
1

Specification-based Design of Self-Stabilization
Murat Demirbas, Member, IEEE, and Anish Arora, Member, IEEE

Abstract—Research in system stabilization has traditionally relied on the availability of a complete system implementation. As such, it
would appear that the scalability and reusability of stabilization is limited in practice. To redress this perception, in this paper, we show
for the first time that system stabilization may be designed knowing only the system specification but not the system implementation.
We refer to stabilization designed thus as specification-based design of stabilization and identify “local everywhere specifications” and
“convergence refinements” as being amenable to the specification-based design of stabilization. Using our approach, we present the
design of Dijkstra’s 4-state stabilizing token-ring system starting from an abstract fault-intolerant token-ring system. We also present
an illustration of automated design of specification-based stabilization on a 3-state token-ring system.

Index Terms—Self-stabilization, Fault-tolerance preserving refinements, Distributed systems.

✦

1 INTRODUCTION

SELF-STABILIZATION research [7], [8], [10], [11], [12]
focuses on how systems deal with arbitrary state

corruption. A stabilizing system is such that every com-
putation of the system, upon starting from an arbitrary
state, eventually reaches a state from where the compu-
tation is “correct”. The motivation for considering arbi-
trary state-corruption is to account for the unanticipated
faults that results from complex interactions of faults
and system components. Self-stabilization offers a formal
state-based verification and design technique that shuns
case-by-case analysis of faults and recovery in favor
of a uniform mechanism. To this end, research in self-
stabilization has traditionally relied on the availability
of a complete system implementation. The standard ap-
proach uses knowledge of all implementation variables
and actions to exhibit an “invariant” condition such that
if the system is properly initialized then the invariant
is always satisfied and if the system is placed in an
arbitrary state then continued execution of the system
eventually reaches a state from where the invariant is
always satisfied.

The apparently intimate connection between stabiliza-
tion and the details of implementation has raised the fol-
lowing serious concerns: (1) Stabilization is not feasible
for many applications whose implementation details are
not available, for instance, closed-source applications. (2)
Even if implementation details are available, stabiliza-
tion is not scalable as the complexity of calculating the
invariant of large implementations may be exorbitant.
(3) Stabilization lacks reusability since it is specific to a
particular implementation.

Towards addressing these concerns, in this paper,

• M. Demirbas is with the Department of Computer Science and Engineer-
ing, University at Buffalo, SUNY, Buffalo, NY, 14260.
E-mail: demirbas@cse.buffalo.edu

• A. Arora is with the Department of Computer Science and Engineering,
The Ohio State University, Columbus, OH, 43210.
E-mail: anish@cse.ohio-state.edu

we show for the first time that system stabilization
can be achieved without knowledge of implementation
details. We eschew “whitebox” knowledge—of system
implementation—in favor of “graybox” knowledge—
of system specification—for the design of stabilization.
Since specifications are typically more succinct than
implementations, specification-based design of fault-
tolerance offers the promise of scalability when the
design effort for adding fault-tolerance is proportional
to the size of the specification. Also, since specifications
admit multiple implementations and since system com-
ponents are often reused, specification-based design of
fault-tolerance offers the promise of reusability. Finally,
for closed-source situations where exploiting a specifica-
tion is warranted, specification-based approach allows
the design of efficient fault-tolerance in contrast to a
blackbox design.

Given a high-level system specification A, the
specification-based approach is to design a tolerance
wrapper W such that adding W to A yields a fault-
tolerant system. The goal is to ensure that for any low-
level refinement (implementation) C of A adding a low-
level refinement W ′ of W would also yield a fault-
tolerant system.

Note that since the refinements from A to C and W
to W ′ can be done independently, specification-based
design enables a posteriori or dynamic addition of fault-
tolerance. That is, given a concrete implementation C, it
is possible to add fault-tolerance to C as follows:

• First, design an abstract (high-level) tolerance wrap-
per W using solely an abstract specification A of C,
and then

• add a concrete (low-level) refinement W ′ of W to C.

The goal of specification-based fault-tolerance is not
readily achieved for all refinements. The refinements
we need for achieving specification-based fault-tolerance
should not only preserve fault-tolerance but also have
nice composability features so that the refinements
from A to C and W to W ′ can be done indepen-



2

dently. In this paper we present special classes of re-
finement, “everywhere refinements”, “local-everywhere
refinements”, and “convergence refinements”, that en-
able specification-based design of stabilization. These
refinements ensure that if A composed with W is fault-
tolerant, then for any everywhere or convergence re-
finement C of A adding an everywhere or convergence
refinement W ′ of W would also yield a fault-tolerant sys-
tem. Using these refinements, in this paper, we present
the design of Dijkstra’s 4-state and 3-state stabilizing
token-ring systems as illustrations.

