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Abstract—Retroscope is a comprehensive lightweight distributed monitoring tool that enables users to query and reconstruct past
consistent global states of the system. Retroscope achieves this by augmenting the system with Hybrid Logical Clocks (HLC) and by
streaming HLC-stamped event logs for storage and processing; these HLC timestamps are then used for constructing global (or
nonlocal) snapshots upon request. Retroscope provides a rich querying language (RQL) to facilitate searching for global predicates
across past consistent states. The search is performed by advancing through global states in small incremental steps, greatly reducing
the amount of computation needed to construct consistent states. The Retroscope search algorithm is embarrassingly-parallel and can
employ many worker processes (each processing up to 150,000 consistent snapshots per second) to handle a single query. We
evaluate Retroscope’s monitoring capabilities in two case studies: Chord and Apache ZooKeeper.
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1 INTRODUCTION

OGGING system state, messages, and assertions is a com-

mon approach to provide auditability. Logs can be used to
identify performance bottlenecks, diagnose various issues, and
even perform a post-mortem analysis of the system in case of a
catastrophic failure. Analyzing the logs involves looking through
a series of events leading to a problem, making it important to
keep all events in the proper causal order. A log that reverses the
order of causally related events is misleading and may suggest a
wrong conclusion regarding the problem at hand. Moreover, it is
also crucial to have events logged with affinity to real physical
time: without the timestamp, it becomes impossible to pinpoint
where within the log events of interest occur.

Naive logging-based approaches, however, fail for the au-
ditability of distributed systems. For distributed systems, it is
necessary to collate and align local logs from each node into a
globally consistent snapshot or cut [1], where no event in the
cut happened-before any other event. This is important since
inconsistent snapshots are useless and even dangerous as they give
misinformation.

Unfortunately, current distributed snapshot algorithms are ex-
pensive and have shortcomings. The Chandy-Lamport snapshot al-
gorithm [2]] assumes FIFO channels and supports only scheduled,
planned snapshots. One way to achieve retrospective snapshots
of past states is to use vector clocks (VCs) [3], [4], [5]. But,
this requires VCs with size ©(n), the number of nodes, to be
included in each message. Moreover, VCs do not capture physical
time affinity and using VCs in partially synchronized systems
implies that potentially unreachable states may be reported as
false positives [6]]. Logical clocks (LCs) [[7]] can be considered for
reducing the cost of VC. However, taking a retrospective snapshot
with LCs fails again because LCs cannot identify consistent
snapshots/cuts with affinity to a given past physical time.

To get snapshots with sufficient affinity to physical time, one
can potentially utilize NTP [8]. However, since NTP clocks are
not perfectly synchronized, it is not possible to get a consistent
snapshot by just reading state at different nodes at physical clock
time 7. A globally consistent snapshot comprises of pairwise
concurrent local snapshots from the nodes, but the local snapshots

at T' may have causal precedence, invalidating the resultant global
snapshot (cf. Figure [I). Thus, using NTP to obtain a pairwise
consistent cut requires waiting out the clock uncertainty [9], [[10]]
(e.g., in Figure |1} P1 needs to block sending a message during
the clock uncertainty period), which makes it undesirable for
retrospective snapshots.
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Fig. 1: Using NTP only fails to take consistent snapshot

Retroscope. To address this problem, we leverage our recent work
on hybrid logical clocks (HLC) [[11]. HLC is a hybrid of LC and
NTP, and combines causality with physical clocks to derive scalar
HLC timestamps. HLC facilitates distributed snapshots because a
collection of local snapshots taken at identical HLC timestamps is
guaranteed to be a consistent cut.

Using this observation, we design and develop Retroscope,
a highly-scalable solution for reconstructing and querying past
consistent distributed snapshots by collating node-level indepen-
dent snapshots. A devops team can use Retroscope to monitor
application states for nonlocal predicates, investigate problems
by stepwise debugging, perform root-cause analysis, data-integrity
monitoring, and checkpoint-recovery. To achieve this, Retroscope
exposes a query interface, allowing users to easily interact with
a progression of globally consistent states. Figure [2] illustrates a
user-centric perspective of Retroscope.
Contributions.
1) We introduce Retroscope, a toolkit that provides a novel
“cut monitoring” approach for monitoring large scale distributed
systems in a lightweight and scalable manner. Cut monitoring
tracks global distributed states by identifying consistent cuts over
streaming logs of state changes. This makes Retroscope useful for
invariant-based reasoning [12]], [13]], [14]] and invariant checking
via global predicate detection. Cut monitoring approach is com-
plementary to the request tracing based monitoring solutions [/15],
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Fig. 3: Difference between monitoring with Retroscope and request
tracing methods

[el, [17), [18]. Figureillustrates this difference. Request tracing
for a request 7 monitors the path of 7 on the machines between
time 7. and T'... Retroscope, however, looks at a single snapshot
at a time, such as Ty or Ty, covering the global state of the
system and not just the nodes visited by the request. While request
tracing is suitable for performance monitoring and tracing individ-
ual requests as it travels along multiple nodes, Retroscope’s cut
monitoring approach is useful for providing across-node context
to diagnose race conditions, nonlocal state inconsistencies, and
nonlocal invariant violations.

2) To provide effective, flexible, and extensive querying and com-
pute capabilities in Retroscope, we introduce Retroscope Query
Language (RQL). RQL allows to perform computations against
nonlocal state, search for nonlocal predicates, filter unwanted
variables or nodes out and restrict the search time intervals. RQL
shows linear query performance scalability with over 150,000
consistent cuts processed by each worker node in a second.

3) We have implemented Retroscope in under 22,000 lines of Java
code. It is available on GitHub as an opensource project [19].
Retroscope comprises of several components that contribute to
scalability and performance of RQL. The RetroLog component is
integrated at every node of the target end-system, and provides
HLC instrumentation and logging to maintain a history of recent
events at that node. The RetroLog streams the node’s log to
Apache Ignite for storage and future processing. RQLServer han-
dles RQL queries received from RQLClient. The RQLServer also
schedules worker nodes to perform the search over a progression
of past system-states. The worker nodes collate HLC-stamped logs
into snapshots and employ rolling snapshots to quickly move
through the state-history and perform predicate evaluation on
consistent states.

