
Murat Demirbas
Computer Science and Engineering Department, The Ohio State University

Anish Arora
Computer Science and Engineering Department, The Ohio State University

Mohamed Gouda
Computer Sciences Department, The University of Texas at Austin

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright c©2004 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created ore extended by sales
representatives or written sales materials. The advice andstrategies contained herin may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department with the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

p. cm.—(Wiley series in survey methodology)
“Wiley-Interscience."
Includes bibliographical references and index.

HA31.2.S873 2004
001.4’33—dc22 2004044064
Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

CHAPTER 9

PURSUER-EVADER TRACKING IN
SENSOR NETWORKS

9.1 ABSTRACT

In this paper we present a self-stabilizing program for solving a pursuer-evader problem in
sensor networks. The program is a hybrid between two orthogonal programs, an evader-
centric program and a pursuer-centric program, and can be tuned for tracking speed or
energy efficiency. In the program, sensor nodes close to the evader dynamically maintain a
tracking tree of depthR that is always rooted at the evader. The pursuer, on the otherhand,
searches the sensor network until it reaches the tracking tree, and then follows the tree to
its root in order to catch the evader.

9.2 INTRODUCTION

Due to its importance in military contexts, pursuer-evadertracking has received significant
attention [6, 8, 23, 25] and has been posed by the DARPA network embedded software
technology (NEST) program as a challenge problem. Here, we consider the problem in the
context of wireless sensor networks. Such networks comprisingpotentially many thousands
of low-cost and low-power wireless sensor nodes have recently became feasible, thanks
to advances in microelectromechanical systems technology, and are being regarded as a
realistic basis for deploying large-scale pursuer evader tracking.

Previous work on the pursuer-evader problem is not directlyapplicable to tracking in
sensor networks, since these networks introduce the following challenges: Firstly, sensor

Pursuer-Evader Tracking in Sensor Networks.By Demirbas,Arora,Gouda
c©2006 John Wiley & Sons, Inc.

3

4 PURSUER-EVADER TRACKING IN SENSOR NETWORKS

nodes have very limited computational resources (e.g., 8K RAM and 128K flash memory);
thus, centralized algorithms are not suitable for sensor networks due to their larger compu-
tational requirements. Secondly, sensor nodes are energy constrained; thus, algorithms that
impose an excessive communication burden on nodes are not acceptable since they drain
the battery power quickly. Thirdly, sensor networks are fault-prone: message losses and
corruptions (due to fading, collusion, and hidden node effect), and node failures (due to
crash and energy exhaustion) are the norm rather than the exception. Thus, sensor nodes
can lose synchrony and their programs can reach arbitrary states [20]. Finally, on-site main-
tenance is not feasible; thus, sensor networks should be self-healing. Indeed, one of the
emphases of the NEST program is to design low-cost fault-tolerant, and more specifically
self-stabilizing, services for the sensor network domain.

In this paper we present a tunable and self-stabilizing program for solving a pursuer-
evader problem in sensor networks. The goal of the pursuer isto catch the evader (despite
the occurrence of faults) by means of information gathered by the sensor network. The
pursuer can move faster than the evader. However, the evaderis omniscient —it can see the
state of the entire network— whereas the pursuer can only seethe state of one sensor node
(say the nearest one). This model captures a simple, abstract version of problems that arise
in tracking via sensor networks.

Tunability. We achieve tunability of our program by constructing it to bea hybrid between
two orthogonal programs: an evader-centric program and a pursuer-centric program.

In the evader-centric program, nodes communicate periodically with neighbors and dy-
namically maintain a tracking tree structure that is alwaysrooted at the evader. The pursuer
eventually catches the evader by following this tree structure to the root: the pursuer asks
the closest sensor node who its parent is, then proceeds to that node, and thus, reaches the
root node (and hence the evader) eventually.

In the pursuer-centric program, nodes communicate with neighbors only at the request
of the pursuer: When the pursuer reaches a node, the node resets its recorded time of a
detection of an evader to zero and directs the pursuer to a neighboring node with the highest
recorded time.

The evader-centric program converges and tracks the evaderfaster, whereas the pursuer-
centric program is more energy-efficient. In the hybrid program we combine the evader-
centric and pursuer-centric programs:

1. We modify the evader-centric program to limit the tracking tree to a bounded depth
R to save energy.

2. We modify the pursuer-centric program to exploit the tracking tree structure.

The hybrid program is tuned for tracking speed or energy efficiency by selectingR
appropriately. In particular, for the extended hybrid program in Section 9.7, the tracking
time is3 ∗ (D − R) + R ∗ α/(1 − α) steps, and at mostn communications take place at
each program step, whereD denotes the diameter of the network,α is the ratio of the speed
of the evader to that of the pursuer, andn is the number of sensor nodes included in the
tracking tree.

Self-stabilization. In the presence of faults, our program recovers from arbitrary states
to states from where it correctly tracks the evader; this sort of fault-tolerance is commonly
referred to as stabilizing fault-tolerance. In particular, starting from any arbitrary state, the
tracking time is2R +3 ∗ (D−R)+R ∗α/(1−α) steps for our extended hybrid program.

THE PROBLEM 5

Organization of the paper. After presenting the system and fault model in the next
section, we present an evader-centric program in Section 9.4 and a pursuer-centric program
in Section 9.5. In Section 9.6, we present the tunable, hybrid program combining the
previous two programs. We present an efficient version of thehybrid program in Section
9.7. We present implementation and simulation results in Section 9.8. Finally, we discuss
related work and make concluding remarks in Section 9.9.

9.3 THE PROBLEM

System model. A sensor network consists of a (potentially large) number ofsensor
nodes. Each node is capable of receiving/transmitting messages within its field of com-
munication. All nodes within this communication field are its neighbors; we denote this
set for nodej asnbr.j. We assume thenbr relation is symmetric and induces a connected
graph. (Protocols for maintaining biconnectivity in sensor networks are known [12,26].)

Problem statement. Given are two distinguished processes, thepursuer and theevader,
that each reside at some node in the sensor network. Each nodecan immediately detect
whether the pursuer and/or the evader are resident at that node.

Both the pursuer and the evader are mobile: each can atomically move from one node to
another, but the speed of evader movement is less than the speed of the pursuer movement.

The strategy of evader movement is unknown to the network. The strategy could in
particular be intelligent, with the evader omnisciently inspecting the entire network to
decide whether and where to move. By way of contrast, the pursuer strategy is based only
on the state of the node at which it resides.