Outline of the rest of the paper. In Section 2,
we give preliminaries. In Section 3 we show that ev-
erywhere and convergence refinements are stabilization
preserving and in Section 4 that they are amenable for
specification-based design of stabilization. In Section 5,
using specification-based approach we present a deriva-
tion of Dijkstra’s 4-state stabilizing token-ring algorithm
as a refinement of a simple, abstract token-ring algo-
rithm. We present related work in Section 6 and make
concluding remarks in Section 7. For reasons of space,
we relegate most of the proofs and an illustration of
automated synthesis of specification-based stabilization
on the token-ring example to the supporting material
associated with this article.

2 PRELIMINARIES

Let Σ be a state space.
Definition. A system S is a finite-state automaton (Σ, T ,
I) where T , the set of transitions, is a subset of {(s0, s1) :
s0, s1 ∈ Σ} and I , the set of initial states, is a subset of
Σ.

A computation of S is a maximal sequence of states
such that every state is related to the subsequent one
with a transition in T , i.e., if a computation is finite there
are no transitions in T that start at the final state.

We refer to an abstract system as a specification, and to
a concrete system as an implementation. For convenience
in our definitions and theorems, we pretend that the
specification and the implementation use the same state
space. In general, the state space of the implementation
can be different than that of the specification since the
implementations often introduce some components of
states that are not used by the specifications. We handle
this by relating the states of the concrete implementation
with the abstract specification via an abstraction func-
tion. The abstraction function is a total mapping from
ΣC , the state space of the implementation C, onto ΣA,
the state space of the specification A. That is, every state
in C is mapped to a state in A, and correspondingly,
every state in A is an image of some state in C. 1All
definitions and theorems in this paper are readily ex-
tended with respect to the definition of the abstraction
function. Moreover, in our illustrations of specification-
based design method in Sections 5 and 9, the concrete

systems use a different state space than the abstract.
Definition. C is a refinement of A, denoted [C ⊆ A]init,
iff every computation of C that starts from an initial state
is a computation of A.
Definition. C is an everywhere refinement [2] of A, denoted
[C ⊆ A], iff every computation of C is a computation
of A.
Definition. A state sequence c is a convergence isomorphism
of a state sequence a iff c is a subsequence of a with at
most a finite number of omissions and with the same
initial and final (if any) state as a.

For instance, c = s1 s3 s6 is a convergence iso-
morphism of a = s1 s2 s3 s4 s5 s6. However,
c = s1 s3 s5 s6 is not a convergence isomorphism
of a = s1 s2 s5 s6 since c can only drop states in a,
and cannot insert states to a. Intuitively, the convergence
isomorphism requirement corresponds to the notion of
using similar recovery paths: c should use a similar
recovery path with a and not any arbitrary recovery
path.
Definition. C is a convergence refinement of A, denoted
[C # A], iff:

• C is a refinement of A,
• every computation of C is a convergence isomor-

phism of some computation of A.

Convergence refinements are more general than every-
where refinements: [C ⊆ A] ⇒ [C # A], but not vice
versa.

A fault is a perturbation of the system state. Here,
we focus on transient faults that may arbitrarily corrupt
the process states. The following definition captures a
standard tolerance to transient faults.
Definition. C is stabilizing to A iff every computation of
C has a suffix that is a suffix of some computation of A
that starts at an initial state of A.

This definition of stabilization allows the possibility
that A is stabilizing to A, that is, A is self-stabilizing.

3 STABILIZATION PRESERVING REFINEMENTS
Refinement tools such as compilers, program transform-
ers, and code optimizers generally do not preserve the
fault-tolerance properties of their input programs. Con-
sider, for example, a program that is trivially tolerant
to the corruption of a variable x in that it eventually
ensures x is always 0.

int x=0;
while(x==x) {

x=0;}

The bytecode that a Java compiler produces for this
input program is not tolerant.

1. Note that our abstraction function allows C to introduce irrelevant
variables for implementing a feature that is orthogonal to the function-
ality of A (e.g., a graphical user interface at C). If only the irrelevant
variables differ for two states c1 and c2 of C, then our abstraction
functions will map c1 and c2 to correspond the same state in A.



3

0 iconst 0
1 istore 1
2 goto 7
5 iconst 0
6 istore 1
7 iload 1
8 iload 1
9 if icmpeq 5

12 return

If the value of x (i.e., the value of the local variable
at position 1) is corrupted after line 7 is executed and
before line 8 is executed (i.e., during the evaluation of
“x==x”) then the execution terminates at line 12, thereby
failing to eventually ensure that x is always 0.