4) We showcase RQL based monitoring with case studies on
Apache ZooKeeper [20] and Chord [21f] monitoring. We use
Retroscope and RQL to study the data staleness of replica nodes
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Fig. 4: Example of HLC operation with € = 2 on 3 process. Dashed
lines denote the physical clock ticks with timestamp for each process
next to it. HLC time is written above each event in the “/,¢” format

in ZooKeeper cluster. Staleness is a nonlocal property that cannot
be easily observed by other monitoring techniques. We find that
even under a normally operating cluster, it is possible to have
replicas lagging by as much as 22 versions behind the rest of
the cluster. This staleness may have detrimental effects on client
applications relying on ZooKeeper. For instance, an application
using ZooKeeper for synchronization may experience some per-
formance degradation, since staleness elongates the overall time
required to achieve synchronization between application servers.

Outline of the rest of the paper. We describe HLC
timestamping next, followed by HLC snapshots in Section
In Section ] we describe Retroscope, its components and the
query language. Section [3] showcases RQL querying for monitor-
ing ZooKeeper and Chord, followed by Retroscope performance
evaluation in Section [6] We discuss current limitations and future
extensions in Section [ We review related work before our
concluding remarks.

2 HLC TIMESTAMPING

Logical clocks (LCs) satisfy the logical clock condition: if e hb f
then LC.e < LC.f, where hb is the happened-before relation
defined by Lamport [7]E] This condition implies that if we pick
a snapshot where for all e and f on different nodes LC.e =
LC.f, then we have —(e hb f) and —(f hb e), and therefore
the snapshot is consistent However, since LC timestamps are
driven by occurrences of events, and the nodes have different rate
of events, it is unlikely to find events at each node with the same
LC values where all are within a given physical clock affinity.
In contrast, in HLC, since logical time is driven by the physical
time, it is easy to find events at each node with the same HLC
values where all are within sufficient affinity of the given physical
time. Moreover, since HLC [11]] is a hybrid of NTP and LC, HLC
satisfies the logical clock condition: if e hb f then HLC.e <
HLC. f. Thus, a snapshot where, for all e and f on different nodes,
HLC.e = HLC.f is a consistent snapshot as shown in Figure
HLC implementation. Figure [4] illustrates HLC timestamp-
ing. At any node j, HLC consists of [.j and c.j. The term [.j
denotes the maximum physical clock value, p, that j is aware
of. This maximum known physical clock value may come from
the physical clock at j, denoted as pt.j, or may come from
another node k via a message reception that includes [.k. Thus
given that NTP maintains the physical clocks at nodes within a

1. Event e happened-before event f, if e and f are on the same node and e
comes earlier than f, or e is a send event and f is the corresponding receive
event, or is defined transitively based on the previous.

2. Consistent cuts do not work with NTP, because NTP violates the logical
clock condition. In Figure m e hb f but the NTP timestamp of e, pt.e, is
greater than that of f, pt.f.
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Fig. 5: Instant distributed snapshot

clock skew of at most €, [.j is guaranteed to be in the range
[pt.j, pt.j + €]. The second part of HLC, c.j, acts like an overflow
buffer for [.j. When a new local or receive event occurs at 7,
if .7 stays the same El, then in order to ensure the logical clock
condition c.j is incremented, as HLC.e < HLC.f is defined to
bele <l.fV(l.e=1I1fAce < c.f). On the other hand, c.j
is reset to 0 when [.j increases (which inevitably happens in the
worst case when pt.j exceeds [.j). The value of c.j is bounded. In
theory, the bound on c.j is proportional to the number of processes
and €, and in practice c.j was found to be a small number (< 10)
under evaluations [22].

HLC can fit [.j and c.j in 64 bits in a manner backwards
compatible with the NTP clock format [8] and can easily sub-
stitute for NTP timestamps used in many distributed systems.
HLC is also resilient to synchronization uncertainty: The only
effect of degraded NTP synchronization is to increase the drift
between [ and pt values and to introduce larger ¢ values. The
CockroachDB [23] adopted HLC and provides an implementation
of HLC in Go. We provide an implementation of HLC in Java as
part of our Retroscope framework.

3 HLC SNAPSHOTS

The ability to efficiently take consistent snapshot enables our cut
monitoring approach. HLC allows us to quickly and efficiently
identify consistent cuts from independent process states. However,
to allow for retrospective examination of states, we also need to
record state mutations at each process.

To that order, an HLC-based snapshot system can keep a log
of recent state changes for every node. This log can have a limited
capacity, depending on the desired depth of retrospection, and may
purge all data in a sliding window manner. Every state change
written to the log is accompanied with an HLC timestamp. By
ensuring that all nodes roll back their states to the same HLC
time, we acquire a consistent cut. In this section, we present
different flavors of Retroscope snapshots, including the instant
and retrospective snapshots, and their derivatives, incremental and
rolling snapshots.

3.1

Point snapshots. Figure[5]depicts our distributed snapshot system
with logs for each node/process. To acquire a point snapshot,
capturing a single consistent cut of the recent systems state, we
can use a current state of each process and the window-log to
undo the changes from the current state until arriving to the state
at desired HLC time Ty, -

It is not necessary to block the entire application from chang-
ing its current state while making a copy of a it and unrolling
backwards to Tg,qp. Instead, the state may be copied at lower
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3. This can happen if [.j is updated with {.k from a received message, and
pt.j is still behind [.j.
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granularity, one variable at a time, as long as these changes
continue to record in the log. For instance, at time 7). process
n received a command to take a snapshot, it then began to copy its
state and finished at time 7T's. The copy of the state we have at T’y
may not be consistent, however, the history of recent event changes
allows us to correct the problems by undoing all operations that
were recorded in current state snapshot after 7). At this point
we can continue undoing changes until reaching the process state
at Tpqp. Figure |5| uses a green-dashed arrow to illustrate the
backward application of the window-log until reaching Tqp.
When the state is rolled back to Ty, for all process, we have
finished the snapshot operation and have system’s consistent state
for that time.