Required is to design a program for the nodes and the pursuer so that the pursuer can
“catch” the evader, i.e., guarantee in every computation ofthe network that eventually both
the pursuer and the evader reside at the same node.

Programming model. A program consists of a set of variables, node actions, pursuer
actions, and evader actions.

Each variable and each action resides at some node. Variables of a nodej can be updated
only by j’s node actions. Node actions can only read the variables of their node and the
neighboring nodes. Pursuer actions can only read the variables of their node. The evader
actions can read the variables of the entire program, however, they cannot update any of
these variables.

Each action has the form:
〈guard〉 −→ 〈assignment statement〉

A guard is a boolean expression over variables. An assignment statement updates one
or more variables.

A state is defined by a value for every variable in the program,chosenfrom the predefined
domain of that variable. An action whose guard is true at somestate is said to beenabled
at that state.

We assume maximal parallelism in the executionofnodeactions. At each state, each node
executes all actions that are enabled in that state. (Execution of multiple enabled actions in
a node is treated as executing them in some sequential order.) Maximal parallelism is not
assumed for the execution of the pursuer and evader actions.Recall, however, that the speed
of execution of the former exceeds that of the latter. For ease of exposition, we assume that
evader and pursuer actions do not occur strictly in parallelwith node actions.

6 PURSUER-EVADER TRACKING IN SENSOR NETWORKS

A computation of the program is a maximal sequence of program steps: in eachstep,
actions that are enabled at the current state is executed according to the above operational
semantics, thereby yielding the next state in the computation. The maximality of a compu-
tation implies that no computation is a proper prefix of another computation.

We assume that each node has a clock, that is synchronized with the clocks of other
nodes. This assumption is reasonably implemented at least for Mica nodes [18]. Later, in
Section 9.8, we show how our programs can be modified to work without the synchronized
clocks assumption.

Notation. In this paper, we usej, k, andl to denote nodes. We usevar.j to denote the
variablevar residing atj. We use to separate the actions in a program andx :∈ A to
denote thatx is assigned to an element of setA.

Eachparameter in a program ranges over thenbr set of a node. The function of a
parameter is to define a set of actions as one parameterized action. For example, letk be
a parameter whose value is 0, 1, or 2; then an actionact of nodej parameterized overk
abbreviates the following set of actions:

act\(k = 0) act\(k = 1) act\(k = 2)

whereact\(k = i) is act with every occurrence ofk substituted withi.
We describe certain conjuncts in a guard in English:{Evader resides atj} and{Evader

detected atj}. The former expression evaluates to true at all states wherethe evader is atj
whereas the latter evaluates to true only at the state immediately following any step where
the evader moves to nodej, and evaluates to false in the subsequent states even if the evader
is still at j.

We useN to denote the number of nodes in the sensor network,D the diameter of the
network, andM the distance between the pursuer and evader. We use distanceto refer to
hop-distance in the network; unit distance is the single-hop communication radius. Finally,
we useα to denote the ratio of the speed of the evader to that of the pursuer.

Evader action. In each of the programs that we present in this paper, we use the following
evader action.

{ Evader resides atj } −→ Evader moves tol, l :∈ {k | k ∈ nbr.j ∪ {j}}

When this action is executed, the evader moves to an arbitrary neighbor ofj or skips
a move. This notion of nondeterministic moves suffices to capture the strategy of an
omniscient evader.

Recall from the discussion in the problem statement that, when the evader moves to a
node, the node immediately detects this fact (i.e., the detection actions have priority over
normal node actions and are fired instantaneously).

Fault model. Transient faults may corrupt the program state. Transient faults may also
fail-stop or restart nodes (in a manner that is detectable totheir neighbors); we assume that
the connectivity of the graph is maintained despite these faults.

A programP is stabilizing fault-tolerant iff starting from an arbitrary state, provided
that no other faults occur during recovery,P eventually recovers to a state from where its
specification is satisfied.

AN EVADER-CENTRIC PROGRAM 7

9.4 AN EVADER-CENTRIC PROGRAM

In this section we present an evader-centric solution to thepursuer-evaderproblem in sensor
networks. In our program every sensor node,j, maintains a value,ts.j, that denotes the
latest timestamp thatj knows for the detection of the evader. Initially, for allj, ts.j = 0.
If j detects the evader, it setsts.j to its clock’s value. Every nodej periodically updates
its ts.j value based on thets values of its neighbors:j assigns the maximum timestamp
value it is aware of asts.j. We usep.j (read parent ofj) to record the node thatj received
the maximum timestamp value. Initially, for allj, p.j is set to null, i.e.,p.j = ⊥. As
the information regarding the evader propagates through the network via gossipping of the
neighbors, the parent variables at these nodes are set accordingly. Note that the parent
relation embeds a tree rooted at the evader on the sensor network. We refer to this tree as
thetracking tree.

In addition to above variables, we maintain a variabled.j at each nodej. Initially, for
all j, d.j = ∞. When the evader is detected at a nodej, d.j is set to 0. Otherwise,d.j is
updated by setting it to be the parent’sd value plus 1, i.e.,d.j := d.(p.j) + 1. This way,
d.j at each node corresponds to the distance ofj from the evader. In the case wherets.j is
equal tots values ofj’s neighbors,j uses thed values of its neighbors to elect its parent to
be the one offering the shortest distance to the evader.

Thus, the actions forj (parameterized with respect to neighbork) in the evader-centric
program is as follows.

{ Evader resides atj } −→ p.j := j; ts.j := clock.j; d.j := 0

ts.k > ts.j ∨ (ts.k = ts.j ∧ d.k + 1 < d.j)
−→ p.j := k; ts.j := ts.(p.j);

d.j := d.(p.j) + 1

Once a tracking tree is formed, the pursuer follows this treeto reach the evader simply
by querying its closest node for its parent and proceeding tothe parent node. Thus, the
pursuer action is as follows.

{Pursuer resides atj} −→ Pursuer moves top.j

9.4.1 Proof of correctness

As Figure 9.1. illustrates, if the evader is moving it may notbe possible to maintain a
minimum distance spanning tree.

e

next state e

Figure 9.1. Minimum spanning tree is not maintained when evader is moving.