As another example, consider the specification of a
bidding server component. The server accepts bids dur-
ing a bidding period via a “bid(integer)” method
and stores only the highest k bids in order to declare
them as winners when the bidding period is over. When
the “bid(v)” method is invoked, the server replaces its
minimum stored bid with v only if v is greater than the
minimum stored bid. The bidding server is tolerant to
the corruption of a single stored bid in that it satisfies
the specification for (k − 1) out of best-k bids.

Consider now a sorted-list implementation of the bid-
ding server. The implementation maintains the highest
k bids in sorted order with their minimum being at the
head of the list. When the “bid(v)” method is invoked
on the implementation, it checks whether v is greater
than the bid value at the head of the list, and if so, the
head of the list is deleted and v is properly inserted to
maintain the list sort order. This implementation, while
correct with respect to the specification in the absence of
faults, does not tolerate the corruption of a single stored
bid: If the stored bid at the head of the list is corrupted
to be equal to MAX_INTEGER, then the implementation
prevents new bid values from entering the list, and hence
fails to satisfy the specification for (k − 1) out of best-k
bids.

These examples illustrate that even though an abstract
system A is fault-tolerant, it is possible that a refinement
C of A may not be fault-tolerant since the extra states
introduced in C create additional challenges for the fault-
tolerance of C. That is,

C refines A and A is stabilizing to A
does not imply that C is stabilizing to A.

For a more abstract counterexample, consider Figure
1. Here s0, s1, s2, s3, . . . and s* are states in Σ, and
s0 is the initial state of both A and C. In both A and
C, there is only one program computation that starts
from the initial state, namely “s0, s1, s2, s3, . . .”; hence,
[C ⊆ A]init. But “s*, s2, s3, . . .” is a computation that
is in A but not in C. Letting F denote a transient state
corruption fault that yields s* upon starting from s0, it
follows that although A is stabilizing to A if F occurs
initially, C is not.

s*
F

s1s0 s2 s3 . . .

s*
F

s1s0 s2 s3 . . .A:

C:

Fig. 1. [C ⊆ A]init

We are therefore motivated to use suitable stabilization
preserving refinements in order to enable a specification-
based design of stabilization. Next, we present the sta-
bilization preserving properties of everywhere and con-
vergence refinements.

Theorem 0 . If [C ⊆ A] and A is stabilizing to B,
then C is stabilizing to B.

Theorem 0 follows immediately from the definitions
of stabilization and everywhere refinement.

The requirements for everywhere refinements are
sometimes too restrictive. For instance, every computa-
tion of the concrete might not be a computation of the
abstract since the execution model of the concrete is more
restrictive than that of the abstract. One such example is
model refinements where a process is allowed to write
to the state of its neighbor in the abstract system but
not allowed to do so in the concrete system. To address
such cases, we consider the more general convergence
refinements.

Theorem 1 . If [C # A] and A is stabilizing to B,
then C is stabilizing to B.

Theorem 1 follows immediately from the definitions
of stabilization and convergence refinement (C can only
drop a finite number of states from the computations of
A).

4 SPECIFICATION-BASED DESIGN OF STABI-
LIZATION

Here we focus on the problem of how to design sta-
bilization to a given implementation C using only its
specification A. That is, we want to prove that: If adding
a wrapper W to a specification A renders A stabilizing,
then adding W to any everywhere or convergence re-
finement C of A also yields a stabilizing system. We
define a wrapper to be a system over Σ and formulate
the “addition” of one system to another in terms of
the operator (pronounced “box”) which denotes the
union of automata.

Next, we prove that everywhere and convergence
refinements enable specification-based design of stabi-
lization, respectively in Sections 4.1 and 4.2. In Section
4.3 we prove composition theorems about everywhere
and convergence refinements. Due to reasons of space
we relegate most of the proofs to an online supporting
material section.



4

4.1 Everywhere refinements
Lemma 2 .
([C ⊆ A] ∧ [W ′ ⊆ W ]) ⇒ [(C W ′) ⊆ (A W )]
From the lemma, our goal follows trivially:

Theorem 3 (Stabilization via everywhere refinements).
If [C ⊆ A], A W is stabilizing to A, and [W ′ ⊆ W ]
then C W ′ is stabilizing to A.

Recall that W ′ and W are designed based only on the
knowledge of A and not of C in the specification-based
design approach. This results in the reusability of the
wrapper for any everywhere implementation of A.

We now focus our attention on distributed systems.
The task of verifying everywhere implementation is
difficult for distributed implementations, because global
state is not available for instantaneous access, all possible
interleavings of the steps of multiple processes have
to be accounted for, and global invariants are hard
to calculate. For effective specification-based design of
stabilization of distributed systems, we therefore restrict
our consideration to a subclass of everywhere specifica-
tions, namely local everywhere specifications.