Incremental snapshots. Taking multiple point snapshots
in succession can help examine how system states evolved, but
that would be computationally expensive. To perform this in a
time/space efficient manner, we can leverage the window-log
to obtain an incremental snapshot from an older base snapshot.
Unlike a point snapshot, incremental one does not store the entire
state, and stores only the changes from the base point. Figure
illustrates taking an incremental snapshot to arrive to a time
T, using a snapshot at time Tj,s. as the base point. In order
to get a snapshot at T}, it is unnecessary to traverse the entire
log backwards from the current state, and instead the system can
just redo the changes captured in the log between Tpqse and T,
reducing processing time of the snapshot. In addition, disk storage
can be saved by only keeping the changes between the base point
and the new snapshot, albeit at the increased computational cost
incurred upon snapshot retrieval.

Rolling snapshots. Retroscope’s cut monitoring requires a
snapshot that can quickly move through the states of a distributed
system. We extend the incremental snapshots into rolling snap-
shots by providing the ability to progress from one state to the next
without preserving the prior snapshot. This reduces the processing
time and storage requirements. In rolling mode, once a snapshot
has been examined, an incremental change is applied directly to
it to move to the next examination point. Each incremental step,
therefore, destroys the previously examined snapshot.

4 RETROSCOPE

We have implemented Retroscope prototype in Java in a little over
than 22,000 lines of code. Retroscope uses JFlex [24] and jacc
[25] for parsing RQL and constructing the abstract syntax tree
(AST) of the query. The generated parser accounts for roughly a
third of Retroscope’s source code.

We designed our system around Apache Ignite to provide
high performance and scalability. Figure [f] provides a high-level
overview of the system. Conceptually, Retroscope is separated into
two separate parts: monitored system and distributed processing.
At the monitored system, a component called RetroLog integrates
into each node of the application and provides HLC and state log-
ging services. Distributed processing is a larger part of Retroscope,
and it is completely decoupled from the monitored application. It
stores all the state transitions and handles predicate searches.

RetroLog component integrates into the monitored application
to log application’s state and stream it over to the streaming and
storage components on the processing side. When clients need to
perform a search across past application states, they issue a query
through the RQLClient component. RQLClient sends the query
to the RQLServer which processes the query, and distributes the
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Fig. 6: Retroscope architecture on top of Apache Ignite

predicate search across many stateless workers. Workers retrieve
the assigned sections of application state-transition log from stor-
age and perform the search. RQLServer also carries out the final
aggregation of results from the worker nodes and sends the results
back to the RQLClient. The client at this point is responsible for
handling the results of the query, such as outputting results in
proper format or performing some automation.

Since Retroscope operates both inside the monitored system
for data collection and HLC instrumentation and outside of the
monitored system for storing and processing distributed states, it is
subjected to the failures of both the monitored system and its own
storage and processing components. Similar to normal logging
tools, Retroscope can persist logs to the local disk up to the point
of failure. These logs can be uploaded manually or streamed back
to the Retroscope upon recovery for aggregation and further use
in post-mortem investigations. Streaming component failures are
handled similarly by restreaming recent logged state changes from
the RetroLogs. The data at rest is replicated with configurable level
of replication for redundancy and better reliability.

The combination of different components and different failure
modes and assumptions, some of which are outside of our control
and depend on the monitored application, makes Retroscope a
best-effort-system. We try to preserve all captured data and recover
from the failures to the best of our abilities, but some failures,
especially on the monitored system may result in the data-loss,
while other failures may result in late convergence as logs may be
added to the system after some delay.

4.1 RetrolLog Server

RetroLog servers handle two crucial tasks at the target system:
establishing common HLC time and collecting data. RetroLog
library provides an HLC API to the target application including
timeTick () and timeTick (remoteHLC) methods. These
methods used to advance time when sending and receiving remote
messages respectively.

RetroLog also collects and records local events similar to tra-
ditional logging tools, such as log4;j [26]], except that each logged
event is paired with an HLC timestamp instead of physical time.
Users need to instrument the target system in order for RetroLog
to collect the data: the instrumentation defines the variables and
parameters recorded. RetroLog allows operators to log their data in
4 distinct ways: individual variables, structures, lists and sets. Each
of the four formats can hold numeric or textual data. We represent
the logged data in JSON-like format, since it is human-readable
and simplifies querying the logged data by allowing queries to use
the same format.

Consider an example of counting the number of active
connections served by a node. A user may want track
changes to a counter variable capturing the number of active
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Fig. 7: Example of time-sharding. All events get assigned to a time-
shard based on their HLC time

connections. To do that, the user should add the following
logging statement to all places in the code where connection
counter is  changed: log.setVar ("numClients",
numClients) ;. This will trigger RetroLog serer to log
the new value for the “numClient” variable, along with the
HLC timestamp and node identification. The user can also
create a more complicated record with additional information
about the connections by utilizing a structure instead of the
variable: 1og.setRecord ("numClient") .setVar ("n",
numClients) .setVar("client", clientIP);.
Here the wuser records the IP of last connected -client
along with the counter. If the connection monitoring
task requires to track all clients, the wuser may use
a list or a set for logging the client connections:
log.getRSet ("clients") .addvVal (clientIP);
RetroLog streams all events to an Apache Ignite cluster acting
as a storage and compute back-bone for Retroscope.

4.2

In order to minimize the overhead of RetroLog on the target
system, we aim to keep its memory and CPU footprint as small
as possible by having only a minimal buffer of logged events
in memory and streaming them for further storage and querying
to the Retroscope processing components. The data ingestion is
supported by Ignite Streaming API of the Apache Ignite.

Each streamed event is assigned to a time-shard, which is a
collection of all events in the log from all nodes in some small time
interval, as shown in Figure [/| Time-shard assignment determines
the Ignite node responsible for ingesting the event, and all events
from all RetroLogs belonging to the same time-shard arrive to the
same node.

Making one node responsible for ingesting all events in the
time-shard can put stress on a single node in the cluster if all
RetroLogs send the events for a time-shard at roughly the same
time. We compensate this in two ways: introducing random-size
buffers to spread the time in which events of the same time-shard
are streamed, and keeping the configurable duration of a single
time-shard small to quickly rotate through the nodes.

