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Abstract

Sensor networks, that consist of potentially several thou-
sands of nodes each with sensing (heat, sound, light, mag-
netism, etc.) and wireless communication capabilities, pro-
vide great opportunities for monitoring spatial information
about a region of interest. Although spatial query execution
has been studied extensively in the context of database sys-
tems (e.g., indexing technologies), these solutions are not
directly applicable in the context of sensor networks due to
the decentralized nature of the sensor networks and the lim-
ited computational power and energy scarcity of individual
sensor nodes.

In this paper, we present a peer-to-peer indexing struc-
ture, namely peer-tree, in order to address the problem of
energy- and time-efficient execution of spatial queries (such
as nearest-neighbor queries) in sensor networks. Loosely
speaking, our peer-tree structure can be interpreted as a
peer-to-peer version of the centralized R-tree index struc-
ture. Using the peer-tree as a building block, we present
a peer-to-peer query processing model where a query can
be posed in any node of the network without the need of a
central server. For achieving minimal energy consumption
and minimal response time, our query processing model en-
sures that only the relevant nodes for the correct execution
of a query are involved in the query execution.

Keywords : sensor networks, peer-to-peer spatial
queries, distributed index structures

1 Introduction

With the recent advancements in micro-electro-
mechanical-systems (MEMS) related technology, it has
now become feasible to manufacture low power sensors
that integrate detection of infrared radiation, heat, sound,
vibration, and magnetism together with on-chip intelligence
and wireless communication [17]. Progress in this area is
significant for its applications in deploying large ad-hoc
wireless sensor networks (potentially consisting of several
thousands of nodes) to retrieve spatial information about

an area of interest. Sensor networks find applications in
ecology (e.g., environmental and habitat monitoring [24]),
in precision agriculture (e.g., monitoring of temperature
and humidity), in civil engineering (e.g., monitoring stress
levels of buildings under earthquake simulations), in
military and surveillance (e.g., tracking of an intruder [9]),
in aerospace industry (e.g., fairing of cargo in a rocket), etc.

In this paper we focus on efficient execution of spatial
queries in sensor networks. In particular, we are concerned
with efficient execution of nearest neighbor (NN) queries in
sensor networks: “What is the location of the nearest data
object to coordinates ( � , � )?”. The query can be initiated
locally, without the need of a central server. The coordinates
given in the query can be either the current location of the
user or a distant location of interest.

In the context of database systems, there has already
been an extensive work on indexing structures that enable
efficient execution of nearest neighbor queries. We identify
R-trees [1, 15] as amenable for the type of queries we are
interested in this paper. However, the work on spatial query
execution in the database systems are not readily applica-
ble in the context of sensor networks, since sensor networks
introduce the following challenges over database systems:

� Nodes in sensor networks have very limited computa-
tional resources (e.g., 8K RAM) and are energy con-
strained (e.g., 2 AA batteries per node); thus, central-
ized programs are not suitable for sensor networks due
to their larger computational and communication re-
quirements. In particular, since a message send opera-
tion may spend at least 1000 times more battery than a
local operation (e.g., sense operation), sensor network
programs should avoid unnecessary communication as
much as possible. For example, a centralized program
that demands all sensor nodes to periodically feed their
data into a central repository (e.g., a base station) is not
feasible because it will drain the battery power of the
sensor nodes quickly.

Decentralized versions of spatial query execution pro-
grams are needed for sensor networks: by using a de-
centralized program instead of a centralized approach,



it would be possible to contact only the relevant nodes
for the execution of a spatial query and hence achieve
minimal energy consumption.

� In sensor networks any node should be able to intro-
duce a query to the system. For example, in the con-
text of a fire evacuation scenario a firefighter should
be able to query a nearby sensor node for the closest
exit where a safe path exist. Therefore, a peer-to-peer
query processing model is required. To the best of our
knowledge, we are not aware of any peer-to-peer pro-
grams for spatial query execution.

� Sensor networks are deployed in adverse conditions:
message losses and corruptions (due to collusion, and
hidden node effect), and node failures (due to crash and
energy exhaustion) are the norm rather than the excep-
tion. Furthermore, due to the vast area that the nodes
are spread over, it is not feasible for a human operator
to set up and maintain the sensor network. Therefore,
the proposed programs should be self-stabilizing [10].

