
Retrospective Lightweight Distributed Snapshots Using Loosely Synchronized Clocks

Aleksey Charapko, Ailidani Ailijiang, Murat Demirbas
University at Buffalo, SUNY

Email: {acharapk,ailidani,demirbas}@buffalo.edu

Sandeep Kulkarni
Michigan State University

Email: sandeep@cse.msu.edu

Abstract—In order to take a consistent snapshot of a dis-
tributed system, it is necessary to collate and align local logs from
each node to construct a pairwise concurrent cut. By leveraging
NTP synchronized clocks, and augmenting them with logical
clock causality information, Retroscope provides a lightweight
solution for taking unplanned retrospective snapshots of past dis-
tributed system states. Instead of storing a multiversion copy of
the entire system data, this is achieved efficiently by maintaining
a configurable-size sliding window-log at each node to capture
recent operations. In addition to retrospective snapshots, Retro-
scope also provides incremental and rolling snapshots that utilize
an existing snapshot to reduce the cost of constructing a new
snapshot in proximity. This capability is useful for performing
stepwise debugging and root-cause analysis, and supporting data-
integrity monitoring and checkpoint-recovery. We implement
Retroscope for the Voldemort distributed datastore and evaluate
its performance under varying workloads.

I. INTRODUCTION

Logging system state, messages, and assertions is a com-
mon approach to providing auditability in a single computer
system. However, naive logging-based approaches fail for the
auditability of distributed systems. For distributed systems, it
is necessary to collate and align local logs from each node into
a globally consistent snapshot [1]. This is important, because
inconsistent snapshots are useless and even dangerous as they
give misinformation.

Unfortunately, current distributed snapshot algorithms are
expensive and have shortcomings. The Chandy-Lamport snap-
shot algorithm [2] assumes FIFO channels and takes a proac-
tive approach. It allows only scheduled, planned snapshots, and
as such it is not amenable for taking a retrospective snapshot of
a past state. One way to achieve retrospective snapshots is via
the use of vector clocks (VCs) [3]–[5] with space complexity
of Θ(n) to be included in each message in the system. This
incurs intolerable overhead that grows linearly with n, the
number of nodes. Moreover, VCs do not capture physical
time affinity and using VCs in partially synchronized systems
implies that potentially unreachable states may be reported as
false positives. Logical clocks (LCs) [6] can be considered
for reducing the cost of VC. However, taking a retrospective
snapshot with LCs also fails because, unlike VCs, LCs capture
causality partially, and cannot identify consistent snapshots
with sufficient affinity to a given physical time.

To get snapshots with sufficient affinity to physical time, one
can potentially utilize NTP [7]. However, since NTP clocks are
not perfectly synchronized, it is not possible to get a consistent
snapshot by just reading state at different nodes at physical
clock time T . A globally consistent snapshot comprises of
pairwise concurrent local snapshots from the nodes, but the

local snapshots at T may have causal precedence, invalidating
the resultant global snapshot (cf. Figure 1). Thus, using NTP
to obtain a consistent cut requires waiting out the clock uncer-
tainty [8], [9], making it unsuitable for consistent snapshots.

Fig. 1: Using NTP only fails to take consistent shot

Retroscope. To address this problem, we leverage our
recent work on hybrid logical clocks (HLC) [10]. HLC is a
hybrid of LC and NTP, and combines causality with physical
clocks to derive scalar HLC timestamps. HLC facilitates dis-
tributed snapshots because a collection of local snapshots taken
at identical HLC timestamps are guaranteed to be a consistent
cut. Using this observation, we design and develop Retroscope,
a lightweight solution for constructing consistent distributed
snapshots by collating node-level independent snapshots.