8 PURSUER-EVADER TRACKING IN SENSOR NETWORKS

Note that this is a worst-case scenario and occurs when the evader speed is as fast as
the communication speed of the nodes. (Tracking is not achievable if the evader is faster
than the communication speed of the nodes.) In practice, node communication (25msec) is
faster than the evader movement and construction of a minimum distance spanning tree is
possible.

However, even in this worst case scenario, we can still provethe following properties in
the absence of faults.

Theorem 1 . The tracking tree is a spanning tree rooted at the node wherethe evader
resides and is fully constructed in at mostD steps.

Proof. From the synchronized clocks assumption and the privilegeddetection action,
{Evader resides atj}, it follows that the nodej where the evader resides has the highest
timestamp value in the network. Observe from the second nodeaction that thep.k variable
at every nodek embed a logical tree structure over the sensor network. Cycles cannot occur
since(∀k : ts.k > 0 : d.(p.k) < d.k) 1. Since(∀k : ts.k > 0 : ts.(p.k) > ts.k), the
network is connected, and the nodej where the evader resides has the highest timestamp
value in the network, it follows that there exists only one tree in the network and it is rooted
at j. Within at mostD steps all the nodes in the network receives a message from a node
that is already included in the tracking tree (due to the maximal parallelism model and the
second node action), and a tracking tree covering the entirenetwork is constructed.

Lemma 3 . The distance between the pursuer and evader does not increase once the
constructed tree includes the node where the pursuer resides.

Proof. Once the constructed tree includes the nodekx where the pursuer resides, there
exists a pathk1, k2, . . . , kx such that(∀i : 1 < i ≤ x : p.ki = ki−1) and the evader resides
atk1. At any program step, if the evader moves to a neighboring node, the pursuer, being
faster than the evader, also moves to the next node in the path.

Note that at each program step, any nodeki in this path may choose to change its parent,
rendering a different path between the pursuer and the evader. However, observe from the
second node action that,ki changes its parent to be the neighbor that has a shorter path to
the evader (higher timestamp implies shorter path since thenode where evader resides has
the highest timestamp and nodes execute under maximal parallelism model). Thus, the net
effect is that the path length can only decrease but not increase.

Theorem 4 . The pursuer catches the evader in at mostM + 2M ∗ dα/(1− α)e steps.
Proof. Since the initial distance between the evader and the pursuer is M , afterM

program steps the tracking tree includes the node at which the pursuer resides. Since the
evader’s speed is below unit time step of the protocol execution, within this period the
evader can move to at mostM hops away, potentially increasing the distance between the
evader and pursuer to2M . From Lemma 3 , it follows that this distance cannot increase
in the subsequent program steps. Since the pursuer is fasterthan the evader, it catches the
evader in at most2M ∗ dα/(1 − α)e steps (follows from solvingα = X/(X + 2M) for
X).

9.4.2 Proof of stabilization

In the presence of faults variables of a nodej can be arbitrarily corrupted. However, for the
sake of simplicity we assume that even in the presence of faults the following two conditions
hold:

1The predicate(∀i : R.i : X.i) may be read as “for alli that satisfyR.i, X.i is also true”.

A PURSUER-CENTRIC PROGRAM 9

1. always ts.j ≤ clock.j

2. always {p.j ∈ {nbr.j ∪ {j} ∪ {⊥}}

The first condition states that the timestamp for the detection of evader at nodej is always
less than the local clock atj (i.e.,ts.j cannot be in the future). The second condition states
that the domain ofp.j is restricted to the set{nbr.j∪{j}∪{⊥}}wherep.j = ⊥ denotes that
j does not have any parent. These are both locally checkable and enforceable conditions; in
order to keep the program simple we will not include the corresponding correction actions
in our presentation.

Lemma 5 . The tracking tree stabilizes in at mostD steps.
Proof. Since we havealways ts.j ≤ clock.j, even at an arbitrary state (which might be

reached due to transient faults) the node where the evader resides has the highest timestamp
value in the network. From Theorem 1 it follows that a fresh tracking tree is constructed
within at mostD steps and this tracking tree is a spanning tree rooted at the node where the
evader currently resides.

Theorem 6 . Starting from an arbitrarily corrupted state, the pursuercatches the evader
in at mostD + 2D ∗ α/(1 − α).

Proof. The proof follows from the proofs of Lemma 5 and Theorem 4 .

9.4.3 Performance metrics

The evader-centric program is not energy efficient since every node communicates with its
neighbor at each step of the program. That is,ω∗N communicationsoccur each step, where
ω denotes the average degree of a node. The communications canbe treated as broadcasts,
and hence, the number of total communications per step is effectivelyN .

On the other hand, the tracking time and the convergence timeof the evader-centric
program is fast: starting from an arbitrarily corrupted state it takes at mostD+2D∗α/(1−α)
steps for the pursuer to catch the evader.

9.5 A PURSUER-CENTRIC PROGRAM

In this section we present a pursuer-centric solution to thepursuer-evader problem in sensor
networks. Here, similar to the evader-centric program, every sensor node,j, maintains a
value,ts.j, that denotes the latest timestamp thatj knows for the detection of the evader.
Initially, for all j, ts.j = 0. If j detects the evader, it setsts.j to its clock’s value.

In this program, nodes communicate with neighbors only at the request of the pursuer:
When the pursuer reaches a nodej, j resetsts.j to zero and directs the pursuer to a
neighboring node with the highest recorded time (we usenext.j to denote this neighbor).
Note that if allts values of the neighbors are the same (e.g., zero), the pursuer is sent to an
arbitrary neighbor. Also, if there is no pursuer atj, next.j is set to⊥ (i.e.,undefined).

Thus, the actions for nodej in the pursuer-centric program is as follows:

{ Evader detected atj } −→ ts.j := clock.j

{ Pursuer detected atj } −→ next.j :∈ {k | k ∈ nbr.j ∧
ts.k = max({ ts.l | l ∈ nbr.j })};

ts.j := 0

10 PURSUER-EVADER TRACKING IN SENSOR NETWORKS

The pursuer’s action is as follows.

{Pursuer resides atj} −→ Pursuer moves tonext.j

9.5.1 Proof of correctness

In the absence of faults, our pursuer-centric program satisfies the following properties.

Lemma 7 . If the pursuer reaches a nodej wherets.j > 0, the pursuer catches the
evader in at mostN ∗ α/(1 − α) steps.

Proof. If the pursuer reaches a nodej wherets.j > 0, then there exists a path between
the pursuer and the evader that is at most of lengthN . This distance does not increase in
the following program steps (due to maximal parallel execution semantics and the program
actions).