Even though there has been extensive work on indexing
structures for exact match queries for data sharing in the
context of peer-to-peer systems [14, 27, 29], to the best of
our knowledge the use of index structures for peer-to-peer
execution of spatial queries has not been explored before.
Furthermore, the work on indexing in peer-to-peer systems
do not take into account the constraint on energy usage
which is crucial in design of sensor network programs.

Contributions of this paper. In this paper, we address
the problem of efficient execution of spatial queries in sen-
sor networks. Our main contributions are as follows:

1. We establish an efficient access structure on sensor net-
works in order to contact only the relevant nodes for
the execution of a query and hence achieve minimal
energy consumption, minimal response time, and an
accurate response. To this end, we introduce a peer-to-
peer indexing structure: peer-tree (a peer-to-peer ver-
sion of the R-tree data structure).

2. We present a peer-to-peer query processing model over
peer-trees that enables execution of NN and other
spatial queries. In our peer-to-peer query execution
model, a query can be posed in any node of the net-
work, as opposed to using the base station as the sole
entry point for all queries. We discuss trade-offs of var-
ious implementation alternatives for spatial queries.

3. We present a self-stabilizing peer-tree construction
program and thus render the above peer-to-peer query
processing model to be self-stabilizing.

Organization of the rest of this paper. In Section 2 we
present the system and fault model used in this paper. In
Section 3 we present our self-stabilizing peer-tree construc-
tion program. In Section 4 we show how to efficiently per-
form nearest neighbor queries in sensor networks and also
discuss extensions for execution of other spatial queries. We
compare and contrast our work with related work in Section
5. Finally, in Section 6, we conclude the paper.

2 System and Fault Model

We consider a geometric network model: sensor nodes
lie in a 2-D coordinate space. We assume a uniform distri-
bution of nodes and a connected topology, and that the cost
of communication (potentially through multihops) between
nodes that are distance � apart takes ������� amount of energy.

Each sensor node has a unique identifier, ��� . Each node
has a field of communication, within which it is capable of
receiving/transmitting messages. All nodes within this unit
field are its immediate neighbors (duplex links). For a node	 , we denote 	 ’s immediate neighbors as 1-neighborhood of	 , 
���
�� 	���� � , and denote 	 ’s 
 -neighborhood, 
���
�� 	�� 
�� , as
the set of nodes within a radius 
 of 	 . We assume that the
nodes have been deployed, and arranged themselves into a
connected topology, protocols for routing of the messages,
location discovery of the nodes, and maintenance of the
network exist, and are transparent to the application layer.
Such protocols are proposed in [5, 7, 32].

Fault model. We consider transient faults to affect the
sensor network. Nodes can fail for sometime and wake up,
and their state can be arbitrarily and transiently corrupted.
We do not assume any Byzantine faults in our model.

A program is stabilizing fault-tolerant iff starting from
an arbitrary state the program eventually recovers to a state
from where its specification is satisfied.

Problem statement. The problem is to design a peer-to-
peer query processing model where

� only the relevant nodes for the correct execution of a
spatial query are involved in the query execution (for
achieving minimal energy consumption and minimal
response time), and

� the underlying peer-to-peer indexing structure is self-
stabilizing (for achieving eventually correct answers to
the queries in the presence of faults).

3 Peer-trees

In this section we present a construction program for a
peer-to-peer R-tree implementation (peer-tree). To this end,
we first recall the R-tree [15] data-structure briefly in the
following subsection.



3.1 R-tree

An R-tree is an approximately balanced search tree
that is widely used for handling spatial data in traditional
database systems. In particular, R-tree is a generalization of���

-tree developed for efficient processing of intersection
queries on spatial databases. R-trees keep a set of (hyper-)
rectangles and allow the handling of arbitrarily shaped ob-
jects by representing each one with its minimum bounding
rectangle (MBR). The algorithms extend to higher dimen-
sions in a straight forward manner, but to keep the exposi-
tion clear we only consider the 2-dimensional case.

An R-tree node is allowed to hold between � and 
 ,

����	�
� , number of ��� ��
 ��
 � pairs where � ��
 denotes
the minimum bounding rectangle (MBR) of all rectangles
stored in the subtree pointed to by the children pointer 
 .
Note that: (a) rectangles at any level may be overlapping,
and (b) every descending path in the tree is a sequence of
nested rectangles with the last one containing actual posi-
tions of nodes in the sensor network.