Retroscope supports taking unplanned retrospective snap-
shots of a past system state in an efficient manner. Instead
of storing a multiversion copy of the entire system data,
this is achieved efficiently by maintaining a configurable-size
sliding window-log at each node to capture recent operations.
In addition to instant and retrospective snapshots, Retroscope
also provides incremental and rolling snapshots that utilize an
existing full snapshot to compensate the cost of snapshot ex-
ploration in proximity. After a retrospective snapshot is taken
at a recent past time T , the cost of taking snapshots at T + k,
for small values of k, becomes negligible. Using incremental
and rolling snapshots, Retroscope supports performing step-
wise debugging, root-cause analysis, data-integrity monitoring,
and checkpoint-recovery. A devops team can use Retroscope
to explore a problem by stepping through a time interval of
interest. Retroscope can also help identify a clean snapshot,
where data integrity constraints hold, in order to recover the
system with minimal loss of updates.

We design and develop Retroscope as a standalone library
so it can be easily added to existing distributed systems.
Our Retroscope implementation is available on github as an
opensource project [11]. We have used Voldemort key-value
store to showcase Retroscope and evaluate its performance.

Retroscoping Voldemort. Voldemort [12] is a popu-
lar opensource system used in LinkedIn, that implements a
Dynamo-like highly available distributed key-value store [13].
Our Retroscope instrumentation of Voldemort leverages the
Retroscope library functionality and required less than 1000



Fig. 2: Example of HLC operation with ε = 2 on 3 process.
Dashed lines denote the physical clock ticks with timestamp
for each process next to it. HLC time is written above each
event in the “l,c” format.

lines of code to be added to the data-store. Retroscoped
Voldemort maintains a sliding window log for capturing recent
events, and enables any client to initiate a snapshot for time
T within this window-log. When a snapshot is requested, this
window-log and the database state is used for constructing the
snapshot for the requested time. For a 2GB Voldemort database
maintained over a 10 nodes cluster, taking and finalizing a
snapshot for current time, Tnow, requires ∼15 seconds. After
a snapshot is taken, it takes only ∼100msecs for taking an
incremental snapshot in the vicinity of that snapshot. The
snapshots can go back to ∼10 minutes in the past. Going
further in the past increases the window-log size, increasing
the snapshot completion time. Certain optimizations, such
as periodic window-log compaction, deferred snapshots, and
speculative snapshots help improve the performance.

Outline of the rest of the paper. We describe HLC
timestamping next. In Section III, we explain the Retroscope
mechanisms and evaluate the performance in a Voldemort case
study in Section IV. We discuss extensions in Section V. We
review related work before our concluding remarks.

II. HLC TIMESTAMPING

Logical clocks (LCs) satisfy the logical clock condition:
if e hb f then LC.e < LC.f , where hb is the happened-
before relation defined by Lamport [6].This condition implies
that if we pick a snapshot where for all e and f on different
nodes LC.e = LC.f , then we have ¬(e hb f) and ¬(f hb e),
and therefore the snapshot is consistent.1However, since LC
timestamps are driven by occurrences of events, and the nodes
have different rate of event occurrences, it is unlikely to find
events at each node with the same LC values where all are
within a given physical clock affinity.

Since HLC [10] is a hybrid of NTP and LC, it satisfies
the logical clock condition: if e hb f then HLC.e < HLC.f .
Thus, a snapshot where, for all e and f on different nodes,
HLC.e = HLC.f is a consistent snapshot as shown in Figure 2.
Moreover, since HLC logical time is driven by NTP time, it
is easy to find events at each node with the same HLC values
that are all within sufficient affinity of the given physical time.

HLC implementation. Figure 2 illustrates HLC operation.
At any node j, HLC consists of l.j and c.j. The term l.j

1NTP violates the logical clock condition. In Figure 1, e hb f but the NTP
timestamp of e, pt.e, is greater than that of f , pt.f .