Alternatively, a more mature streaming or publish-subscribe
system, like Apache Kafka, may be used for initial data ingestion
in large deployments. The overall architecture will not change
drastically with the addition of a dedicated pub-sub component.
RetroLogs will be publishing their events to Kafka topics, and
aggregators will subscribe to these topics and construct time-
shards for storage and further use.

Each time-shard aggregates the events with identical HLC
timestamps into incremental snapshots. These snapshots repre-
sent the change in a global state occurring at such time [27].
Retroscope uses these snapshots later for quick navigation across

Ignite Streaming
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system’s state history. However, since the incremental snapshots
only record change in state and not the full state, they need a
reference point to be useful, as depicted in Figure In order to
arrive to the full snapshots at some time 7},, we need to have a
full snapshot at T}, and an incremental snapshot at T}, with all
changes between T, 5. and Tj,.

For obtaining a reference point, we require each node of the
monitored system to submit a local snapshot at the beginning
of each time-shard. Streaming system accumulates these local
snapshots together to produce a single global snapshot. This mode
works well when monitoring a small set of variables or system
parameters, however, when the state of monitored parameters is
large, we can reduce the frequency of taking local snapshots. For
instance, applications with large monitoring state may submit one
local snapshot for every hundred time-shards.

4.3

After a time-shard is compiled at the streamer node, the shard
is stored within Apache Ignite cluster. The system replicates the
time-shard to a configurable number of nodes for fault tolerance
and redundancy. The placement of each time-shard in the cluster is
determined by the hash of a starting timestamp of the shard. Ignite
enables us to scale storage by simply adding more servers to the
cluster and adjusting the mapping of hashes to server. In addition
to using Ignite storage for time-shards, we also store Retroscope
metadata, such as a list of active nodes and time-shard duration.

Ignite Storage

4.4 Retroscope Query Language

Users interact with Retroscope through the Retroscope Query
Language (RQL). RQL was inspired by both SQL and a model
checking and specification language TLA+ [12]]. The main con-
struct of the language is a query. A query defines all filtering,
computing and searching tasks that must be performed against a
progression of globally consistent states. Each query consists of a
few mandatory and optional parts, and follows the pattern:

SELECT variables

FROM logName

[COMPUTE expression ]

[WHEN predicate ]

[ON NODES idList]

[AT TIME expression TO expression]

SELECT clause is a required list of variables a user wishes to
use in the query and see in the query output. These variables may
either exist in the monitored state of the application or created
later in the query.

FROM clause specifies the Retroscope log from which the
system is going to pull the data.

COMPUTE statement allows the users to specify any com-
putations that must be performed on each examined cut. These
computations can define new variables that can be emitted back
or utilized later in the query for filtering. The computation takes a
form of an RQL expression.
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WHEN condition is the main filter that decides which consistent
cuts will be emitted to the user. The condition used with WHEN is
an RQL predicate and must evaluate to either true or false.
Depending on the result of predicate evaluation, system either
returns the cut or discards it.

Consider an example RQL query in which a user investigates
some nodes processing more client connections (denoted by the
variable numClient s) than the other nodes:

SELECT numClients , diff

FROM app
COMPUTE GLOBAL diff
AND diff := Max(numClients) — Min(numClients)

WHEN EXISTS ¢ IN numClients (c > 10)

This query returns two variables in each cut: numClients
and diff. It uses the log called app to get the data. Variable
diff does not exist in the log and instead it is defined in the
COMPUTE clause as the difference between the highest and lowest
numClients observed in the cut. The WHEN clause of the query
introduces a condition that must be satisfied for the system to emit
a consistent cut. In the example, only consistent cuts in which at
least one node serving more than 100 clients will be emitted to the
user. Similarly, FORALL can be used instead of EXISTS to emit
cuts that have all nodes serve more than 100 clients.

Some additional query commands allow users to restrict the
query to some specific time-interval and specific machines in the
cluster. This enables engineers to closely look at only the nodes
experiencing problems without taking into account healthy parts
of the application. For instance, this query performs the client
connection search only on specified nodes and at a given time:

SELECT numClients

FROM app

WHEN FORALL ¢ IN numClients
ON NODES 1,2.3

AT TIME 100 TO 200

(c > 100)

In case of FORALL predicate, it will be satisfied if the condition
holds at all nodes in a given query, even if there are more nodes
in the system.

4.5 RAQLServer and RQLClient

RQLServer is a component responsible for parsing Retroscope
Query Language (RQL) queries, creating query execution plan,
verifying all the data in the Ignite Data Grid, and assigning
tasks to the Retroscope workers according to the query execution
plan. RQLServers do not perform any actual query computations
and can exist outside of the Apache Ignite cluster, as long as a
connection to the cluster can be established.

As part of query planning and scheduling, RQLServer breaks
down the query into a number of time-slices that can execute on
separate worker nodes. The time-slices are designed to have all
information about the slice’s starting state and state changes, al-
lowing the entire query evaluation to be separated into independent
tasks and performed in an embarrassingly-parallel manner.

By default, each time-slice corresponds to the time-shard cre-
ated during data ingestion, however, if a system does not capture
a full snapshot at every time-shard, then a time-slice assigned to a
worker can span multiple consecutive time-shards. The collection
of all tasks assigned to all workers represents the entire search
space covered by the query.

The RQLServer tries to allocate worker nodes to be collocated
with the nodes storing time-shards to minimize the data movement
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between the machines. In addition to time-shards, each worker
also receives predicates to be evaluated on every consistent cut.
After receiving all required data, the worker nodes scan the cuts
and report the ones satisfying the predicate back to the RQLServer.

Users do not interact with the RQLServer directly, instead
they must use an RQLClient software to connect and submit
their queries. The simplest example of RQLClient is a console
application capable of taking user input and displaying the results
of query execution. A more sophisticated client application would
be an automation tool that monitors some system parameters and
provides feedback or attempts to fix any detected problems at the
target system.