A section of an R-tree and the corresponding MBRs are
depicted in the following figure.
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3.2 Peer-tree construction

An effective adaptation of R-trees to a de-centralized
model offers many advantages including efficiency in
searching over peer-to-peer systems. Here we present a dis-
tributed program for constructing a peer-to-peer version of
R-tree indexing structure.

Loosely speaking, our program constructs a hierarchical
partitioning of a sensor network into rectangle-shaped clus-
ters based on the number of nodes contained in the clus-
ters. In our hierarchical partitioning program, every node
cooperates at level 0 of the peer-tree construction, and only
clusterheads of level � cooperate for construction of level
� � � of the peer-tree. Every node 	 maintains a variable��� 	 (read level of 	 ) denoting the highest level of the peer-
tree construction that 	 has participated in. For every level

� , ��� ��� ��� 	 , 	 maintains a variable � � 	 ��� � (read parent of	 at level � ) to denote 	 ’s immediate clusterhead for level � .
Dually, as discussed in Section 3.1, 	 also maintains 
 � 	 �����
(read children of 	 for level � ), ��� ��� ��� 	 , in order to point
to all nodes � such that � � � � ��� � ��� 	 . That means, 	 is
the clusterhead of the MBR that contains 
 � 	 � � � . As we de-
scribe in Section 4, using this doubly-linked structure, any
node can query the peer-tree in a localized manner.

In our program we have two actions: (1) “join/form” a
cluster and (2) “split” a cluster.

We first describe the join/form cluster action. A node	 with
��� 	 � � executes the join/form cluster action if its

random timeout is expired and yet it is not included in the
cluster of a level � � � node (i.e., � � 	 � � � �!� � � ). In this case,	 first tries to contact a neighboring node " with

��� "#� � � �
by searching increasingly larger radii, 
 , and join " ’s cluster
(by setting � � 	 ����� �$" ). If no such " exists and 	 encounters
� nodes in level � within its 
 -neighborhood, then 	 waits for
a random time before setting

��� 	 � � � � and becoming the
clusterhead of these � nodes in one atomic step. (Several
self-stabilizing programs [8] exist for performing this oper-
ation.) If within the random wait period, 	 is contacted by
another node " with

��� "%� � � � , 	 simply joins " ’s cluster.
This way, the random wait period takes care of the forma-
tion of premature clusters that are concurrently started by
multiple nodes within the same region. Thus, the join/form
cluster action for node 	 at a level � is as follows:

(join/form a cluster)
if (

��� 	 � � and � � 	 ��� � �$� � � and ��& �(' ��)+*-,/.1032�4 � )
then 5 
�67� �18

//search for increasingly larger radii
while ( 9 
���
�� 	�� 
��:9;�<� or � � 	 ��� �>=�?� � � ) 5

if �A@B"C6D"FE 
�� 
�� 	 � 
��G6 ��� "#� � � � � 1

then 5H� � 	 � � �I6J�$" ; 
 � " � � ��6J� 
 � " � � �LKF5 	NM ; M

O67� 
 � �18

M //end-while
wait( ) *P,3.1032�4 );
if (� � 	 ����� �$� � � and

9J5Q"R9Q"CE 
���
�� 	�� 
�� and � � " ����� �TS M 9U�V� )
then 5 // form a cluster using Nbr � 	 � 
��

�XWY"R6D"RE 
���
�� 	 � 
 �G6/� � " ��� �I67� 	 � ;
Calculate � ��
 � 	 � � � using 
���
�� 	 � 
 � ;
� � 	 � � �I6J� 	Y8 ��� 	 67� � � �18

 � 	 � � � � ��67� 
���
�� 	 � 
 � 8M //end-ifM

1A formula Z\[(]C^>_H` a ^>_cb>a ^�d denotes the value obtained by per-
forming the (commutative and associative) [(] on the b>a ^ values for all^ that satisfy `�a ^ . As special cases, where [(] is conjunction, we writeZJe1^L_f`�a ^+_Qb>a ^�d , and where [(] is disjunction, we write ZhgQ^+_f`�a ^c_Qb>a ^�d .
Thus, ZJe1^+_i` a ^L_:b>a ^�d may be read as “if ` a ^ is true then so is b
a ^ ”, andZhgQ^j_f` a ^+_ib>a ^Xd may be read as “there exists an ^ such that both `�a ^ andb>a ^ are true”. Where ` a ^ is true, we omit ` a ^ . If b is a statement thenZJe1^N_:`�a ^Y_3b>a ^Xd denotes that b is executed for all ^ that satisfy ` a ^ .