A local everywhere specification A is one that is
decomposable into local specifications, one for every
process i; i.e., A = ( i :: Ai). Hence, given a distributed
implementation C = ( i :: Ci) it suffices to verify
that [Ci ⊆ Ai] for each process i. Verifying these “local
implementations” is easier than verifying [C ⊆ A] as
the former depends only on the local state of each
process and is independent of the environment of each
process, thereby avoids the necessity of reasoning about
the states of other processes.
Let A = ( i :: Ai), C = ( i :: Ci), W = ( i :: Wi), and
W ′ = ( i :: W ′

i ).
Lemma 4 . (∀i :: [Ci ⊆ Ai]) ⇒ [C ⊆ A]
Lemma 5 . ((∀i :: [Ci ⊆ Ai])

∧ (∀i :: [W ′

i ⊆ Wi])) ⇒ [(C W ′) ⊆ (A W )]
From Lemma 5 and Theorem 3 , we have
Theorem 6 (Stabilization via local everywhere refine-
ments).
If (∀i :: [Ci ⊆ Ai]), (∀i :: [W ′

i ⊆ Wi]), and A W is
stabilizing to A, then C W ′ is stabilizing to A.

Theorem 6 is the formal statement of the amenability
of local everywhere specifications for specification-based
design of stabilization. Again, it is tacit that W ′

i and Wi

are designed based only on the knowledge of Ai and not
of Ci.

4.2 Convergence refinements

Lemma 7 If [C # A] and (A W ) is stabilizing to A
then [(C W ) # (A W )].

Theorem 8 If [C # A] and (A W ) is stabilizing to A
then (C W ) is stabilizing to A.

Proof. The result follows from Lemma 7 and Theorem
1 .

Theorem 8 states that if a wrapper W satisfies
(A W ) is stabilizing to A, then, for any C that satisfies
[C # A], (C W ) is stabilizing to A. In fact, after
proving Lemma 9 , we prove a more general result in
Theorem 10 .

Lemma 9 If [W ′ # W ] and (A W ) is stabilizing to A
then (A W ′) is stabilizing to A.

Theorem 10 If [C # A] and (A W ) is stabilizing to
A, then (∀W ′ : [W ′ # W ] : (C W ′) is stabilizing to
A).

Theorem 10 is the formal statement of the amenabil-
ity of convergence refinements for specification-based
design of stabilization: If W provides stabilization to
A, then any convergence refinement W ′ of W provides
stabilization to every convergence refinement C of A.

4.3 Compositionality of everywhere and conver-
gence refinements
Here we prove composition theorems about everywhere
and convergence refinements. In contrast to previous
work on composition of fault-tolerance, these theorems
are applicable for the general case of composition and
are not limited to special cases such as layering compo-
sition [8].

Composition theorem for everywhere refinements.
Composition theorem for everywhere refinements is sim-
ple:

Theorem 11 (Composition of everywhere refinements).

[C ⊆ A] ∧ [D ⊆ B] ∧ [I ′ ⊆ I]

⇒ [C D I ′ ⊆ A B I]

Everywhere refinements are very easy to compose
and thus specification-based approach for composition
of fault-tolerance readily applies for everywhere refine-
ments.

Composition theorem for convergence refinements.
Convergence refinements are weaker than everywhere
refinements and thus they do not compose as cleanly as
everywhere refinements.

(Example): [C # A] ⇒ [C B # A B] is not
a theorem for convergence refinements. Consider the
following counterexample.

A: B:

C:
3 12

3 12 03 120

0

Fig. 2. [C # A]

Let A, C, and B be as in Figure 2. State 0 is the initial
state for A, C and B, thus [C ⊆ A]init and [C # A].

As seen in Figure 3, a = 3−2−1−3−2−1−3−2−1...
is a computation of A B, and c = 3−1−3−1−3−1...



5

3 12

3 12 0

0
C[]B:

A[]B:

Fig. 3. (C B) is not a convergence refinement of
(A B)

is a computation of C B. However, c drops infinitely
many states from a and thus C B is not a convergence
refinement of A B.
(End of example).

Therefore, in order to prove a composition theorem
we need to prove loop-free behavior of the abstract
composition outside its invariant.

Lemma 12 .

[C # A] ∧ (A B I) is stabilizing to A

⇒ [C B I # A B I]

Lemma 13 .

[D # B] ∧ (A B I) is stabilizing to A

⇒ [A D I # A B I]

Theorem 14 (Composition of convergence refinements).

[C # A] ∧ [D # B] ∧ [I ′ # I]

∧ (A B I) is stabilizing to A

⇒ [C D I ′ # A B I]

Proof: Follows from Lemma 12 , Lemma 13 (applied
twice), and transitivity of [ # ].

Our composition theorem is very general and is de-
fined in an asymmetric manner. For B to be a stand-
alone component rather than a tolerance wrapper, in
the abstract one should also prove that (A B I) is
stabilizing to invariant of B. This way we ensure that
starting from the initialized states, both component do
useful work.