4.6 Worker Nodes and RQL Interpreter

Upon receiving compute tasks from the RQLServer, each worker
node starts up an RQL interpreter that is capable of executing RQL
expressions against a progression of distributed states. The inter-
preter runs a virtual machine that searches through the history of
past-systems states, as shown in Algorithm[I]. The virtual machine
advances through the incremental snapshots in the time-shards
assigned to the worker and updates its internal state with changes
from the snapshot. It then and evaluates the query predicates to
decide whether the cut must to be emitted or not. This process is
illustrated in Figure@} When the cut is emitted, worker node sends
it to the RQLServer that handles the query.

Algorithm 1 RQL Engine Query Evaluation

1: Retrieve timeShard

2: Set timeShard.iterator <— 0

3: while timeShard.iterator < |timeShard.cuts| do
currentSnapshot <— timeShard.cuts[timeShard.iterator]
currentHLC <— HLC time of currentSnapshot
evaluate condition on currentSnapshot

if condition = TRUE then

emit snapshot at currentHLC
timeShard.iterator <— timeShard.iterator + 1

A

Algorithm [I] shows the search algorithm used by the Ret-
roscope worker nodes, and Figure [J] illustrates a sample run of
the algorithm. The worker starts by first fetching all time-shards
assigned to it (only one shard by default). It then sequentially
moves through the incremental snapshots, evaluating the predi-
cates against the state represented by each snapshot. When the
predicate evaluates true, the cut is emitted to the RQLServer
that started the worker process.

When evaluating their time-shards, workers only examine
consistent cuts in which the state of the variables selected in
the query changes. Doing so allows Retroscope to solely focus
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on parameters specified by the operators and filter out everything
else. Additionally, such filtering helps improve query performance,
since the cuts get pruned before Retroscope performs any compu-
tations and predicate evaluations.

5 MONITORING WITH RETROSCOPE

In this section, we showcase Retroscope monitoring with RQL
queries by providing case studies on Apache ZooKeeper [20]] and
an implementation of Chord [21] distributed hash table algorithm.
All experiments were carried out on Amazon EC2 t2.small in-
stances, with Retroscope distributed processing stack deployed
over 4 nodes. The modest capacity of Retroscope virtual machines
in this experiment does not affect the case studies, as it mostly
impacts the in-memory storage capacity and query processing
speed, and not the query result.

5.1 ZooKeeper Staleness

ZooKeeper is a popular coordination service at the heart of
many large distributed applications. For improving throughput,
ZooKeeper allows read operations from any replica (rather than
restricting them to only read from the master). Thus, a client may
read stale/outdated value from a replica, especially if the cluster is
under high load or the replica is a straggler. Unlike other monitor-
ing approaches, Retroscope’s cut monitoring solution enables us to
measure the data staleness in ZooKeeper accurately by observing
the differences in znode versions between replicas at the consistent
global states. To the best of our knowledge, no previous work
investigated ZooKeeper replica staleness.

To investigate replica staleness, we deployed a 5-node
ZooKeeper cluster on Amazon EC2 t2.small nodes. We added
a RetroLog component to ZooKeeper replicas to instrument them
with HLC; this modification was minimal and required less than
30 lines of code. A simple client performed update operations
on ZooKeeper znodes or keys. We added instrumentation to
ZooKeeper’s final-request processor class to keep track of znode
versions right before the value is applied to the internal data
store. Adding Retroscope instrumentation required putting a single
line of code at each instrumentation point. We performed our
evaluation on a healthy ZooKeeper cluster, where all replicas have
roughly the same performance.

We used a workload of 15,000 non-interleaving update oper-
ations to a single znode to test the data staleness of ZooKeeper
replicas. Our workload targeted only a single znode and had a
single ongoing ZooKeeper operation at any given time. After
running the workload, we used RQL to obtain consistent cuts to
observe how znode data was changing across the replicas. The
below query outputs the cuts with staleness of 2 or more versions.
In the query, r1 is the name of ZooKeeper znode we monitor, and
zklog is the log keeping the history of all update operations at the
node.

SELECT rl FROM zklog WHEN Max(rl)—Min(rl)>1;

We have observed that a healthy ZooKeeper cluster can some-
times have stale replicas. In our experimental runs we noticed
some replicas getting as far as 22 versions behind other nodes
even under a low intensity workload. ZooKeeper provides a sync
operation to allow clients receive up-to-date version of a znode,
however, we found that issuing sync commands have no impact
on server staleness. Instead sync acts as a non-mutating update
operation and forces a client to block and wait for the value
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Fig. 10: ZooKeeper staleness and # of messages in transit as measured
by Retroscope

following the sync command to preserve the “read-your-write”
guarantee of ZooKeeper [28]].

To explain the high staleness issue, we looked at the message
flow in the system and searched for anomalies in the communi-
cation between the nodes during the intervals of high staleness.
For that, we added some instrumentation to ZooKeeper to keep
the counters of messages sent and received by each node. This
allowed us to write a query to examine the number of messages in
transit between along with the staleness metric.

SELECT
rl ,sentCount ,recvCount , diff ,staleness
FROM zklog
COMPUTE GLOBAL diff
AND GLOBAL staleness
AND (staleness := Max(rl) — Min(rl) )
AND (diff := NodeSum(sentCount)
— NodeSum(recvCount))
AT TIME x TO y

Figure[I0]illustrates the output of the above query for a roughly
3 second slice of the test workload execution. We observe a rapid
increase of messages being in transit around the time staleness
spikes up.

To gain further insight in how the messages are flowing we
used a custom RQLClient intended to visualize the below query,
where the set difference between sent and received messages are
monitored.

SELECT sentM ,recvM , inFlight ,rl, staleness
FROM zklog
COMPUTE GLOBAL staleness
AND (staleness := Max(rl) — Min(rl))
AND GLOBAL inFlight
AND (inFlight :=
Flatten (sentM) \ Flatten (recvM))
AT TIME x TO vy

Figure [T1] shows the amount of messages flowing between
nodes. Higher intensity color designates a greater number of
messages in the network for that node. This figure spans a 2-
second interval around one of the staleness spikes in ZooKeeper.
We can clearly observe the leader node (node #3) having more
messages sent to it. However, there is an in-transit message spike
at the leader and follower #4 right around the time of observed
high staleness. E|

We used the same query and RQL client to look at some
consistent cuts right before the time of staleness spike and during

4. Node #1 appears to be at a constant slight disadvantage; this is because it
serves the client generating the workload.
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Fig. 12: In-flight messages before and at observed staleness. Higher
color intensity represents larger amount of inbound messages

that spike. As seen in Figure [I2] not many messages were in the
network between nodes right before the staleness spike, however
as the staleness developed, we saw a bidirectional increase in the
number of messages being in-transit between the leader and node
#4. We also did not observe any node except #4 experience the
staleness at that time. These findings point to a momentary net-
work performance degradation or a millibottleneck [29] between
the leader and node #4.