In [10], it is proven that during a random walk on a graph the expected time to find
N distinct vertices isO(N3). However, a recent result [19] shows that by using a local
topology information (i.e., degree information of neighbor vertices) it is possible to achieve
the cover timeO(N2logN) for random walk on any graph. Thus, we have:

Lemma 8 . The pursuer reaches a nodej wherets.j > 0 within O(N2logN) steps.

Theorem 9 . The pursuer catches the evader withinO(N2logN) steps.

9.5.2 Proof of stabilization

Since each nodej resetsts.j to zero upon a detection of the pursuer, arbitraryts.j values
eventually disappear, and hence, the pursuer-centric program is self-stabilizing.

Theorem 10 . Starting from an arbitrary state, the pursuer catches the evader within
O(N2logN) steps.

9.5.3 Performance metrics

The pursuer-centric program is energy efficient. At each step of the program only the node
where the pursuer resides communicates with its neighbors.That is,ω communications
occur at each step.

On the other hand, the tracking and the convergence time of the pursuer-centric program
is slow: O(N2logN) steps.

9.6 A HYBRID PURSUER-EVADER PROGRAM

In the hybrid program we combine the evader-centric and pursuer-centric approaches:

1. We modify the evader-centric program to limit the tracking tree to a bounded depth
R to save energy.

2. We modify the pursuer-centric program to exploit the tracking tree structure.

We limit the depth of the tracking tree toR by means of the distance,d, variable.

A HYBRID PURSUER-EVADER PROGRAM 11

{ Evader resides atj } −→ p.j := j; ts.j := clock.j; d.j := 0

d.k < R ∧ (ts.k > ts.j ∨ (ts.k = ts.j ∧ d.k+1 < d.j))
−→ p.j := k; ts.j := ts.(p.j);

d.j := d.(p.j) + 1

By limiting the tree to a depthR we lose the advantages of soft-state stabilization: there
is no more a flow of fresh information to correct the state of the nodes that are outside
the tracking tree. To achieve stabilization, we add explicit stabilization actions. Next we
describe these two actions.

Starting from an arbitrarily corrupted state where the graph embedded by the parent
relation on the network has cycles, each cycle is detected and removed by using the bound
on the length of the path from each process to its root processin the tree. To this end,
we exploit the way that we maintain thed variable:j setsd.j to bed.(p.j) + 1 whenever
p.j ∈ nbr.j andd.(p.j) + 1 ≤ R. The net effect of executing this action is that if a cycle
exists then thed.j value of each processj in the cycle gets “bumped up” repeatedly. Within
at mostR steps, somed.(p.j) reachesR, and since the length of each path in the adjacency
graph is bounded byR, the cycle is detected. To remove a cycle that it has detected, j sets
p.j to ⊥ (undefined) andd.j to ∞, from whereon the cycle is completely cleaned within
the nextR steps. Note that this action also takes care of pruning the tracking tree to height
R (e.g., when the evader moves and as a result a nodej with d.j = R becomesR +1 away
from the evader).

Nodej also setsp.j to ⊥ (undefined) andd.j to ∞ if p.j is not a valid parent (e.g.
d.j 6= d.(p.j) + 1 or ts.j > ts.(p.j) or (p.j = j ∧ d.j 6= 0)).

We add another action to correct the fake tree roots. If a nodej is spuriously corrupted
to p.j = j ∧ d.j = 0, this is detected by explicitly asking for a proof of the evader atj.

Thus the stabilization actions for the bounded length tracking tree is as follows.

p.j 6= ⊥ ∧ ((p.j = j ∧ d.j 6= 0) ∨ ts.j > ts.(p.j)
∨ d.j 6= d.(p.j) + 1 ∨ d.(p.j) ≥ R)

−→ p.j := ⊥; d.j := ∞

p.j = j ∧ d.j = 0 ∧ ¬{ Evader resides atj }
−→ p.j := ⊥; d.j := ∞

We modify the node action in the pursuer-centric program only slightly so as to exploit
the tracking tree structure.

{ Pursuer detected atj } −→
if (p.j 6= ⊥) thennext.j := p.j
else

next.j :∈ {k | k ∈ nbr.j ∧ ts.k=max({ts.l | l ∈ nbr.j})};
ts.j := 0

Finally, the pursuer action is the same as that in Section 9.5.

12 PURSUER-EVADER TRACKING IN SENSOR NETWORKS

9.6.1 Proof of correctness

In the absence of faults, the following lemmas and theorem follow from their counterparts
in Sections 9.4 and 9.5.

Lemma 11 . The tracking tree is fully constructed in at mostR steps.
Belown denotes the number of nodes included in the tracking tree.

Lemma 12 . The pursuer reaches the tracking tree withinO((N − n)2log(N − n))
steps.

Theorem 13 . The pursuer catches the evader withinO((N −n)2log(N −n)) steps.
Since the evader is mobile, the number of nodes in the tracking tree of depthR varies

over time depending on the location of the evader and the density of nodes within theR-hop
neighborhood. However, the numbern we use in theO() notation depends only on the
number of nodes included in the first tracking tree constructed. More specifically, in the
O() notation we useN −n to denote the number of nodes that the pursuer needs to perform
a random walk on to reach a node that was once involved in the tracking tree, i.e.,ts > 0.
Even though, the maximum number of nodes that the pursuer needs to visit monotonously
decreases as the evader moves and new tracking trees are constructed, in our analysis we
still useN − n, that resulted from the construction of the first tracking tree, to capture the
worst case scenario.

9.6.2 Proof of stabilization

Lemma 14 . The tracking tree structure stabilizes in at most2R steps.
Proof. Stabilization of the nodes within the tracking tree followsfrom Lemma 5 . The

discussion above about the stabilization actions of the hybrid program states that a cycle
outside the tracking tree is resolved within2R steps. These two occur in parallel, thus
system stabilization is achieved within2R steps.

Theorem 15 . Starting from an arbitrary state, the pursuer catches the evader within
O((N − n)2log(N − n)) steps.

9.6.3 Performance metrics

The hybrid program for the nodes can be tuned to be energy efficient by decreasingR since
it decreasesn. At each step of the program at mostn + ω communications take place.

The hybrid program can also be tuned to track and converge faster by increasingR since
it increasesn, and the time,O((N − n)2log(N − n)) steps, a random walk takes to find
the tracking tree. From that point on it takes onlyR ∗ α/(1 − α) steps for the pursuer to
catch the evader.