5 APPLICATION ON TOKEN-RING STABILIZA-
TION PROBLEM
In Section 5.1, we present the abstract token-ring system
and show how to achieve stabilization to the abstract.
Then, we derive by way of convergence refinements of
the abstract bidirectional token-ring system Dijkstra’s 4-
state system in Section 5.2.

5.1 Stabilizing the Abstract Bidirectional Token-
Ring
In this section, we start with a simple, fault-intolerant
abstract bidirectional token-ring system, BTR, and then
design two dependability wrappers, W1 and W2, in

order to render BTR stabilizing. W1 ensures that always
there exists at least one token in the system and W2
ensures that the extra tokens in the system are eventually
removed.

5.1.1 Bidirectional token-ring problem
The abstract system BTR consists of processes {0,..,N}
arranged on a bidirectional ring. Let ↑t.j denote that
“process j received the token from j−1”, and ↓t.j denote
that “process j received the token from j +1”. Note that
↓t.N and ↑t.0 are undefined for BTR.

We use guarded-command language to specify sys-
tems. The actions for 0 –bottom process–, for N –top
process–, and for all j such that (j *= 0 ∧ j *= N) are
as follows.

↑t.N −→ ↑t.N := false; ↓t.(N − 1) := true

↓t.0 −→ ↓t.0 := false; ↑t.1 := true

↑t.j −→ ↑t.j := false; ↑t.(j + 1) := true

↓t.j −→ ↓t.j := false; ↓t.(j − 1) := true

Initially, there is a unique token in the system. The
invariant I of BTR can be written as I1 ∧ I2 ∧ I3 ∧
I4 where

I1 ≡ (∃j :: ↑t.j ∨ ↓t.j)

I2 ≡ (∀j, k :: ((↑t.j ∧ ↑t.k) ∨ (↑t.j ∧ ↓t.k)

∨ (↓t.j ∧ ↓t.k)) ⇒ j = k)

I3 ≡ (∀j :: ¬(↑t.j ∧ ↓t.j))

I4 ≡ (∀j :: ↑t.j and ↓t.j occur with equal frequency)

I1 states that there exists a token in the system, I2 and
I3 state that at most one process can have a token and
only one token, and thus, I states that there is a unique
token in the system. I4 states that the token changes
direction for each successive round.

System models. The abstract system model permits
a process j to read and write to its state and the states
of its right and left neighbors in one atomic step. The
concrete system model is more restrictive: j can read its
state and the states of its right and left neighbors but can
write only to its own state.

Bidirectional token-ring (BTR) problem: Identify
refinements, C, of BTR in the concrete system model
such that [C ⊆ BTR]init and (∀W :: (BTR W ) is
stabilizing to BTR ⇒ (C W ) is stabilizing to BTR).

From Theorem 10 , it follows that any concrete system
C that satisfies [C # BTR] is a solution to the BTR
problem.

5.1.2 Stabilization wrappers for BTR

We add two wrappers W1, W2 in order to stabilize BTR
to I1 and (I2 ∧ I3) respectively. We do not need a
wrapper to correct I4 because I4 follows from BTR after
I1 ∧ I2 ∧ I3 is established.



6

W1 ensures I1 (i.e., there exists at least one token in
the system) as follows:

W1::(∀j : j *= N : ¬↑t.j ∧ ¬↓t.j) −→ ↑t.N := true

W2 guarantees eventually (I2 ∧ I3), there exists at
most one token in the system, by ensuring at every
process j that if ever ↑t.j and ↓t.j are truthified at the
same state, then both of the tokens are deleted. This
way, it is clear that tokens moving on opposite directions
(toward each other) will cancel each other and their
numbers will decrease. If there are multiple tokens all
going in one direction, then eventually the tokens will
bounce from either top or bottom process and this case
reduces to the previous case.

W2 :: ↑t.j ∧ ↓t.j −→ ↑t.j := false; ↓t.j := false

Theorem 15 (BTR W1 W2) is stabilizing to BTR.

5.2 A 4-state solution to the BTR problem
Consider the following mapping that transforms BTR
to an equivalent system BTR4 that uses two boolean
variables c.j and up.j at every process j to simulate ↑t.j
and ↓t.j. For every process the mappings between c, up
variables and ↑t, ↓t are given as follows.