Fig. 3: Instant distributed snapshot.

denotes the maximum physical clock value, p, that j is aware
of. This maximum known physical clock value may come from
the physical clock at j, denoted as pt.j, or may come from
another node k via a message reception that includes l.k. Thus
given that NTP maintains the physical clocks at nodes within
a clock skew of at most ε, l.j is guaranteed to be in the range
[pt.j, pt.j + ε]. The second part of HLC, c.j, acts like an
overflow buffer for l.j. When a new local or receive event
occurs at j, if l.j stays the same2, then in order to ensure
the logical clock condition c.j is incremented, as HLC.e <
HLC.f is defined to be l.e < l.f ∨ (l.e = l.f ∧ c.e < c.f).
On the other hand, c.j is reset to 0 when l.j increases (which
inevitably happens in the worst case when pt.j exceeds l.j).
The value of c.j is bounded. In theory, the bound on c.j is
proportional to the number of processes and ε, and in practice
c.j was found to be a small number (< 10) under evaluations.

Our HLC implementation in Java is based on the HLC
implementation of CockroachDB [14] in Go. HLC can fit
l.j and c.j in 64 bits in a manner backwards compatible
with the NTP clock format [7] and can easily substitute for
NTP timestamps used in many distributed systems. HLC is
also resilient to synchronization uncertainty: degraded NTP
synchronization only increases the drift between l and pt
values and introduces larger c values.

III. RETROSCOPE SNAPSHOTS

Retroscope keeps a local log at each node to record the re-
cent state changes. This log is maintained as a sliding window,
and each state change in the window-log is accompanied by
an HLC timestamp. By ensuring that all nodes roll back to the
same HLC time, Retroscope achieves a consistent cut. In this
section, we present different flavors of Retroscope snapshots,
including the instant and retrospective snapshots, and their
derivatives, incremental and rolling snapshots.

A. Snapshot Models

Instant snapshots. Figure 3 depicts our distributed snap-
shot system with logs at each node. Any node can become
the snapshot initiator. The initiator starts an instant snapshot
at the current HLC time at that node, Tnow, and broadcasts
messages to other nodes. Once a node receives the message,
at time Tr, Tr > Tnow, it removes the bound on the growth of
its local window-log and starts copying its local state/database
for the snapshot. We do not freeze the state/database during
copying in order to keep the nodes available for serving normal
operations. The copying of local states finishes at different Tf

2This can happen if l.j is updated with l.k from a received message, and
pt.j is still behind l.j.



(a) Instant (b) Retrospective

Fig. 4: Instant and retrospective snapshots.

times at the nodes. However, since each state transition has
been recorded to the window-log with an HLC timestamp,
this allows us to roll back any changes occurring after Tnow
in order to arrive the globally consistent snapshot at time Tnow.
Figure 3 uses a green-dashed arrow to illustrate the backward
application of the window-log until reaching Tnow.

Upon successfully finishing the local snapshot, the nodes
report back to the initiator. Once the initiator receives all acks
from the nodes, the global snapshot has been taken. Local
snapshots are not transmitted to the initiator unless explicitly
requested. For example, for checking whether a conjunctive
predicate is violated, it would suffice to send the information
about whether the local predicate is true at that local snapshot.
A distributed reset service will also benefit from the in situ
local snapshots since the system is to be reset on mostly the
same set of machines.

Partial snapshot may result in case of a node failure or a
lost or delayed message: if a node receives a snapshot message
very late, then its window-log may have moved beyond the
requested point, and it may not be able to take that snapshot.
If partial snapshot does not provide sufficient information, the
initiator can take another snapshot.

Retrospective snapshots. The natural extension to the
instant snapshot protocol is to allow for retrospective snapshots
to examine system state at some time Tpast < Tnow. The
procedure to take a retrospective snapshot remains the same
as with the instant snapshots except that the system needs
to traverse further along the window-log. Figures 4a and 4b
illustrate this comparison. The window-log size can be tuned
to provide a compromise between resource utilization and the
needed depth of retrospection. It is also possible to persist the
window-log to disk to allow going further in the past.