Note that there is a tradeoff between the energy-efficiency and the tracking time. In
Section 9.8, we provide an example where we choose a suitablevalue forR to optimize
both energy-efficiency and tracking time concurrently.

9.7 AN EFFICIENT VERSION OF THE HYBRID PROGRAM

In this section we present a communication- and, hence, energy-efficient version of the
hybrid program. We achieve this by replacing the random walkof the pursuer with a more

AN EFFICIENT VERSION OF THE HYBRID PROGRAM 13

energy-efficient approach, namely that of constructing a search-tree rooted at the pursuer.
To this end, we first present the extended and energy-efficient version of the pursuer-centric
program, and then show how this extended pursuer-centric program can be incorporated
into the hybrid program.

Extended pursuer-centric program. In the extended version of the pursuer-centric pro-
gram, instead of the random walk prescribed in Section 9.5, the pursuer usesagentsto search
the network for a trace of the evader. The pursuer agents ideacan be implemented by con-
structing a (depth-first or breadth-first) tree rooted at thenode where the pursuer resides.
If a nodej with ts.j > 0 is included in thispursuer tree, the pursuer is notified of this
result along with a path toj. The pursuer then follows this path to reachj. From this point
on, due to Lemma 7 , it will take at mostN ∗ α/(1 − α) steps for the pursuer to catch the
evader.

This program can be seen as an extension of the original pursuer-centric program in that
instead of a 1-hop tree construction (i.e., the nodek where the pursuer resides contacts
nbr.k) embedded in the original pursuer-centric program, we now employ aD-hop tree
construction. To this end we change the original pursuer program as follows. The nodek
where the pursuer resides setsnext.j to ⊥ if none of its neighbors has a timestamp value
greater than 0, instead of settingnext.j to point to a random neighbor ofj. The pursuer
upon reading a⊥ value for thenext variable, starts a tree construction to search for a trace
of the evader. Note that by using a depthD, the pursuer tree is guaranteed to encounter a
nodej with ts.j > 0.

Several extant self-stabilizing tree construction programs [1,11,13] suffice for construct-
ing the pursuer tree inD steps and to complete the information feedback within anotherD
steps. Also since the root of the pursuer tree is static (rootdoes not change dynamically
unlike the root of the tracking tree), it is possible to achieve self-stabilization of pursuer
tree withinD steps in an energy efficient manner. That is, in contrast to the evader-centric
tracking tree program where all nodes communicate at each program step, in the pursuer
tree program only the nodes propagatinga (tree construction or information feedback) wave
need to communicate with their immediate neighbors.

Extended hybrid program. It is straightforward to incorporate the extended version of
the pursuer-centric program into the hybrid program. The only modification required is to
set the depth of pursuer tree to beD−R hops instead ofD hops. Note thatD−R hops is
enough for ensuring that the pursuer will encounter a trace of the evader (i.e., pursuer tree
will reach a node included in the tracking tree). After a nodethat is/has been in the tracking
tree is reached, the pursuer program in Section 9.6 applies as is.

9.7.1 Performance metrics

The extension improves the tracking and the convergence time of the pursuer-centric pro-
gram fromO(N2logN) steps to3D + N ∗ α/(1 − α) steps (2D steps for the pursuer
tree construction and information feedback, andD steps for the pursuer to follow the path
returned by the pursuer tree program). The extended pursuer-centric program remains en-
ergy efficient; the only overhead incurred is the one-time invocation of the pursuer tree
construction.

In the extended hybrid program, it takes at most3 ∗ (D − R) steps for the pursuer to
reach the tracking tree. (Compare this toO((N − n)2log(N − n)) steps in the original
hybrid program.) From that point on it takesR ∗ α/(1 − α) steps for the pursuer to catch

14 PURSUER-EVADER TRACKING IN SENSOR NETWORKS

the evader. At each step of the extended hybrid program at most n communications take
place. Due to the pursuer tree computation, a one time cost of(N − n) is incurred.

1-pursuer 0-evader scenario. The evader-centric program is energy efficient in a sce-
nario where there is no evader but there is a pursuer in the system: no energy is spent since
no communication is needed. On the other hand, the pursuer-centric program performs
poorly in this case: at each step the pursuer queries the neighboring nodes incurring a
communication cost ofw. The hybrid program, since it borrows the pursuer action from
the pursuer-centric program, also performs badly in this scenario.

The extended pursuer-centric program fixes this problem by modifying the pursuer tree
construction to require that an answer is returned only if the evader tree is encountered.
That is, if there is no evader in the network, the pursuer treeprogram continues to wait for
the information feedback wave to be triggered, and hence, itdoes not waste energy.

0-pursuer 1-evader scenario. By enforcing that pursuers authenticate themselves when
they join the network and notify the network when they leave,we can ensure that a tracking
tree is maintained only when there is a pursuer in the system and achieve energy-efficiency.

9.8 IMPLEMENTATION AND SIMULATION RESULTS

In this section, we present implementation and simulation results, and show an example of
tuning our tracking program to optimize both energy-efficiency and tracking time concur-
rently.

9.8.1 Implementation

We have implemented an asynchronous version of the evader-centric program on the Berke-
ley’s Mica node platform [18] for a demonstration at the June2002 DARPA–Network
Embedded Systems Technology (NEST) retreat held in Bar Harbor, Maine.
Asynchronous program. Even though we assumed an underlying clock synchronization
service for our presentation, it is possible to modify the evader-centric program slightly
(only 1 line is changed) to obtain an asynchronous version. The modification is to use, at
every nodej, a counter variableval.j that denotes the number of detections of the evader
that j is aware of, instead ofts.j that denotes the latest timestamp thatj knows for the
detection of the evader. Whenj detects the evader, instead of settingts.j to clock.j, j
increasesval.j by one.

The extended pursuer program is also made asynchronous in a straightforward manner,
since the idea of pursuer agents (a tree rooted at the pursuer) is readily implemented in the
asynchronous model [1,11,13].

In our demonstration,a Lego MindstormsTM robot serving as a pursuer used our program
to catch another Lego Mindstorms robot serving as an evader,in a 4 by 4 grid of nodes
subject to a variety of faults. Figure 9.2. shows a snapshot from our demo.