↑t.N ≡ c.N *= c.(N − 1) ∧ up.(N − 1)

↓t.0 ≡ c.0 = c.1 ∧ ¬up.1

For all j : j *= 0 ∧ j *= N :

↑t.j ≡ c.j *= c.(j − 1) ∧ up.(j − 1) ∧ ¬up.j

↓t.j ≡ c.j = c.(j + 1) ∧ ¬up.(j + 1) ∧ up.j

We also map up.N = false and up.0 = true. The
actions for BTR4 follow from BTR via the mapping:

c.N *= c.(N − 1) ∧ up.(N − 1)
−→ c.N := c.(N − 1); up.(N − 1) := true

c.0 = c.1 ∧ ¬up.1
−→ c.0 := ¬c.1; up.1 := false

c.j *= c.(j − 1) ∧ up.(j − 1) ∧ ¬up.j
−→ c.j := c.(j − 1); up.j := true;

c.(j + 1) := ¬c.j; up.(j + 1) := false
c.j = c.(j + 1) ∧ ¬up.(j + 1) ∧ up.j

−→ up.j := false;
c.(j − 1) := c.j; up.(j − 1) := true

The initial states of BTR4 follow from those of BTR
using the mapping. BTR4 uses the same abstract execu-
tion model as BTR.

5.2.1 Refinement of wrappers
We now consider refinements of W1 and W2 for BTR4.

W1 states that (∀j : j *= N : ¬↑t.j ∧
¬↓t.j) −→ ↑t.N := true. When we apply the mapping
on W1, we get W1′:

(∀j : j *= N : up.j) ∧ c.(N − 1) *= c.N
−→ c.N := ¬c.(N − 1); up.(N − 1) := true

It turns out that W1′ is a trivial wrapper since the
guard of W1′ already implies that c.N *= c.(N − 1) ∧
up.(N − 1). Thus W1′ is vacuously implemented.

W2 states that if a process j has ↑t.j and ↓t.j it will
drop both of them. W2′ is also trivial since using the
mapping we get (↑t.j ∧ ↓t.j ≡ false). That is, in BTR4

j cannot possess ↑t.j and ↓t.j at the same time.

5.2.2 Refinement of BTR4

The concrete execution model does not allow writing
to the states of the neighboring processes, thus, the
actions of BTR4 are too coarse grained for the concrete
execution model. We refine BTR4 into C1 by comment-
ing ( “//” ) out the clauses in BTR4 that violate the
restrictions of the concrete execution model.

c.N *= c.(N − 1) ∧ up.(N − 1)
−→ c.N := c.(N − 1); //(up.(N − 1))

c.0 = c.1 ∧ ¬up.1
−→ c.0 := ¬c.0; //(¬up.1)

c.j *= c.(j − 1) ∧ up.(j − 1) ∧ ¬up.j
−→ c.j := c.(j − 1);up.j := true;

//(c.(j + 1) *= c.j ∧ ¬up.(j + 1))
c.j = c.(j + 1) ∧ ¬up.(j + 1) ∧ up.j

−→ up.j := false;
//(c.(j − 1) = c.j ∧ up.(j − 1))

In the legitimate states of C1 the conditions in the com-
ments are satisfied by the computations of C1. However,
C1 might not satisfy these conditions in every state since
the concrete system model is more restrictive than the
abstract. In the illegitimate states, where these conditions
might not be satisfied, computations of C1 might corre-
spond to compressed forms of computations of BTR.
Consider the following transition of the concrete:

t.1 t.3

p1 moves
t.3

c.0=1 c.1=0 c.2=1
up.2

c.3=0

c.0=1 c.1=0
~up.1 up.2

c.2=1 c.3=0

up.1

Starting from a state where ↑t.1 and ↑t.3 holds, a
state with only ↑t.3 is true is reached in one transition.
This corresponds to a compression of the following
transitions of BTR:

p1 moves

p2 moves

t.1 t.3

t.3

t.3t.2

Lemma 16 [C1 # BTR].



7

Proof. Any compression performed by C1 only results
in a token loss and C1 cannot perform any compressions
when the token-ring contains less than two tokens. Since
there are finite number of tokens to begin with, and
since process actions do not create new tokens (they
just propagate the existing tokens), C1 can do only a
finite number of compressions. In BTR, starting from a
state with k (s.t., k > 0) tokens, any state with l (s.t.,
k ≥ l > 0) tokens is reachable. Thus, any computation of
C1 can be written as a compression of some computation
of BTR. Since we also have [C1 ⊆ BTR]init, C1 is a
convergence refinement of BTR.

Theorem 17 C1 W1′ W2′ is stabilizing to BTR.
Proof. Since [W1′ ⊆ W1] and [W2′ ⊆ W2], we have
[W1′ W2′ ⊆ W1 W2]. The result then follows
from Theorem 10 , Lemma 16 , and Theorem 15 .