Incremental snapshots. Taking multiple retrospective
snapshots in succession can help examine how system states
evolved, but that would be computationally expensive. To
perform this in a time/space efficient manner, Retroscope
provides forward-incremental and backward-incremental snap-
shots that capture the system state after and before a given base
snapshot respectively. Figure 5 illustrates taking a backward-
incremental snapshot to arrive to a time Tb using a snapshot at
time Tpast as the base point. In order to get a snapshot at Tb,
it is unnecessary to traverse the entire log backwards from the
current state, and instead the system can just undo the changes
captured in the log between Tpast and Tb, reducing processing
time of the snapshot. In addition, disk storage can be saved by
only keeping the changes between the base point and the new
snapshot, albeit at the increased computational cost incurred
upon snapshot retrieval.

Fig. 5: Backward-incremental snapshot using bidirectional
windowed-log on a single process.

Rolling snapshots. Monitoring and debugging services
can benefit from a snapshot that can quickly move through
the states of a distributed system. For applications, such
as root-cause analysis, that examine the snapshots one at a
time without the need to go back, keeping many incremen-
tal snapshots would be wasteful. Instead, rolling snapshots
provide the ability to progress from one state to the next
without preserving the prior snapshot, reducing the storage
and processing time needed for long chains of snapshots.

B. Snapshot Limitations

Channel state snapshot. Capturing channel states can be
managed by employing a similar window-log mechanism to
keep both sent and received messages at each node. While
some optimizations are possible in maintaining these messages
log (such as, using pointers in lieu of data duplication, and
recomputing instead of storing), these additional logs can
unduly tax the system resources. Retroscope does not capture
the channel states automatically. The lack of channel states,
however, does not degrade the usefulness of our snapshots for
many applications. Invariant predicates for distributed systems
are often written over process states, rather than referring to
the channel states. This is because, channels are unreliable in
distributed systems, and important send/receive messages are
encoded as process state anyways. In particular, AP systems
in CAP categorization [15] are designed to be oblivious to
channel state, and employ mechanisms like gossip to tolerate
inconsistencies from lost messages and partitions.

Undo Limitations. While most operations are easy to
record in the window-log and undo, operations that involve
intrusive changes to the system state are exceptions to this rule.
For example, dropping an entire database/table would require
Retroscope to place the table into the window-log in order
to be able to revert the operation. Even though the window-
log may allocate more storage by using disk instead of RAM,
keeping such large items would impact the performance and
increase the storage requirements.

IV. EVALUATION OF RETROSCOPE ON VOLDEMORT

We have implemented Retroscope as a Java library. The
library exposes the API necessary to manage HLC time and
maintain the window-logs and compute the differences be-
tween the two points of time on these logs. We used the library
to add retrospective snapshot capabilities to a Voldemort key-
value datastore, requiring roughly 1000 lines of codes to
be added to Voldemort. These changes facilitate the HLC
exchange, expose new snapshot API and allow to obtain the
snapshots against Voldemorts internal BDB JE storage engine.

We evaluate our Voldemort Retroscope implementation on
an Amazon EC2 cluster of 10 instances, each with 2 vCPUs



100,000 1,000,000 10,000,000
Database Size (items)

0

2000

4000

6000

8000

10000

12000

Th
ro

ug
hp

ut
 (
op

s/
s)

Retroscope 50% Write

Voldemort 50% Write
Retroscope 100% Write

Voldemort 100% Write

Fig. 6: Throughput comparison of snapshot enabled and un-
modified copies of Voldemort.

and 8 GB of RAM. A separate VM is used for generating the
workload by simulating 11 clients interacting with the system.
We test Retroscope under different workloads, ranging from
10% write to 100% write, with random item selection unless
otherwise stated.

A. Retroscope overhead

Retroscope introduces window-log and HLC instrumenta-
tion to Voldemort. In order to test how much overhead these
additions cause over the unmodified Voldemort system, we
conduct a set of experiments on our cluster using various
database sizes, ranging from a small database of 100,000
items to a moderately large one at 10,000,000 key-value pairs.
Since most of the changes are introduced on the write path
of Voldemort, we use write intensive workloads of 50% and
100% writes to evaluate the Retroscope overheads.