The sensor nodes are embedded in a foam panel under the board.There are small
rectangular holes in the board corresponding to sensor locations. A node detects an evader
via its optic sensor: When the evader reaches a sensor location, its body closes the hole and
triggers a “darkness” reading. The pursuer avoids this detection thanks to the glow sticks
attached under its body.

IMPLEMENTATION AND SIMULATION RESULTS 15

Figure 9.2. Snapshot from our demo

The colored lines on the board encode the four directions, e.g., “Long Yellow” followed
by a “Short Black” indicates North. The pursuer calculates which direction it is heading
after a complete line traversal.

We have soldered infrared (IR) LEDs on the nodes. Nodes blinkIR LEDs at four different
frequencies to communicate the four directions. On reaching a node, the pursuer detects
the frequency of emitted IR signals and decides how to turn.

The evader is remotely controlled by a human playing the roleof an omniscient adversary.
We showed, in our demo, that despite node failures or transient corruption of the nodes, the
tracking tree stabilizes to a good state, and the pursuer catches the evader by following the
tree.

The pursuer robot could get disoriented on the grid or lose track of the gridlines, so we
also built in stabilization in the robot program to find the gridlines from an arbitrary state.
The pursuer converges to the grid from any point within the board, without falling off the
edge. Upon converging, the pursuer regains its sense of direction within one complete line
traversal, and starts to track the tree by following direction signals from the nodes.

Due to incorrect interaction between the motes and the pursuer robot, the robot could
be driven into bad states. The stabilizing robot program wasdesigned to tolerate such bad
interactions. For example, if the pursuer reaches a failed mote, it cannot get a direction
signal. The pursuer then chooses a random direction to follow. If this direction leads it off
the grid, it backs up and retries till it finds a grid direction. On reaching the next non-failed
node, the pursuer gets a proper direction to follow and catches the evader eventually.

We have recently ported our TinyOS sensor node code to nesC [15]; the source code for
the sensors, the pursuer and evader robots (written in NQC),and video shots for the demo
are available atwww.cis.ohio-state.edu/∼demirbas/peDemo/.

9.8.2 Simulation results

In the preceding sections we have presented analytical worst-case bounds on the perfor-
mance of our tracking service. In this section we consider a random movement model
for the evader and compare and contrast the average case performances of our tracking
programs through simulation.

For our simulations, we use Prowler [24], a MATLAB based, event-driven simulator for
wireless sensor network. Prowler simulates the radio transmission/propagation/reception
delays of Mica2 motes [18], includingcollisions in ad-hoc radio networks, and the operation

16 PURSUER-EVADER TRACKING IN SENSOR NETWORKS

1/2

1/2

1/2

1/2

1/2

1/3

1/2

1/3

1/3

1/3

1/2

1/2

1/2

1/3

1/1

1/2

1/3

1/2

1/3

1/3

1/2

1/2

1/1

1/1

1/3

1/1

1/2

1/2

1/2

1/2

1/2

1/2

1/1

1/1

1/1

1/1

1/2

1/2

1/2

1/3

1/2

1/1

1/1

1/1

1/0

1/1

1/1

1/1

1/2

1/2

1/1

1/1

1/2

1/2

1/1

1/1

1/1

1/2

1/2

1/2

1/2

1/3

1/1

1/2

1/2

1/1

1/1

1/4

1/2

1/2

1/2

1/2

1/2

1/1

1/2

1/2

1/3

1/2

1/3

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/3

1/3

1/3

1/3

1/2

1/2

1/3

1/2

1/2

1/2

1/3

1/3

1/3

Figure 9.3. Simulation for evader-centric program

of the MAC-layer. The average transmission time for a packetis around 25 milliseconds.
Our implementations are per node and are message-passing distributed programs. Our
code for the simulations is also available fromwww.cis.ohio-state.edu/∼demirbas/
peDemo.

In our simulations, the network consists of 100 nodes arranged in a grid topology of
10-by-10. The distance between two neighboring nodes on thegrid is a unit distance. The
node communication radius is approximately 2 units. The evader makes a move every 2
sec, and the pursuer every 1 sec. The average move distance for both the pursuer and evader
is 2 units.

Table 9.1. shows the number of total messages and the catching times for the evader-
centric program, the pursuer-centric program, hybrid program with R = 1, and hybrid
program withR = 2. These averages are calculated using 30 runs of these programs with
random starting locations for the pursuer and the evader.

Evader-centric Pursuer-centric Hybrid R=1 Hybrid R=2

Total # of mesgs 256 21 286 208
Catch time (sec) 3.3 15.7 10.7 3.9

Table 9.1. Number of messages and catching times

Figure 9.3. shows a snapshot from the simulation of the evader-centric program. The
direction of the arrows denote the parent pointers at the motes. The two numbers next to a
node correspond toval andd (in hops) variables at that node. The tracking tree is rootedat
the evader; the evader happens to reside at the middle of the grid in that run. The tracking
tree spans the entire network and may have up to 4 hops. It is costly to maintain this tree:
on average a total of 256 messages are sent before the evader is captured.

Since the transmission time of a message (25msec) is much smaller than the speed of
the evader, the tracking tree is effectively a minimum spanning tree. (The irregularities
and long links are due to the nondeterministic nature of the radio model, fading effects,
and collusions.) Hence, the pursuer catches the evader within about 3-4 moves: average
catching time is 3.3 sec.

Figure 9.4. shows a snapshot from the pursuer-centric program. In this run, the evader
started in the middle of the network and moved to the upper-left corner within 16 moves.
The pursuer started at the lower-left corner, randomly wandered around for a while, found

IMPLEMENTATION AND SIMULATION RESULTS 17

16

15

12 10 8

1

2

3

5

6

7

Figure 9.4. Simulation for pursuer-centric program

2/1

2/1

2/1

1/

2/1

2/1

2/1

1/

2/1

2/1

1/

2/1

2/1

1/

2/1

2/1

2/0

1/

2/1

1/

2/1

2/1

2/1

1/

2/1

1/

2/1

2/1

2/1

2/1

2/1

2/1

Figure 9.5. Simulation for hybrid program for R=1

a node that was visited by the evader, and followed these tracks to catch the evader at the
upper-left corner (a dot in the rectangle denotes that pursuer has visited the corresponding
node).

Since the pursuer-centric program does not maintain a tracking tree, the total number of
messages sent is low (21). On the other hand, it takes more time for the pursuer to find a
track of the evader, hence catching time is high (15.7 sec).