Note that during concurrent executions of join action by
multiple nodes, a clusterhead may end up having more than

 children. In the split cluster action, a clusterhead 	 with
more than 
 children at level � (i.e., 9 
 � 	 9�� 
 ) splits its
cluster into clusters with number of children greater than or
equal to � but less than 
 . In the literature several programs
exist for split operation [15], and since clusterhead 	 has
information on � ��
 ’s of its children any of these programs
is applicable at 	 . After the split operation the resulting
new level � clusterheads inform their parent cluster about
the modification as another split operation may need to be
scheduled at level � � � as a result of this split operation.

(Split a cluster)
if ( 
 � 	 ��� ��� 
 ) then split( � ��
 � 	 � � � );

3.3 Self-stabilization of peer-tree

In order to achieve stabilization of the peer-tree, we em-
ploy a technique called “soft-state” stabilization [30, 33].
That is, we require a lease on critical variables of the peer-
tree structure so as to check and correct these variables pe-
riodically (i.e., when the lease expires).

More specifically, we assign a lease (timeout period)
on children variable of each clusterhead 	 at every level
� . When the lease expires, 	 checks its 
 � 	 � � � for correct-
ness. If all nodes � in 
 � 	 � � � are � � � level clusterheads
with � � � � � � � �#� 	 and are within � � 
 � 	 � � � , and more-
over � � 
 � 	 �����R� 
 holds, no correction is needed. If
 � 	 � � �<� 
 split action takes care of the correction. If
 � 	 � � �#� � we destroy 	 ’s � ’th level cluster, � ��
 � 	 ����� , so
that the members can join neighboring � ’th level clusters.
Similarly, if there exists a member � of 
 � 	 � � � such that
���E � ��
 � 	 ����� or � � � =� 	 , we also reset 	 ’s cluster.

(Collapse a cluster)
if ( timeout ( lease( 
 � 	 ��� � ) ) )
then 5

if ( 
 � 	 � � �I�V� or
� @B� 6 � E 
 � 	 � � �I6D���E%� ��
 � 	 � � ��� � � � =� 	 � )

then 5 collapse ( � ��
 � 	 ��� � ); MM
In order to conserve energy we set the lease period on
 � 	 � � � to be proportional to the level � of the cluster. The

higher the cluster level, the higher is the energy required for
the correctness check, and hence, we require such a check
less frequently.

Another tolerance property that might be desirable for
sensor networks is to mask the failure of a clusterhead. That
is, when a clusterhead responsible for some region fails, we
want another node within that region to assume responsi-
bility for the region. One such protocol for rotating leader
nodes is discussed in [32].

4 Peer-to-Peer Nearest Neighbor Queries in
Sensor Networks

We first present an overview of nearest neighbor queries
in Section 4.1 and then, in Section 4.2, we present a method
for efficiently performing peer-to-peer nearest neighbor
queries in wireless sensor networks. In Section 4.3 we dis-
cuss the tradeoffs involved in the method and in Section
4.4 we discuss extensions to the method for handling other
types of spatial queries.

4.1 Nearest neighbor queries

A nearest neighbor (NN) query is defined as follows:
Given a set of data objects, find the data object from the
data set which is closer to a given query object than any
other object in the data set. The widely used NN algorithm
is a branch-and-bound technique implemented over a tree-
based index structure [28]. The tree, which consists of min-
imum bounding rectangles (MBR), is traversed and several
of the MBRs are pruned if they are guaranteed not to have
the closest data point(s). At each level, the pruning compar-
ison involves distances to the children nodes as well as the
distance to the previously found nearest neighbor candidate.
Only nodes that can lead to a possible nearest neighbor are
further considered, while the remaining nodes and corre-
sponding subtrees are pruned out of the search space. There
are a number of cases where MBRs can safely be pruned.
For example, if MINDIST of an MBR, i.e., the shortest pos-
sible distance between the query point and any point in the
MBR, is larger than the current computed NN distance, then
there is no need to check the data points within that MBR.

