaflttopology change triggers
a global initialization in Awerbuch and Peleg’s programcgrheirm-regional matching
structure depends on a non-local algorithm that constapetsse covers [5]. Assuming that
the graph is planar (neither [6] nor this paper assumes ptgha local and self-stabilizing
clustering algorithm [21] for constructing the-regional matching structure is achievable,
and hence, it is possible to deal with topology changeslical

The concept of self-stabilization is particularly usefat tfiealing with unanticipated
and undetectable faults [3]. To achive such an ambitiou§ geH-stabilization assumes
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for convenience that no further faults occur within the Bizdition period. Itis possible to
improve stabilizing programs by adding masking fault+tatee for common and detectable
faults; this way occurence of trivial, common faults duritgbilization can be masked
immediately, and does not affect the stabilization time e @esign of this type of fault-
tolerance, known as multi-tolerance, is discussed in [2].

Moreover, for the type of faults for which masking is impdssior infeasible, preventing
them from spreading is useful for achieving scalability tatdlization for large-scale net-
works. To this end, several fault-containment technigdes,[L6, 22]. have been proposed
in the self-stabilization literature.

Furthermore, by choosing a weaker invariant it is possibkhbw that the stabilization
of our tracking programs are unaffected by common faulth sisanessage losses or node
fail-stops. That is, by accepting a degraded tracking perémce in the presence of these
faults, we can show that stabilization to a weaker invariagtg., a tracking tree, albeit not
the optimal tree— is still achievable under message lossg¢sade fail-stops.

Future work. We have found several variations of the pursuer-evaderlg@molo be
worthy of study, where we change for instance the commuinicéime between nodes, the
numbers of pursuers and evaders, and the range of a moveci@pef interest to us are
general forms of the tracking problem where efficient sohsican be devised by hybrid
control involving traditional control theory and self-sitizing distributed data structures
(such as tracking trees and regional directories).
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