In addition to the experiments on healthy ZooKeeper cluster,
we conducted a study of the cluster with a straggler node. We
artificially throttled down one of the follower replicas to process
the incoming replication messages with a 2 ms delay, mimicking a
node lacking in compute or network capacity compared to the rest
of the cluster. For this experiment we used the same workload as
before, except we performed updates to 10 znodes instead of one
to reduce znode contention.

Figure |E| illustrates how the staleness of the struggler node
changed over time in a 5-node ZooKeeper cluster. With this
experiment we empirically show how a single straggler node,
while not impacting the performance of ZooKeeper, affects the
staleness of the cluster and consequently may negatively affect
application relying on ZooKeeper.

It is curious that it took a couple of seconds for straggler
to start lagging behind the rest of the cluster, but once the slow
replica starts to fall behind, the effect snowballs quickly without
any chance of recovery. The reason a straggler node was able to
keep up with the rest of the cluster for the first few seconds is
because of both JVM warm-up and ZooKeeper queue allocations.
ZooKeeper processes replication commands in the queue, and
initially these queues are allocated to hold only a handful of
commands. As the workload ramps up, the queues reach the limit
and must be reallocated, causing the healthy nodes to stutter and
allowing the crippled straggler node to catch up. After a few
seconds of runtime, ZooKeeper queues are allocated to handle
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Fig. 14: Chord bug trace. Node 2 failed in middle of join operation

enough operations for the workload, allowing healthy nodes to
proceed at full speed.

5.2 Chord Ring Membership

The Chord [21] protocol provides a scalable peer-to-peer dis-
tributed hash table that allows nodes joining and leaving the
system. However, there exist known bugs [30] in the original
description of Chord ring-membership algorithm, e.g. node failure
during join operation may create gaps in the ring. We retroscoped a
simple Chord implementation [31] and used RQL to monitor such
violations by checking the ring condition in every consistent cut.
Retroscope’s cut monitoring approach allowed us to quickly check
for ring correctness. Tracing solutions may often be inadequate for
this task, as they lack the ability to see consistent global state of
the system, even when all request traces are collected.

As shown in Figure we start Chord with two nodes: node
1 and 3 have each other as their successors (variable succ). We
then start node 2 that attempts to join the ring by connecting to
a known node to find its correct successor. In this setup node 3
should become the successor of node 2, therefore node 2 should
become the predecessor of node 3. Node 2 fails after step (3), and
the periodic stabilization protocol sets node 1’s successor as node
2’s new predecessor. This is a violation of the invariant that each
node’s successor is correctly maintained.

We check the correctness of our ring with the following query:

SELECT succ,id

FROM log

WHEN succ[1l]=id[2]
AND succ[2]=1d [3]
AND succ[3]=id[1]

This query emits the cuts that have the correct 3-node configura-
tion of our Chord ring, and in the problematic case, the results will
be empty. Figure 14| shows a detailed trace of the consistent cuts
during a faulty execution, provided by the following query:

SELECT succ ,pred,id FROM log ON NODES 1,2,3

We can observe node 1 stabilization in step (4) after node 2’s
failure causes a gap in the ring.

6 PERFORMANCE EVALUATION

The performance of Retroscope query execution depends on many
factors, such as the size of the Apache Ignite cluster, the amount
logged events, the complexity of queries and how many cuts a
query emits. In this section experimentally study the impact of
these factors on performance.

6.1 Evaluation Setup

We conducted our performance evaluation of Retroscope on an
AWS EC2 cluster. We deployed Retroscope over a cluster of
m4.xlarge instance with 4 virtual cores and 16GB RAM. By
default, we used 8 such nodes for our experiments, unless stated
otherwise. We used a synthetic workload for this performance
evaluation in order to have better control over the parameters
influencing the results. Our synthetic workload was generated by
an application distributed over 5 different EC2 m4.xlarge instances
in the same AWS region.

The workload application consists of nodes communicating
with each other. Each node maintains state expressed consisting
of many counter variables. The state of every counter variable
is tracked with Retroscope. Every node sends messages with the
name and value of some counter to a randomly picked node at
a controlled rate. Sending each message requires choosing the
counter, incrementing its value, using RetroLog component to
record it with Retroscope and finally transmitting it to an arbitrary
node. Upon receiving the message, the node updates its version
of the counter with the received value and records the counter
to Retroscope. Occasionally a node resets the value of a counter
before sending it to one of the peers. Despite being primitive,
this application (available on Retroscope’s GitHub page) allows
controlling various aspects of systems behavior, such as number
of messages exchanged per second, the size of tracked nonlocal
state, and number of peers participating in the message exchange.
In particular, we generated between 100,000 and 1,200,000 logged
events over a 2 minute interval and varied the state size between
10 and 100 variables.

In our evaluation we measured two key performance metrics:
query latency and query processing throughput. Query latency
is the end-to-end execution time for a query. Query processing
throughput is the rate at which Retroscope scans through the
application states, measured in cuts per second.

6.2 Search Space Size

Retroscope must scan through all past consistent cuts in the query
range to find the states satisfying the search criteria. In this
experiment we ran workloads of different sizes to evaluate how
well Retroscope scales with respect to an increased workload. For
each workload size we repeatedly ran a set of different 10 queries
of similar complexity (selecting 10 variables with conditional
expression involving two variables) and measured the average
query latency and query processing throughput.