The resulting system (C1 W1′ W2′) is as follows.

c.(N − 1) *= c.N∧

up.(N − 1) −→ c.N := c.(N − 1)

c.1 = c.0 ∧ ¬up.1 −→ c.0 := ¬c.0

c.(j − 1) *= c.j ∧

up.(j − 1) ∧ ¬up.j −→ c.j := c.(j − 1);up.j := true

c.(j + 1) = c.j ∧

¬up.(j + 1) ∧ up.j −→ up.j := false

Interested reader may note that (C1 W1′ W2′)
can further be optimized (by relaxing the guards of the
first and third actions) to Dijkstra’s 4-state stabilizing
token-ring system below.

c.(N − 1) *= c.N −→ c.N := c.(N − 1)

c.1 = c.0 ∧ ¬up.1 −→ c.0 := ¬c.0

c.(j − 1) *= c.j −→ c.j := c.(j − 1);up.j := true

c.(j + 1) = c.j ∧

¬up.(j + 1) ∧ up.j −→ up.j := false

6 RELATED WORK
Research in stabilization [8], [10], [11], [12] has tradi-
tionally relied on the availability of a complete system
implementation. The standard approach to reasoning
uses knowledge of all implementation variables and
actions to exhibit an “invariant” condition such that
if the system is properly initialized then the invariant
is always satisfied and if the system is placed in an
arbitrary state then continued execution of the system
eventually reaches a state from where the invariant
is always satisfied. Likewise, the generic methods for
designing stabilization [1], [3], [13], [20] also assume
implementation-specific details as input: [3], [13] assume
the availability of the implementation invariant, [1] relies

on the knowledge of the implementation actions, and
[20] takes as input a “locally checkable” consistency
predicate derived from implementation. To the best of
our knowledge, our work [2] is the first time that
system stabilization is shown to be provable without
whitebox knowledge. As one piece of evidence, we offer
the following quote due to Varghese [20] (parenthetical
comments are ours):

In fact, the only method we know to prove a
behavior stabilization result (i.e., stabilization
with respect to system specification) is to first
prove a corresponding execution stabilization
result (i.e., stabilization with respect to system
implementation) . . .

There has been limited work on blackbox addition
of stabilization. Checkpointing and recovery based ap-
proaches may be considered as an example of this cat-
egory. As another example, Awerbuch and Varghese [4]
presented a method that transforms any synchronous
protocol into a self-stabilizing version for dynamic asyn-
chronous networks. The method adds stabilization in
a blackbox manner by re-executing the non-stabilizing
algorithm until stabilization is observed in the dynamic
network environment.

Next, we discuss related work on fault-tolerance pre-
serving refinements.

Method by Z. Liu and M. Joseph. Liu and Joseph [17]
have considered designing fault-tolerance via transfor-
mations. In their work, an abstract program A is refined
to a more concrete implementation C and then based on
the refined program C and the fault actions F that are
introduced in the refinement process, further precautions
(such as using a checkpointing & recovery protocol) are
taken to render C fault-tolerant. They design the toler-
ance based on the concrete program, while we design
our wrappers based on the abstract program.

Method by L. Lamport and S. Merz. In [14], Lamport
and Merz claim that there is no need for a special
technique for formal specification and verification of
fault-tolerance systems, and that refinement of fault-
tolerance programs could be achieved using temporal
logic of actions (TLA) and a hierarchical proof method.
Towards this end, they show how a message-passing
Byzantine agreement program (of [15]) can be derived
from its high-level specification. The authors claim that
little ingenuity is required for proofs of refinements since
a hierarchical proof strategy is adopted. However, a
considerable amount of ingenuity is still required for
coming up with the refinement programs in the first
place.

Fault-tolerance preserving atomicity refinements.
Fault-tolerance preserving refinements have been stud-
ied in the context of atomicity refinement in [5], [19].
The refinements presented in those work are instances
of everywhere refinements. In our work we study fault-
tolerance preserving refinements in the more general
context of computation-model refinement (not just atom-
icity refinement), and we also present a more general



8

type of fault-tolerance preserving refinement, conver-
gence refinement.

McGuire and Gouda [18] have developed an execution
model that can be used in translating abstract network
protocol specifications written in a guarded-command
language into C programs using Unix sockets. Their
framework cannot handle arbitrary state corruptions we
considered here, and only allows the following faults:
message loss, message ordering, and message duplica-
tion. Another self-stabilization preserving compiler is
presented in Dolev et. al. [9]. Given a self-stabilizing pro-
gram written in Abstract State Machine (ASM) language
their compiler produces machine code that eventually
has the same input-output relation as the original ASM
program. Neither of these compilers produce every-
where or convergence refinements, and therefore are not
amenable for the compositional refinement approach we
proposed.

Semantics of fault-tolerance preserving refinements.
Leal [16] has also observed that refinement tools are in-
adequate for preserving fault-tolerance. The focus of his
work is on defining the semantics of tolerance preserving
refinements of components.