An efficient implementation of NN algorithm over R-
trees is given below [2].

initialize PartitionList with the subpartitions of the root
sort PartitionList by MINDIST;
while (PartitionList is not empty) 5

if (top of PartitionList is a leaf)
then 5 find nearest point NNC in the leaf;

if (NNC closer than NN)
then 5 prune PartitionList with NNC;

NN:=NNC; M M
else 5 replace top of PartitionList with its children; M

resort PartitionList by MINDIST;M //end-while
output NN

4.2 Peer-to-peer nearest neighbor queries

We now discuss techniques for performing peer-to-peer
nearest neighbor queries over a sensor network. Using peer-
tree as the indexing mechanism, the task of performing NN



queries in a distributed fashion is significantly simplified.
The remaining issue is to enable querying of the index struc-
ture with initiation from any node, as opposed to initiation
only from the root: In traditional database systems, NN
queries are executed always starting from the root of the
tree, i.e., the top-most level clustering; in contrast, in a peer-
to-peer environment any node should have the capability of
initiating the query.

In our peer-tree structure, data (e.g., sensor readings,
interesting events such as the detection of a trespasser) is
stored only at the physical sensor nodes, i.e., nodes that
are at level 0 of the hierarchical clustering (this is also the
case in the original R-tree index structure). Thus, at some
level of the hierarchical clustering peer-to-peer NN queries
should start heading downwards to reach the data at level
0. However, in our peer-to-peer NN query execution model,
we are able to limit an NN query only to the relevant nodes
and can prevent it to propagate till up the root (i.e., topmost)
partition: If the query can be answered locally, there is no
need to go up till the root partition and query the root. By
limiting the query to only the relevant nodes, we conserve
energy. In particular, in our program the NN query is prop-
agated upwards (i.e., query is sent to parent) only when the
query point � � � � � is not within MBR of the current cluster-
head. This way we are guaranteed at some level to reach a
clusterhead whose MBR contains � � � � � , from whereon the
downwards journey of the NN query starts.

Execution of NN( � � � ) at 	

if ( @���61��� ��� ��� 	 6 � � � � � E%� � 
 � 	 � � �
and � � � � � �E%� ��
 � 	 ���i� � � )

then 5
initialize PartitionList with 
 � 	 ��� �
sort PartitionList by MINDIST;
while (PartitionList is not empty) 5

if (top of PartitionList is at level 0)
then 5 return nearest point NNC in level 0 � ��
 ; M
else 5 send query to child at top of PartitionList;

if ( returned NNC is closer than NN)
then 5 NN:=NNC; MM // end-if

prune PartitionList with NN;M // end-whileM
else 5 send query to � � 	 � ��� 	 � ; M
Above is the peer-to-peer program at node 	 for execu-

tion of an NN query asking for the closest data to a location
� � � � � . (In our query execution model any node can insert an
NN query to the system with respect to any arbitrary � � � ���
coordinate.) Note that peer-to-peer execution of NN is very
similar to its centralized counterpart except that when mov-
ing to a lower level cluster control is transferred to the node

responsible for the respective cluster. In the next subsection
we discuss the tradeoffs involved in this portion of the query
execution.

4.3 Tradeoffs in peer-to-peer nearest neighbor
queries

In peer-to-peer execution of NN queries our aim is to
minimize the energy while minimizing the response time.
However, these two objectives can usually be conflicting.
The query processing program needs to be aware of the
tradeoffs between minimal response time and minimal en-
ergy consumption when executing the queries. We explain
these next.

Minimal response time. In order to achieve minimal
response time, the while loop should be executed in parallel
for all partitions in the partition list. That is, at each level
each clusterhead sends the query to its children in the par-
tition list in parallel. The clusterhead collects the replies
returned by the nodes and selects the reply with the mini-
mum distance as result of the nearest neighbor query.

Minimal energy consumption. In order to achieve
minimal energy consumption, the while loop should be ex-
ecuted sequentially so as to prune maximum number of par-
titions/nodes in the partition list without actually having to
query all the sensors covered by the partition list. That is, at
each level each clusterhead sends the query to its children
in the partition list in sequential order, and at some point
in time only one of the children is executing the query. By
following a similar proof structure of [2], it can easily be
proved that minimum number of nodes will participate in
the query processing, i.e., the program requires communi-
cation among only the necessary nodes.

Optimizing both the response time and energy con-
sumption. To achieve this, we use a hybrid technique
that blends the previous two techniques that separately op-
timizes the response time and energy consumption. In this
method, the partition list is grouped into partition-groups
and the while loop is executed in parallel for the parti-
tions within the same partition-group but sequentially for
the partition-groups in the partition list.