As illustrated in Figure [T3] Retroscope’s query latency grows
linearly as the search space increases. This predictable perfor-
mance is also evident from query processing throughput, as the
system moves through the cuts at roughly the same pace regardless
of the workload size. This behavior is attributed to the linear nature
of rolling through state history in the cut-monitoring systems.
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6.3 Number of Emitted Cuts

Retroscope emits only the cuts that satisfy the query condition
predicate. The number of cuts each worker emits has a direct
impact on query performance, since these cuts must travel through
the network and aggregate at RQLServer. Figure [I6] illustrates
the Retroscope’s performance degradation as the ratio of emitted
cuts to the number total cuts in the search space increases. In this
experiment we evaluated our system by searching through a state
history consisting of approximately one million cuts. We adjusted
the workload and 10 queries to controllably return predictable
number of results. We then ran the queries to measure performance
for different number of returned cuts.

As the number of emitted cuts increases, the performance starts
to degrade linearly, as the linearly more data needs to be passed
from workers to RQLServer. Additional overhead occurs at the
RQLServer when it sorts partially sorted blocks of emitted cuts
coming from the workers.

6.4 Query Complexity

Retroscope can track many different variables of application state,
however, each query does not need to use all of these variables.
Evaluation procedure prunes all consistent cuts that do not mutate
the variables specified by the user. This greatly reduces the amount
of snapshots Retroscope evaluates. The system still needs to
scan through all states in the query regardless, but evaluation is
skipped if none of the query variables have changed. Thus, more
complicated queries with more variables may run longer than the
queries operating on less data.

Figure illustrates the performance degradation as we in-
crease the number of variables used in the query. In this exper-
iment we ran the workload of 692,576 consistent cuts tracking
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50 distinct variables. The queries in this experiment selected a
subset of these variables. Expectedly, the performance of the
system degenerated as we used more variables. Another reason
for diminishing performance on large queries is the increased size
of each returned cut that must be transmitted to RQLServer.

6.5 Horizontal Scalability

Retroscope’s cut monitoring approach enables the system to dis-
tribute the workload to many independent workers, with each
worker responsible for a small subset of state history to sift
through. To evaluate the horizontal scalability of Retroscope, we
used our artificial workload to generate around 2.5 million cuts
with each cut containing one or more logged event. We then used
Retroscope cluster of varying sizes between 2 and 12 instances
to process 10 different search queries against that state history.
Each of our queries targeted 50% of the variables in the tracked
state and emitted roughly the same number of cuts. We repeated
each query 10 times to obtain average execution latency and query
processing throughput.

Figure [T8] illustrates how well Retroscope scales horizontally
by adding more nodes to the cluster. Our system demonstrated
near perfect speedup when adding nodes to increase the available
compute power. For instance, increasing the number of servers
from 2 to 8 resulted in almost 3.7 throughput increase.

6.6

Retroscope is designed to minimize its impact on the performance
of the monitored system, as the majority of Retroscope compo-
nents responsible for streaming, storage, and query processing are
deployed on the infrastructure independent from the monitored
system. However, one possible point of impact is the RetroLog

Impact on Monitored Systems



component that must be integrated in the target system. In [27]]
we have illustrated that adding HLC and recording the state of the
node with RetroLog component has minimal impact on the overall
performance of the system integrating RetroLog. Our current
version of RetroLog used for monitoring, unlike the one in [27],
has even smaller buffer for keeping state changes and streams the
changes with Ignite Streaming, so as long as the network capacity
is not saturated at the monitored nodes, the impact of RetroLog
component will remain small.

7 FURTHER IMPROVEMENTS

Our Retroscope implementation can be improved in many ways to
extend its functionality and offer better performance.

Eliminating redundant calculations. Upon a query evalu-
ation, a worker rolls from one snapshot to the next. During this
process, the global state often changes slightly, by one or two
variables. Despite the small changes at every new cut, RQL starts
all computations from scratch and re-evaluates the expressions
nested in the COMPUTE and WHEN predicates. However, parts of
these expressions may not have changed from one cut to another.
In the future versions of Retroscope we plan to take greater
advantage of having small changes from one state to another and
eliminate redundant computations.

State coverage. Retroscope relies on HLC to efficiently
identify consistent cuts for predicate detection. HLC alone is
incapable of finding all possible consistent cuts. However, if the
predicate of interest is valid for sufficiently long time (2¢) or more
or is recurrent, HLC is expected to detect it [32]. By contrast, if we
want to remove all false negatives (without adding false positives),
we need O(n) sized clocks which adds a substantial overhead to
the system (as these timestamps must be included in all messages).
Thus, HLC provides a cost-effective approach for monitoring.

It is possible to integrate orthogonal solutions/extensions to
Retroscope for dealing with false negatives. One approach is
to utilize recently developed biased clocks [33|]. Biased clocks
provide an alternate implementation of HLC where the update
timestamp for receive events is biased. Specifically, by adding a
bias value to message timestamp received from another process,
biased clocks allow us to reduce the false negatives substantially
(to almost 0 in many cases). In [34]], HLC and information about
messages are used to detect violation of desired predicates with the
help of SMT solver Z3. This eliminates false positives but has a
higher overhead than using HLC alone. Also, we can eliminate
false negatives by replacing HLC with a more capable causal
clock, such as Hybrid Vector Clocks [35]. However, this also
increases the cost as size of HVC can be O(n) in the worst case.

Streaming queries. In some cases, it is beneficial to evaluate
the global states of a distributed system on the fly as the events
happen. Adding streaming queries can offer near real-time mon-
itoring for global predicate violations and allow early problem
detection to complement the post-mortem retrospection offered
by normal queries. Streaming query capability can rely on the
log streams coming from the RetroLog servers to continuously
evaluate query on new consistent cuts as they become available.

Temporal queries. Retroscope focuses on highly parallel
search through recorded states of the system one cut at a time.
However, in some cases users are interested in temporal trends
spanning multiple cuts. To support temporal querying natively, we
plan to expand RQL with multivariate time-series data querying.
A differential data-flow approach [36] may allow workers perform
incremental computations more efficiently for temporal queries.
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8 RELATED WORK
8.1 Monitoring and Debugging

Various solutions to distributed systems monitoring and debugging
have been proposed in the literature. We can distill the various
approaches into three broad categories: loggers, tracers, and re-
players. Table |1| generalizes some of the attributes of the systems
in each category. The main differences between the tools across
categories lie in the way they produce and present the results back
to the users.