Figure 6 shows the average throughput over 10 runs of the
experiment for each of the chosen database sizes and work-
loads. Enabling snapshot capability degrades performance only
slightly, despite the added overhead of HLC timestamp in each
message and the need to maintain an in-memory window-
log. For the small databases we observe 1.8% overhead in
throughput, while the largest databases show decline of up
to 10% —although we also observe bigger variances during
those tests. The latency overheads were also under 10%.

After demonstrating the overhead of Retroscope instru-
mentation on performance, we next evaluate the overhead of
actually taking a snapshot. Figure 7 illustrates how throughput
and latency for normal read and write operations are affected
while instant snapshot is progressing. Similar to our previous
experiment, we used a Voldemort cluster with a database of
10,000,000 items of 100 bytes each. Voldemort is configured
with replication factor of 2 nodes, meaning that only 2
machines in the cluster maintain the copy of each key-value
pair. We collect the throughput, average latency, and 99th
percentile latency for every 1 second of execution.

Soon after the snapshot initiation, we observe some perfor-
mance degradation and variance in clusters performance. The
overall throughput degrades by 18%, and latency increases by
25% during the snapshot execution. We also observe a spike in
99th percentile latency. The performance decline is attributed
to an increased disk load: Voldemort needs to flush memory
cache to disk, perform a copy of BDB JE files, and rollback

0 10 20 30 40 50 60
Elapsed Time (s)

0

20

40

60

80

100

La
te

nc
y 

(m
s)

0

1000

2000

3000

4000

5000

6000

7000

Th
ro

ug
hp

ut
 (
re

q/
s)

Average Latency

99th %ile Latency

Throughput

Snapshot

Fig. 7: Impact on Voldemort performance while taking an
instant snapshot at 50% write workload.

0 100 200 300 400 500 600
Elapsed Time(s)

0

200

400

600

800

1000

1200

1400

Th
ro

ug
hp

ut
 (
KB

/s
)

Throughput (KB/s)

0

500

1000

1500

2000

2500

M
em

or
y 

(M
B
)

Memory Consumption (MB)

Fig. 8: Memory consumption of a signle Voldemort node.

the changes. Using a separate disk for snapshots would reduce
disk contention and boost system’s performance.

B. Reach of Retroscope snapshots

Our Voldemort prototype keeps the window-log in memory,
as such the amount of RAM available to Retroscope becomes
a limiting factor for the retrospection. Here we evaluate the
memory-usage overhead of Retroscope, and its limitations on
the extent of past state reach for retrospective snapshots.

Figure 8 shows the memory usage of a single Voldemort
node with unbounded window-log serving write requests.
During the first 410 seconds of operation, the node is not
under memory pressure and shows high performance of 5004
operations per second or 1251 Kb/s on average, however as the
memory consumption gets closer to a 2GB limit, JVM spends
more time in garbage collection, greatly reducing Voldemort’s
performance. JVM seizes to operate with OutOfMemoryEx-
ception after 560 seconds of runtime. Higher throughput will
result in smaller maximum window-log size, but distributing
the workload among the nodes in a system will prolong the
reach of retrospection available to the operator.

C. Retroscope snapshot latency

The latency of a Retroscope snapshot is correlated with how
far back it needs to reach, as snapshots going further in the
past must traverse larger log segment to compute the difference
between current and past states. Far reaching snapshots also
need to perform larger number of disk I/O operations. Figure
9a shows an increasing cost of taking a full snapshot of a
10 million items database under the workloads of various
write intensity. As expected, an instant snapshot, taken at
0 seconds back, is the fastest one and increasing the reach
of retrospection also increases the snapshot latency. We also
observe that write-intensive workloads take longer to process



60 120 180 240 300
Retrospection Depth (s)

10

15

20

25

30

35
Sn

ap
sh

ot
 L

at
en

cy
 (
s)

100% Write
50% Write
10% Write

0

(a) Depth of retrospection.