Figure 9.5. shows a snapshot from the hybrid program withR = 1 (hybrid1), and Figure
9.6. shows the hybrid program withR = 2 (hybrid2). Our simulations show that hybrid2
performs better than hybrid1: Both the total number of messages sent and the catching time
of hybrid2 is significantly smaller than those of hybrid1.

Hybrid1 cannot provide a good coverage over the network withits one-hop tracking tree.
Hence the pursuer wanders around for 5-10 moves before it canencounter a node that had
some info about the evader (a node that is/has been part of thetracking tree). Due to this
wandering around time, the catching time increases and energy is wasted for maintaining
a tracking-tree for an elongated time. (Note that the maintenance of a 1-hop tree is not
achievable only by a broadcast of the root node. The leaf nodes also broadcasts messages;
these broadcasts are required for informing the nodes that are to be pruned, i.e., the nodes
that were included in the previous tracking tree, but that are outside the new tracking tree
as a result of evader movement and accompanying root node change.)

18 PURSUER-EVADER TRACKING IN SENSOR NETWORKS

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

2/1

1/2

1/2

1/2

1/2

1/2

1/2

2/1

2/1

1/2

2/1

1/2

1/2

1/2

2/1

2/1

2/1

2/1

2/1

2/1

1/2

2/1

2/1

2/1

2/1

2/0

2/1

2/1

1/2

1/2

1/2

1/2

2/1

2/1

2/1

2/1

2/1

2/1

1/2

1/2

1/2

1/1

2/1

2/1

1/1

2/1

1/2

1/2

1/2

2/1

2/1

2/1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

Figure 9.6. Simulation for hybrid program for R=2

Hybrid2, on the other hand, provides a reasonable coverage over the network, hence the
pursuer discovers the track of the evader earlier than that of hybrid1. The tracking tree
is maintained toR = 2, and thus, after each evader move hybrid2 sends more messages
than hybrid1. But since the catching time is significantly shortened in hybrid2, the 2-hop
tracking tree is maintained only for this short time. As a result, the total number of messages
sent by hybrid2 is less than that of hybrid1.

Hybrid2 optimizes both energy-efficiency and tracking timeconcurrently. The total
number of messages sent by hybrid2 is less than that of the evader-centric program (208
versus 256), and the catching time of hybrid2 is comparable to that of the evader-centric
program (3.9 sec versus 3.3 sec). (Hybrid program withR = 3 gives similar results to the
evader-centric program, and is omitted from our discussion.)

9.9 DISCUSSION AND RELATED WORK

In this paper we have investigated a pursuer-evader game forsensor networks. More specif-
ically, we have presented a hybrid, tunable, and self-stabilizing program to solve this prob-
lem. We proved that the pursuer catches the evader even in thepresence of faults.

For the sake of simplicity, we have adopted a shared-memory model in our presenta-
tion; our results are still valid for message passing memorymodel. We have provided
message-passing implementations of our programs in Section 9.8. Note that the semantics
of the message-passing program is event-based execution (e.g., upon receiving a message
or detecting an evader/pursuer), rather than maximal parallelism.

Energy efficiency. We have demonstrated that our program is tunable for tracking speed
or energy efficiency. Our program is also tunable for stabilization speed or energy efficiency.
The periodicity of soft-state updates for stabilization should be kept low if the faults are
relatively rare in the network. For example, in the absence of faults, the first action (i.e.,
{Evader resides atj} action) need not be executed unless the evader moves to a different
node. Similarly, the stabilization actions (actions 3 and 4of the hybrid program) can be
executed with low frequency to conserve energy.

Another way to improve the energy-efficiency is to maintain the tracking tree over a
small number of nodes. For example, hierarchical structuring can be employed to maintain
tracking information with accuracy proportional to the distance from the evader. Also

DISCUSSION AND RELATED WORK 19

maintaining the tracking tree in a directional manner and only up to the location of the
pursuer will help conserve energy.

Related work. Several self-stabilizing programs exist for tree construction ([1,11,13] to
name a few). However, our evader-centric program is unique in the sense that a spanning
tree is maintained even though the root changes dynamically.

A self-stabilizing distributed directory protocol based on path reversal on a network-
wide, fixed spanning tree is presented in [17]. The spanning tree is initialized to guarantee
a reachability condition: following the links from any nodeleads to the evader. When the
evader moves from a nodej to another nodek, all the links along the path fromj to k
in the spanning tree are reversed. This way, the tree always guarantees the reachability
condition. This protocol suffers from a nonlocal update problem because it is possible to
find at least two adjacent nodesj, k in the network such that the distance betweenj and
k in the overlayed spanning tree structure is twice the heightof the tree (i.e., equal to the
diameter of the network). An evader that is dithering between these two nodes may cause
the protocol to perform nonlocal updates for each small move, and would result in a scenario
where the pursuer is never able to catch the evader. In contrast, our protocol maintains a
dynamic tree and does not suffer from the nonlocal update problem.

In our program, we choose to update the location of the evaderimmediately. In [9], three
strategies for when to update the location the evader (time-based, number of movements-
based, and distance-based) are evaluated with respect to their energy efficiency.

Relating to the idea of achieving energy efficiency by using asmall number of nodes,
Awerbuch and Peleg [6] present a local scheme that maintainstracking information with
accuracy proportional to the distance from the evader. Theyachieve this goal by maintaining
a hierarchy oflogD regional directories (using the graph-theoretic concept of regional
matching) where the purpose of thei’th level regional directory is to enable a pursuer to
track the evader residing within2i distance from it. They show that the communication
overhead of their program is within a polylogarithmic factor of the lower bound. Loosely
speaking, their regional matching idea is an efficient realization of our pursuer-centric
program and their forwarding pointer structure is analogous to our tracking tree structure.

By way of contrast, their focus is on optimizing the complexity during the initialized
case, whereas we focus on optimizing complexity during stabilization as well. That is, we
are interested in (a) tracking that occurs while initialization is occuring; in other words, soon
after the evader joins the system, and (b) tracking that occurs from inconsistent states; in
other words, if the evader moves in an undetectable/unannounced manner for some period
of time yielding inconsistent tracks. Their complexity of initialization isO(E log4N)
whereE is the number of edges in the graph andN is the number of nodes. Thus, brute
force stabilization of their structure completes inO(E log4N) time as compared with the
2R steps it takes in our extended hybrid program.