4.4 Extensions to other spatial queries

The discussion on nearest-neighbor queries can easily be
extended to other spatial queries. An obvious extension is
the range query where the data objects that fall into a query
region is asked. Similar to the NN query, the query can be
initiated from any node of the peer-tree and the processing
needs to be developed in a distributed manner. Below we
discuss some other nontrivial types of spatial queries and
their potential applications in sensor networks.



Constrained nearest neighbor (CNN). CNN queries
are recently formulated in the context of database systems
[12]. This type of query is targeted towards users who are
particularly interested in the nearest neighbor(s) in a region
bounded by certain spatial conditions, rather than in search-
ing for nearest neighbors in the entire data space. This can
be seen as performing nearest neighbor and range queries in
a single query.

In sensor networks, there are several cases where a
user may enforce spatial constraints on a nearest neighbor
search. An example of a CNN search over sensor networks
is to ask “the nearest object, or objects, to the north-east of
a given location ( � , � )”. The query result is the closest data
point to the query point that satisfies the given constraint,
i.e. to the north-east of the query point. CNN queries can be
efficiently implemented on top of the previously described
peer-tree implementation without changing the underlying
structure.

Reverse nearest neighbor. Another recently proposed
query type in spatial databases is reverse nearest neighbor
(RNN) queries [21]. Unlike nearest neighbor queries, RNN
queries find the set of objects that have the query point as the
nearest neighbor. An RNN query can be particularly impor-
tant for a sensor network environment, both for dynamically
establishing the infrastructure of the sensor network and for
running real-time spatial queries using RNN. For example,
an RNN query can be used to find the best location to set
up a new base station in order to minimize the length of the
communication routes (and hence energy consumption) in
the sensor network. Or similar to the NN query, one can ask
all objects that have the query object as the nearest neighbor.

RNN queries can be efficiently implemented on top
of the previously described peer-tree implementation with
only a minor change on the structure. We need to store
one more information, � �L� , about each MBR, which is the
maximum distance from the points contained in the subtree
rooted at this MBR to their nearest neighbors [31]. By us-
ing this information, RNN queries can be effectively imple-
mented using the same structure. Since the structure and the
algorithm doesn’t have major differences from the peer-to-
peer NN algorithm, similar efficiency-energy tradeoffs ap-
ply also for this case.

Generalization for multi-dimensional data. Besides
the location-based queries, the proposed framework can be
utilized for other multi-dimensional queries over sensor net-
works. One such example could be environmental moni-
toring by running continuous queries asking temperature,
etc. Each of the sensed attributes can be defined as a di-
mension in multi-dimensional space and the peer-tree can
be constructed as a multi-dimensional index structure. The
dynamic nature of the system should be carefully addressed
while building such an index structure.

5 Related Work

In this section, we compare and contrast our work with
related work on 1) database systems, 2) peer-to-peer sys-
tems, and 3) sensor networks.

Database systems. Nearest neighbor (NN) searching
[4,18,19,28] is an important primitive operation in database
systems and therefore has been extensively studied in the
database community, especially in the context of CAD [3],
multimedia [11], biomedical [22], and spatial databases [6].
The similarity metric of an NN query can be defined con-
sidering the underlying application: in spatial databases the
commonly used distance is the geographical distance be-
tween objects. Many of the peer-to-peer and sensor net-
work applications require spatial and/or similarity queries,
and hence incorporation of NN queries to these applications
is crucial. However, as we have discussed in the introduc-
tion, the solutions (e.g., indexing technologies) provided by
the database systems are not readily applicable in the con-
text of sensor networks and peer-to-peer systems due to the
decentralized nature of these systems.

Peer-to-peer systems. Exact lookup operations are
commonly used in the current peer-to-peer implementa-
tions, e.g., Napster, Gnutella, and Kazaa. Napster [26]
was one of the first popular systems that allow data shar-
ing through a wide area network of users. Napster uti-
lized a centralized index where exact match queries can be
performed. The central index has a directory of all data
available in the system. Each peer in the system communi-
cates with the central node. This simple approach is clearly
not scalable, not suitable for dynamic systems, and prone
to failures because of a central point of failure. Gnutella
[13] follows a radically different approach where each peer
keeps its own index. The local index has the local database
information as well as the addresses of the neighbor peers.
The former is used for lookup and the latter is used for
routing purposes. In contrast to the centralized model, e.g.,
Napster, the distributed model, e.g., Gnutella, does not have
a central point of failure. However, Gnutella does not use an
intelligent indexing technique to process the queries, which
obviously results in a high overhead in query processing and
network maintenance. In contrast to these two models, i.e.,
centralized vs. distributed, Kazaa [20] follows a hybrid ap-
proach where supernodes are used inside the system to min-
imize the flood and the possibility of failures in the system.
This idea is similar to the use of base stations in sensor net-
works.