60 120 180 240 300
Rolling Interval (s)

0

1

2

3

4

5

6

7

8

Sn
ap

sh
ot

 L
at

en
cy

 (
s)

100% Write
50% Write
10% Write

(b) Rolling snapshot.

Fig. 9: Latency for retrospective and rolling snapshots.

snapshot. A snapshot under a 100% write workload takes as
much as 33% longer to complete compared to a 10% write
workload. This is due to the bigger window-log accumulated
for the same time interval. Underlying BDB JE datastore, used
as a default storage mechanism in Voldemort, also impacts the
snapshot latency. Under heavy load BDB undergoes frequent
log cleaning, blocking the snapshot routine from making a
copy until the cleaning is complete. We learned that the log
cleaning takes as much as 15 seconds on test database, thus
a single node undergoing log cleaning negatively impacts the
performance for the entire cluster.

Figure 9b illustrates the latency increase for rolling snap-
shots on the 10 million item database. Rolling snapshots do
not perform full data copy, and they are bottlenecked only
by log traversal and application of the differences to the base
snapshot on disk.

V. IMPROVING RETROSCOPE PERFORMANCE

We describe a few optimizations for Retroscope. These
techniques are orthogonal and can be combined together for
improving the performance further.

Memory Utilization. High memory utilization is a major
limiting factor for Retroscope. Reducing the memory required
to maintain the window-log will allow a higher depth of
retrospection We have a few possible ways to improve on
memory utilization. One solution is to apply data compression
methods to the log. Keeping log overheads low can also help,
especially for logs with large number of small items. Our
current Java realization has fairly high JVM overheads for
each item, and we can reduce these implementation overheads
by using a lower-level language, such as C, for window-log.

Deferred snapshots. When the database size is large,
taking a snapshot at all nodes simultaneously may incur sig-
nificant load, reducing the throughput for the database clients.
However, Retroscope does not require for local snapshots to
be taken simultaneously by leveraging HLC timestamps. With
our system, each node can take a snapshot individually, and
the collated local snapshots still represent a consistent global
snapshot. Having a snapshot where nodes start in a deferred
off-phase manner can balance the processing in time, and
flatten the snapshot overheads.

Deferred snapshots can be implemented using the node IDs
to dictate the snapshot order in the cluster in such a way that

no more than k nodes fully overlap in time when taking a
snapshot. With this approach some nodes will capture more
history using the window-log. This tradeoff makes sense if
smoothly shedding the snapshot load in time is beneficial for
ensuring a high throughput capacity for the clients.

Speculative snapshots. A rolling snapshot performs less
work compared to a full snapshot as it reuses the old snapshot
and does not need to copy data. This introduces the opportu-
nity to take occasional speculative snapshots so that when a
snapshot is actually needed we may have a nearby snapshot
to leverage. When that is the case, we can perform a rolling
snapshot and complete the request in less time.

There is a tradeoff associated with taking speculative snap-
shots: we are making a bet that an actual snapshot will be
requested soon. Using historical data or identifying triggering
conditions for a snapshot can help us make a better prediction
for taking a speculative snapshot. That being said, a mispre-
dicted speculative snapshot can also find some use as a backup.

VI. RELATED WORK

Berkeley DB Retrospection. Retro allows past state
querying and inspection against a Berkeley DB [16]. Retro,
does not have the ability to inspect arbitrary past state, instead
all retroactive snapshots must be planned ahead of time by
issuing a snapshot now command. At a later time, users can
query the database for items in any of the past snapshots.
The system makes its own retrospective component persist on
the disk alongside the BDB log without modifying the code
responsible for the current state requests, preserving the API
compatibility with BDB. Unlike Voldemort, which uses many
independent BDB JE instances on different servers, Retro is
limited to a single BDB deployment.