Loggers [26]], [37] are the most basic, yet the most widely used
debugging tools. They allow users to capture information about
local parameters at the nodes of a distributed application. Most
commonly, loggers such as log4j [26] allow to control amount
details captured in the logs in the layered approach: different log
layers exist with an increasing amount of data captured at each
higher level, allowing system administrators to escalate logging
level only when it is needed for debugging. Some logging systems,
like log? [37] aim to automate the amount of details captured
by using anomaly detection techniques to filter out any events
that do not point to an abnormal behavior of the system. While
Retroscope uses logging to record the data, traditional loggers are
not equipped with tools to search and analyze logs. Retroscope
also provides a mean to look at data across many machines, while
loggers record per-machine data that needs to be collated together
at some later time. Loggers often require orthogonal systems to
process the logged data.

Tracers [[15], [[17]], [18] rely on more advanced logging capa-
bilities to keep track of request propagation and execution across
multiple machines. Request tracing solutions allow for consid-
erable more advanced performance monitoring and debugging
capabilities than loggers due to their ability to breach a single
node boundary. Pivot Tracing [15] is an example of a system that
captures the information along the request path and propagates
it forwards with the request. This allows the system to precisely
identify request execution path and track causality between events
in the same request. Pivot Tracing aggregates the data collected at
every request of the same type and uses it to answer user queries.
This contrasts with Retroscope that exposes consistent snapshots
for analysis across the nodes in the cluster, and not individual or
aggregated requests spanning over some time. Mystery Machine
[[18] is another tracing example. It does not use any specially
constructed logs and instead relies on large amounts of regular
logs being collected to deduce the most common request paths
and identify performance bottlenecks along these paths.

The most complicated and comprehensive debugging tools are
record-and-replay systems, or replayers. Replayers [38], [39], [40]
are deterministic re-execution solutions that must record every
input and nondeterministic operations performed at every node
of the system during the runtime. They use this information to
reproduce the execution of a system in a development or de-
bugging environments. Retroscope is a simpler solution that does
not reproduce the executions, instead in allows to trace consistent
progression of states in some recorded execution without replaying
or running the actual system under test.

8.2 Snapshots

Eidetic systems. Eidetic systems can recall any past state that
existed on the computer, including all versions of all files, the
memory and register state of processes, inter-process communica-
tion, and network input.



TABLE 1: Comparison of monitoring and debugging methods

Loggers Tracers Replayers
Usage monitoring & debugging | performance monitoring debugging
Performance overheads low medium high
Ease of setup easy medium medium
Requires post-processing sometimes v v
Post-processing cost low to medium medium high
Ease of use for debugging hard medium to hard easy to medium
Ease of use for performance hard easy to medium hard
monitoring

In [[41], the authors modified the Linux kernel to record
all nondeterministic data that enters a process: the order, return
values, and memory addresses modified by a system call, the
timing and values of received signals, and the results of querying
the system time. The major space saving technique in that work
is to use model-based compression: the system constructs a model
for predictable operations and records only instances in which the
returned data differs from the model. That is, the system only
saves nondeterministic choices or new input and can recompute
everything else. The results in [41]] are for single CPU machines
and do not account for issues in distributed systems.

Freeze-frame file system. The Freeze-Frame File System
(FFES) [42]] uses HLC [[11] to implement retrospective querying
on the HDFS file system [43]]. FFFS uses multiple logs to capture
data changes on HDFS NameNode and DataNodes and such logs
are meant to persist to a low-latency storage, such as an SSD. An
indexing scheme is used to access the logs and retrieve requested
pages from the past. FFFS modified the underlying system and
replaced HDFS append-only logs with multiple HLC-enabled logs
and indexes. FFFS records every update to data and metadata, and
in effect implements a multiversion data store. Unlike Retroscope,
FFFS does not provide any observability capabilities and strictly
focuses on retrospective-snapshots of the databases. Additionally,
FFFS is not general enough to provide an arbitrary past snapshot,
as it requires a special marker to preserve snapshot data at
particular HLC timestamp.

Snapshots in distributed event-sourced systems Erb et al.
perform retrospective snapshots of distributed system by adopting
and extending the actor model and event-sourcing [[44]. In their
system, each node keeps a log of events, such as data being
sent and received along with the causality information associ-
ated with pairs of send-receive events captured as logical clock
timestamps. They evaluate two algorithms capable of constructing
globally consistent snapshots from such distributed logs. Dynamic
Dependency Vector Reconstruction (DDVR) algorithm used as
the baseline does not guarantee capturing snapshot all actors or
nodes in the distributed system, resulting in causally-consistent,
but partial snapshots. Second algorithm, Forward Causality Barrier
(FCB) extends the baseline protocols and uses physical time to add
causally unrelated actors to the snapshot. These algorithms capture
snapshots that may not have appeared, or even had a chance to
appear, in the real execution of a system. Retroscope, on the other
hand, operates on tighter consistent snapshots across all nodes.
Additionally, Retroscope provides tools to search or check for
state violations across a large sequence of snapshots.

9 CONCLUDING REMARKS

We introduced Retroscope for performing lightweight, incremen-
tal, and retrospective monitoring of distributed snapshots. Retro-
scope leverages HLC timestamping to collate node-level indepen-
dent snapshots for obtaining global consistent cuts, and avoids
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both the inconsistent cut problems associated with NTP times-
tamping, and the scalability problems of VC timestamping. We
demonstrated the use of Retroscope for monitoring and debugging
in ZooKeeper and Chord case studies. Our performance evaluation
under different workloads showed good system scalability.

An important use case for Retroscope is continuous monitoring
and recovery of data integrity against failures or attacks. A
streaming RQL query can detect bad behavior and alert operators,
upon which the operators can explore around the problematic time
interval using Retroscope, and perform step-by-step debugging
and root cause analysis. Another important use case for Retroscope
is invariant checking via global predicate detection. In future
work, we will add reset/revert capability to Retroscope to allow
recovery of critical distributed states tracked in the system. Since
a Retroscope snapshot is globally consistent, it can be used for
performing a consistent reset for the entire system.
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