We have recently found that [14] if we restrict the problem domain to tracking in planar
graphs, it is possible to optimize the tracking time in the presence of faults as well as the
communication cost and tracking time in the absence of faults. A topology change triggers
a global initialization in Awerbuch and Peleg’s program since theirm-regional matching
structure depends on a non-local algorithm that constructssparse covers [5]. Assuming that
the graph is planar (neither [6] nor this paper assumes planarity), a local and self-stabilizing
clustering algorithm [21] for constructing them-regional matching structure is achievable,
and hence, it is possible to deal with topology changes locally.

The concept of self-stabilization is particularly useful for dealing with unanticipated
and undetectable faults [3]. To achive such an ambitious goal, self-stabilization assumes

20 PURSUER-EVADER TRACKING IN SENSOR NETWORKS

for convenience that no further faults occur within the stabilization period. It is possible to
improve stabilizing programs by adding masking fault-tolerance for common and detectable
faults; this way occurence of trivial, common faults duringstabilization can be masked
immediately, and does not affect the stabilization time. The design of this type of fault-
tolerance, known as multi-tolerance, is discussed in [2].

Moreover, for the type of faults for which masking is impossible or infeasible, preventing
them from spreading is useful for achieving scalability of stabilization for large-scale net-
works. To this end, several fault-containment techniques [4,7,16,22]. have been proposed
in the self-stabilization literature.

Furthermore, by choosing a weaker invariant it is possible to show that the stabilization
of our tracking programs are unaffected by common faults such as message losses or node
fail-stops. That is, by accepting a degraded tracking performance in the presence of these
faults, we can show that stabilization to a weaker invariant—e.g., a tracking tree, albeit not
the optimal tree— is still achievable under message losses and node fail-stops.

Future work. We have found several variations of the pursuer-evader problem to be
worthy of study, where we change for instance the communication time between nodes, the
numbers of pursuers and evaders, and the range of a move. Especially of interest to us are
general forms of the tracking problem where efficient solutions can be devised by hybrid
control involving traditional control theory and self-stabilizing distributed data structures
(such as tracking trees and regional directories).

REFERENCES

1. A. Arora and M. G. Gouda. Distributed reset.IEEE Transactions on Computers, 43(9):1026–
1038, 1994.

2. A. Arora and S. S. Kulkarni. Component based design of multitolerant systems.IEEE Transac-
tions on Software Engineering, 24(1):63–78, January 1998.

3. A. Arora and Y-M Wang. Practical self-stabilization for tolerating unanticipated faults in net-
worked systems. Technical Report OSU-CISRC-1/03-TR01, The Ohio State University, 2003.

4. A. Arora and H. Zhang.LSRP: Local stabilization in shortest path routing. InIEEE-IFIP DSN,
pages 139–148, June 2003.

5. B. Awerbuch and D. Peleg. Sparse partitions (extended abstract). In IEEE Symposium on
Foundations of Computer Science, pages 503–513, 1990.

6. B. Awerbuch and D. Peleg. Online tracking of mobile user.Journal of the Association for
Computing Machinery, 42:1021–1058, 1995.

7. Y. Azar, S. Kutten, and B. Patt-Shamir. Distributed errorconfinement. InACM PODC, pages
33–42, 2003.

8. A. Bar-Noy and I. Kessler. Tracking mobile users in wireless communication networks. In
INFOCOM, pages 1232–1239, 1993.

9. A. Bar-Noy, I. Kessler, and M. Sidi. Mobile users: To update or not to update? InINFOCOM,
pages 570–576, 1994.

10. G. Barnes and U. Feige. Short random walks on graphs.SIAM Journal on Discrete Mathematics,
9(1):19–28, 1996.

11. N.S. Chen and S.T. Huang. A self-stabilizing algorithm for constructing spanning trees.Infor-
mation Processing Letters (IPL), 39:147–151, 1991.

12. Y. Choi, M. Gouda, M. C. Kim, and A. Arora. The mote connectivity protocol. Proceedings of
the International Conference on Computer Communication and Net- works (ICCCN-03), 2003.

Pursuer-Evader Tracking in Sensor Networks.By Demirbas,Arora,Gouda
c©2006 John Wiley & Sons, Inc.

21

22 REFERENCES

13. A. Cournier, A.K. Datta, F. Petit, and V. Villain. Self-stabilizing PIF algorithms in arbitrary
networks.International Conference on Distributed Computing Systems (ICDCS), pages 91–98,
2001.

14. M. Demirbas, A. Arora, T. Nolte, and N. Lynch.STALK: A self-stabilizing hierarchical track-
ing service for sensor networks. Technical Report OSU-CISRC-4/03-TR19, The Ohio State
University, April 2003.

15. D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D.Culler. ThenesC language: A
holistic approach to network embedded systems. Submitted to the ACM SIGPLAN(PLDI), June
2003.

16. S. Ghosh, A. Gupta, T. Herman, and S. V. Pemmaraju. Fault-containing self-stabilizing algo-
rithms. InACM PODC, pages 45–54, 1996.

17. M.P. Herlihy and S. Tirthapura. Self-stabilizing distributed queueing. InProceedings of 15th
International Symposium on Distributed Computing, pages 209–219, oct 2001.

18. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System architecture directions
for network sensors.ASPLOS, pages 93–104, 2000.

19. S. Ikeda, I. Kubo, N. Okumoto, and M. Yamashita. Local topological information and cover
time. Research manuscript, 2002.

20. M. Jayaram and G. Varghese. Crash failures can drive protocols to arbitrary states.ACM
Symposium on Principles of Distributed Computing, 1996.

21. V. Mittal, M. Demirbas, and A. Arora.LOCI: Local clustering in large scale wireless networks.
Technical Report OSU-CISRC-2/03-TR07, The Ohio State University, February 2003.

22. M. Nesterenko and A. Arora. Local tolerance to unboundedbyzantine faults. InIEEE SRDS,
pages 22–31, 2002.

23. E. Pitoura and G. Samaras. Locating objects in mobile computing. Knowledge and Data Engi-
neering, 13(4):571–592, 2001.

24. G. Simon, P. Volgyesi, M. Maroti, and A. Ledeczi. Simulation-based optimization of communi-
cation protocols for large-scale wireless sensor networks. IEEE Aerospace Conference, March
2003.

25. A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and querying moving objects.
In ICDE, pages 422–432, 1997.

26. A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of reliable multihop routing
in sensor networks. InProceedings of the first international conference on Embedded networked
sensor systems, pages 14–27, 2003.