Eidetic systems. Eidetic systems can recall any past state
that existed on the computer, including all versions of all files,
the memory and register state of processes, interprocess com-
munication, and network input. In [17], the authors develop
an eidetic system by modifying Linux kernel to record all
nondeterministic data that enters a process: the order, return
values, memory addresses modified by a system call, the tim-
ing and values of received signals, and system time. The major
space saving technique in that work is to use model-based
compression: the system constructs a model for predictable
operations and records only instances in which the data differs
from the model. That is, the system only saves new input and
nondeterministic choices and can recompute everything else.
The results in [17] are for single CPU machines and do not
account for issues in distributed systems.

Freeze-frame file system. The Freeze-Frame File Sys-
tem (FFFS) [18] uses HLC [10] to implement retrospective
querying on the HDFS file system [19]. FFFS has multiple
logs, persisting on low-latency storage, to capture changes
on HDFS NameNode and DataNodes. An indexing scheme
is used to access the logs and retrieve requested pages from
the past. FFFS required intrusive changes to the underlying
system and replaced HDFS append-only logs with multiple
HLC-enabled logs and indexes. FFFS records every update to



data and metadata, and in effect implements a multiversion
data store. In contrast, Retroscope focuses on low overhead
design of a snapshot primitive, and keeps a window-log for
undoing recent updates to take a retrospective snapshot.

Distributed tracing tools. There has been several work
on distributed tracing tools [20]–[22] for troubleshooting of
distributed systems. Two main challenges in tracing are that
instrumentation is decided at development time, and dynamic
dependencies in the distributed system of systems. Pivot
tracing [22] attempts to overcome these challenges by using
dynamic instrumentation and causal tracing. In particular, it
models systems events as tuples in a streaming distributed
dataset, and dynamically evaluate relational queries over this
dataset using the “happened-before join” operator.

Retroscope takes a complementary approach to the tracing
work. In a Retroscope snapshot, state across nodes is being
considered at a given physical time in a globally consistent
manner. This is particularly useful for evaluating cross-node
consistency/synchronization predicates.

Conflict handling. Last write wins rule causes problem for
distributed key-value stores that rely on NTP timestamping,
like Cassandra [23]. Retroscope could help in investigating
what went a miss. As the preventative measure, adopting HLC
and substituting it for NTP would help resolve the last write
wins caused problems.

VII. CONCLUDING REMARKS

We introduced Retroscope for performing lightweight, in-
cremental, and retrospective distributed snapshots. Retroscope
leverages HLC timestamping to collate node-level independent
snapshots for obtaining a coherent global consistent cut. As
such it avoids the inconsistent cut problems associated with
NTP timestamping, and the inscalability of VC timestamping
with respect to the number of nodes in the system. Retroscope
provides an efficient implementation of retrospective snapshots
by utilizing a configurable-size window-log to capture recent
operations, and avoids the cost of maintaining a multiversion
copy of the entire system data. Moreover, Retroscope intro-
duces incremental and rolling snapshots that leverage an exist-
ing snapshot to reduce the cost of constructing new snapshots
in that proximity. We implemented Retroscope for Voldemort
and evaluated its performance under different workloads.

An important use case for Retroscope is re-establishing data
integrity after a failure or security attack. If there have been
bad inputs around time T , the operators can revert the datastore
to a safe/clean state in the recent past of T to purge the
bad inputs. Since Retroscope provides rolling snapshots, the
operators can explore around the problematic time interval,
and perform step-by-step debugging and root cause analysis.
Retroscope also facilitates the global reset/revert operation.
Such reset takes ∼8 seconds for a test 1GB Voldemort
database. In future work, we aim to provide programmatic
toolkit support for snapshot evaluation and distributed reset.

ACKNOWLEDGMENTS

This project is in part sponsored by the National Science
Foundation (NSF) under XPS-1533870, XPS-1533802

REFERENCES

[1] O. Babaoglu and K. Marzullo, Consistent Global States of Distributed
Systems: Fundamental Concepts and Mechanisms, in Sape Mullender,
editor, Distributed Systems, pages 55–96. Addison Wesley, New York,
NY, 2nd edition, 1994.