7 CONCLUDING REMARKS
In this paper, we investigated the specification-based
design of system stabilization, which uses only the sys-
tem specification, towards overcoming drawbacks of the
tradional whitebox approach, which uses the system
implementation as well. The specification-based design
approach offers the potential of adding stabilization
in a scalable manner, since specifications grow more
slowly than implementations. It also offers the potential
of component reuse. Component technologies typically
separate the notion of specification (variously called
interface or type) from that of implementation. Since
reuse occurs more often at the specification level than
the implementation level, specification-based design of
stabilization is more reusable than stabilization that is
particular to an implementation.

General applicability of the method. Although we
have limited our discussion of the specification-based
design approach to the property of stabilization, the ap-
proach is applicable for the design of other dependability
properties, for example, masking fault-tolerance, fail-safe
fault-tolerance, super-stabilization, and loop-freedom.
Our observation that specification-based design of sta-
bilization is not readily achieved for all refinements is
likewise true for specification-based design of masking
and fail-safe fault-tolerance. Moreover, our observation
that local everywhere specifications are amenable to
specification-based design of stabilization is also true for
specification-based design of masking and fail-safe fault-
tolerance.

Our method applies for a rich class of programs whose
invariants allow decentralization of the invariant. In
fact most programs we are familiar with satisfies this

decentralization of the invariant, where it is possible
to rewrite a global invariant as a composition of local
invariants [8], [20].

Our method also benefits from tool support for finding
abstraction function. Given C, the tool presented in [6]
automatically produces A such that C is an everywhere
refinement of A. By adopting this abstraction function
tool, we give a toy example of automated synthesis of
specification-based tolerance in the online supporting
material section of this paper.

REFERENCES
[1] Y. Afek and S. Dolev. Local stabilizer. Proceedings of the Sixteenth

Annual ACM Symposium on Principles of Distributed Computing
(PODC), page 287, 1997.

[2] A. Arora, M. Demirbas, and S. S. Kulkarni. Graybox stabilization.
Proceedings of the International Conference on Dependable Systems and
Networks (ICDSN), pages 389–398, July 2001.

[3] A. Arora, M. G. Gouda, and G. Varghese. Constraint satisfaction
as a basis for designing nonmasking fault-tolerance. Journal of
High Speed Networks, 5(3):293–306, 1996.

[4] B. Awerbuch and G. Varghese. Distributed program checking:
a paradigm for building self-stabilizing distributed protocols
(extended abstract). FOCS, pages 258–267, 1991.

[5] J. Beauquier, A. K. Datta, M. Gradinariu, and F. Magniette.
Self-stabilizing local mutual exclusion and daemon refinement.
International Symposium on Distributed Computing, pages 223–237,
2000.

[6] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In Computer
Aided Verification, pages 154–169, 2000.

[7] E. W. Dijkstra. Self-stabilizing systems in spite of distributed
control. Communications of the ACM, 17(11), 1974.

[8] S. Dolev. Self-Stabilization. MIT Press, 2000.
[9] S. Dolev, Y. Haviv, and M. Sagiv. Self-stabilization preserving

compiler. In International Conference on Self-Stabilizing Systems,
pages 81–95, 2005.

[10] M. Flatebo, A. K. Datta, and S. Ghosh. Readings in Distributed Com-
puter Systems, chapter 2: Self-stabilization in distributed systems.
IEEE Computer Society Press, 1994.

[11] M. G. Gouda. The triumph and tribulation of system stabiliza-
tion. Invited Lecture, Proceedings of 9th International Workshop on
Distributed Algorithms, Springer-Verlag, 972:1–18, November 1995.

[12] T. Herman. Self-stabilization bibliography: Access guide. Chicago
Journal of Theoretical Computer Science, Working Paper WP-1,
initiated November 1996.

[13] S. Katz and K. Perry. Self-stabilizing extensions for message
passing systems. Distributed Computing, 7:17–26, 1993.

[14] L. Lamport and S. Merz. Specifying and verifying fault-tolerant
systems. Third Symposium on Formal Techniques in Real Time and
Fault Tolerant Systems, LNCS 863, pages 41–76, 1994.

[15] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals
problem. ACM Transactions on Programming Languages and Systems,
1982.

[16] W. Leal. A Foundation for Fault Tolerant Components. PhD thesis,
The Ohio State University, 2001.

[17] Z. Liu and M. Joseph. Transformations of programs for fault-
tolerance. Formal Aspects of Computing, 4(5):442–469, 1992.

[18] T. M. McGuire. Correct implementation of network protocols. PhD
thesis, University at Texas at Austin, 2004.

[19] M. Nesterenko and A. Arora. Stabilization-preserving atomicity
refinement. 13th International Symposium on Distributed Computing
(DISC), 1999.

[20] G. Varghese. Self-stabilization by local checking and correction. PhD
thesis, MIT/LCS/TR-583, 1993.