Distributed hash tables (DHT) also have been success-
fully utilized in peer-to-peer query processing. For exam-
ple, Chord [29] proposes a distributed hash lookup tech-
nique over a ring of peers. For routing purposes, each
peer in the system maintains information about some of its
neighbors. The neighbors are chosen in a way logarithmi-



cally increasing distance on the ring structure. By keeping
some redundant information, the lookup can be performed
even in the case of some node failures and re-joins. CAN
[27] proposes to use a multi-dimensional space to index the
data over the network. Each data object is mapped into a
d-dimensional space, and stored in a peer that owns the cor-
responding part. The proposed index structure is similar to
a grid structure that performs exact match queries. Skip-
Net [16] organizes data primarily by lexicographic key or-
dering (and only secondarily by DHT) to support controlled
data placement, routing locality, and efficient range queries.
And finally Gupta et al. [14] recently developed a peer-to-
peer data sharing architecture for computing approximate
answers for the complex queries by finding data ranges that
are similar to the user query.

All of the indexing techniques discussed above have
been proposed for exact match and 1-dimensional range
queries for file sharing. Even though the idea of indexing
on peer-to-peer systems has been explored in the context of
exact match and 1-dimensional range queries, to the best of
our knowledge our work is the first to explore the use of
index structures for NN and spatial queries in peer-to-peer
systems.

Since we have presented our peer-to-peer spatial query
processing model in the context of sensor networks, our
work focused also on energy conservation, e.g., lesser num-
ber of nodes are participating at the higher levels of index-
ing hierarchy. Due to the hierarchical nature of our index-
ing structure, the routing paths in our work scale logarith-
mically with respect to the number of nodes in the sys-
tem. While adopting our work for the wired model, we
can further improve the scalability of our routing paths by
exploiting DHT functionality. More specifically, this can
be achieved by inserting long links (i.e., remote or finger
neighbors) at each node. These long links also improve the
load balancing: traffic overhead would be approximately
the same at all nodes regardless of the level of the node in
the indexing hierarchy.

Sensor networks. Peer-to-peer query processing in sen-
sor networks is a new concept. Traditionally, sensors are
used as data gathering instruments, which continuously feed
a central base station database. The queries are executed in
this centralized base station database which continuously
collates the data. For example, in TinyDB [23] queries are
posed at a powered base station where they are flooded to
sensors in the network. However, given the current trends
(increase in numbers of sensors, together collecting gigabits
of data, increase in processing power at sensors) it is not
anymore feasible to use a centralized solution for querying
the sensor networks. Therefore, there is a need for estab-
lishing an efficient access structure on sensor networks in
order to contact only the relevant nodes for the execution
of a query and hence achieve minimal energy consump-

tion, minimal response time, and an accurate response. We
achieve these goals with our peer-to-peer query processing
model on top of a distributed index structure on wireless
sensor networks.

For the construction of the peer-tree structure, we have
presented a self-stabilizing clustering program that con-
structs a hierarchical partitioning of a sensor network based
on the number of nodes contained at each cluster. We could
have alternatively employed LOCI [25] clustering program,
that uses the geometric radii of the clusters as the criteria for
constructing a hierarchical partitioning of a sensor network.
As analogous to

� � � 
�� (where 
 � �c�Y� ) tolerance factor
in our clustering program, LOCI constructs clusters with
radius

� 
 ��� � where � � � � 
 . Both programs exploit the tol-
erance factor of the clusters for achieving local (in the sense
that each node needs information only about nearby nodes)
self-stabilization in the face of arbitrary transient faults.

6 Conclusion

In this paper, we have investigated the problem of effi-
cient execution of spatial and similarity queries in sensor
networks. To this end, we have presented a self-stabilizing
peer-to-peer indexing structure: peer-tree. Using peer-tree,
we have presented efficient methods for performing nearest
neighbor queries, and discussed an extension of these meth-
ods for constrained nearest neighbor, and reverse nearest
neighbor queries, as well as multi-dimensional data queries
in sensor networks.
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