[2] K. M. Chandy and L. Lamport, “Distributed snapshots: Determining
global states of distributed systems,” ACM Transactions on Computer
Systems, vol. 3, no. 1, pp. 63–75, Feb 1985.

[3] C. J. Fidge, “Timestamps in message-passing systems that preserve
the partial ordering,” in 11th Australian Computer Science Conference
(ACSC), 1988, pp. 56–66.

[4] F. Mattern, “Virtual time and global states of distributed systems,”
Parallel and Distributed Algorithms, vol. 1, no. 23, pp. 215–226, 1989.

[5] V. K. Garg and C. Chase, “Distributed algorithms for detecting con-
junctive predicates,” International Conference on Distributed Computing
Systems, pp. 423–430, June 1995.

[6] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, July
1978.

[7] D. Mills, “A brief history of ntp time: Memoirs of an internet time-
keeper,” ACM SIGCOMM Computer Communication Review, vol. 33,
no. 2, pp. 9–21, 2003.

[8] J. Du, S. Elnikety, and W. Zwaenepoel, “Clock-si: Snapshot isolation for
partitioned data stores using loosely synchronized clocks,” in Reliable
Distributed Systems (SRDS), 2013 IEEE 32nd International Symposium
on. IEEE, 2013, pp. 173–184.

[9] J. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Furman, S. Ghe-
mawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak,
E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,
R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor, R. Wang,
and D. Woodford, “Spanner: Google’s globally-distributed database,”
Proceedings of OSDI, 2012.

[10] S. Kulkarni, M. Demirbas, D. Madappa, B. Avva, and M. Leone, “Log-
ical physical clocks,” in Principles of Distributed Systems. Springer,
2014, pp. 17–32.

[11] “Project retroscope,” https://github.com/acharapko/retroscope-lib, 2016.
[12] “Project voldemort,” http://www.project-voldemort.com/voldemort/.
[13] W. Vogels, “Eventually consistent,” Communications of the ACM,

vol. 52, no. 1, pp. 40–44, 2009.
[14] “Cockroachdb: A scalable, transactional, geo-replicated data store,”

http://cockroachdb.org/.
[15] E. Brewer, “Towards robust distributed systems,” in PODC ’00: Pro-

ceedings of the nineteenth annual ACM symposium on Principles of
distributed computing, 2000, p. 7.

[16] R. Shaull, L. Shrira, and B. Liskov, “A modular and efficient past state
system for berkeley db.” in USENIX Annual Technical Conference, 2014,
pp. 157–168.

[17] D. Devecsery, M. Chow, X. Dou, J. Flinn, and P. Chen, “Eidetic
systems,” in Proceedings of the 11th USENIX conference on Operating
Systems Design and Implementation, 2014, pp. 525–540.

[18] W. Song, T. Gkountouvas, K. Birman, Q. Chen, and Z. Xiao, “The
freeze-frame file system,” in Proc. of the ACM Symposium on Cloud
Computing (SoCC16), 2016.

[19] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in 2010 IEEE 26th symposium on mass storage
systems and technologies (MSST). IEEE, 2010, pp. 1–10.

[20] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica, “X-trace:
A pervasive network tracing framework,” in Proceedings of the 4th
USENIX conference on Networked systems design & implementation.
USENIX Association, 2007, pp. 20–20.

[21] B. Sigelman, L. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a large-scale distributed
systems tracing infrastructure,” Google, Inc., Tech. Rep., 2010. [Online].
Available: http://research.google.com/archive/papers/dapper-2010-1.pdf

[22] J. Mace, R. Roelke, and R. Fonseca, “Pivot Tracing: Dynamic causal
monitoring for distributed systems,” Symposium on Operating Systems
Principles (SOSP), pp. 378–393, 2015.

[23] A. Lakshman and P. Malik, “Cassandra: Structured storage system on a
p2p network,” in Proceedings of the 28th ACM Symposium on Principles
of Distributed Computing, ser. PODC ’09, 2009, pp. 5–5.


