
Trail: A Distance Sensitive Sensor Network Service

For Distributed Object Tracking

VINODKRISHNAN KULATHUMANI, ANISH ARORA, MUKUNDAN SRIDHARAN

Dept. of Computer Science and Engineering

The Ohio State University

and

MURAT DEMIRBAS

Dept. of Computer Science and Engineering

University at Buffalo, SUNY

Distributed observation and control of mobile objects via static wireless sensors demands timely
information in a distance sensitive manner: information about closer objects is required more
often and more quickly than that of farther objects. In this paper, we present a wireless sensor
network protocol, Trail, that supports distance sensitive tracking of mobile objects for in-network
subscribers upon demand. Trail achieves a find time that is linear in the distance from a subscriber
to an object, via a distributed data structure that is updated only locally when the object moves.
Notably, Trail does not partition the network into a hierarchy of clusters and clusterheads, and
as a result Trail has lower maintenance costs, is more locally fault-tolerant and it better utilizes
the network in terms of load balancing and minimizing the size of the data structure needed for
tracking. Moreover, Trail is reliable, and energy-efficient, despite the network dynamics that are
typical of wireless sensor networks. Trail can be refined by tuning certain parameters, thereby
yielding a family of protocols that are suited for different application settings such as rate of
queries, rate of updates and network size. We evaluate the performance of Trail by analysis,
simulations in a 90-by-90 sensor network, and experiments on 105 Mica2 nodes in the context of
a pursuer-evader control application.

Categories and Subject Descriptors: C.2.1 [Computer Communication Networks]: Dis-
tributed Networks; C.2.1 [Computer Communication Networks]: Wireless Communication;
C.2.2 [Computer Communication Networks]: Network Protocols

General Terms: Algorithms, Design, Reliability, Performance Evaluation

Additional Key Words and Phrases: Distributed tracking, Network protocol, Applications of
sensor actuator networks, Data storage and query, Fault-Tolerance, Scalability, Energy efficiency

This paper is a substantially extended version of the paper that appeared in the Proceedings of
European Conference on Wireless Sensor Networks (EWSN), 2007.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2006 ACM 1529-3785/2006/0700-0001 $5.00

The Ohio State University Technical Report, Vol. , No. , 07 2006, Pages 1–0??.



2 · Vinodkrishnan Kulathumani et al.

1. INTRODUCTION

Tracking of mobile objects has received significant attention in the context of cel-
lular telephony, mobile computing, and military applications [Abraham et al. 2004;
Dolev et al. 1995; Awerbuch and Peleg 1995; Demirbas et al. 2004]. In this paper,
we focus on the tracking of mobile objects using a network of static wireless sen-
sors. Examples of such applications include those that monitor objects [Arora et al.
2004; He et al. 2006; Arora and Ramnath 2004], as well as applications that “close
the loop” by performing tracking-based control; an example is a pursuer-evader
tracking application, where a controller’s objective is to minimize the catch time of
evaders.

We are particularly interested in large scale WSN deployments. Large networks
motivate several tracking requirements. First, queries for locations of objects in a
large network should not be answered from central locations as the source of the
query may be close to the object itself but still have to communicate all the way to
a central location. Such a centralized solution not only increases the latency but
also depletes the intermediate nodes of their energy. Plus, answering queries locally
may also be important for preserving the correctness of applications deployed in
large WSNs. As a specific example, consider an intruder-interceptor application,
where a large number of sensor nodes lie along the perimeter that surrounds a
valuable asset. Intruders enter the perimeter with the intention of crossing over
to the asset and the objective of the interceptors is to “catch” the intruders as far
from the asset as possible. In this case, it has been shown [Cao et al. 2006] that
there exist Nash equilibrium conditions which imply that, for satisfying optimality
constraints, the latency with which an interceptor requires information about the
intruder it is tracking depends on the relative locations of the two: the closer the
distance, the smaller the latency. This requirement is formalized by the property
of distance sensitivity for querying, i.e., the cost in terms of latency and number
of messages for returning the location of a mobile object grows linearly in terms of
the distance between the object and the querier.

Second, tracking services for large networks must eschew solutions with dispropor-
tionate update costs that update object locations across the network even when the
object moves only by a small distance. This requirement is formalized by the prop-
erty of distance sensitivity for updates, i.e., the cost of an update is proportional
to the distance moved by the object. Querying, by itself, for events or information
of interest in WSNs has received significant attention [Intanogonwiwat et al. 2003;
Ratnasamy et al. 2002; Liu et al. 2004] and some of them focus on distance sensitive
querying [Ratnasamy et al. 2002; Sarkar et al. 2006; Funke et al. 2006]. In those
solutions, information from a source is published across the network in such a way
that queries can be resolved in a distance sensitive manner but the solutions do not
address the update of the published information when an object moves. The focus
of our work is on the tracking of mobile objects and we additionally require that
the update cost is distance sensitive.

Contributions: In this paper, we use geometric ideas to design an energy-efficient,
fault-tolerant and hierarchy-free WSN service, Trail, that supports tracking-based
WSN applications. The specification of Trail is to return the location of a particular
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object in response to an in-network subscriber issuing a find query regarding that
object. Trail has a find cost that is linear (O(df )) in terms of the distance (df ) of the
subscriber from the object. To this end, Trail maintains a tracking data structure
by propagating mobile object information only locally, and satisfying the distance
sensitivity requirement for the track updates. The amortized cost of updating a
track when an object moves a distance dm is O(dm ∗ log(dm)).

A basic Trail protocol can be refined by tuning certain parameters, thus resulting
in a family of Trail protocols. Appropriate refinements of the basic Trail protocol
are well suited for different network sizes and find/update frequency settings: One
refinement is to tighten its tracks by progressively increasing the rate at which the
tracking structure is updated; while this results in updating a large part of the
tracking structure per unit move, which is for large networks still update distance
sensitive, it significantly lowers the find costs for objects at larger distances. An-
other refinement increases the number of points along a track, i.e., progressively
loosens the tracking structure in order to decrease the find costs and be more find-
centric when object updates are less frequent or objects are static. Moreover, Trail
scales well to networks of all sizes. As network size decreases, Trail gradually es-
chews local explorations and updates and thus increasingly centralizes update and
find.

We evaluate the performance of Trail by simulations in a 90 × 90 sensor network
and experiments on 105 Mica2 nodes in the Kansei testbed[Arora et al. 2006]. This
implementation has been used to support a distributed intruder interceptor tracking
application where the goal of the interceptor is to catch the intruders as far away
from an asset as possible.

Overview of solution: Trail maintains tracks from each object to only one termi-
nating point, namely, the center of the network C; these tracks are almost straight
to the center, with a stretch factor of at most 1.2 times the distance to C. Note
that if the track to an object P is required to be always a straight line from C to
the current location of P resulting in a stretch factor equal to 1, then every time
the object moves, the track has to be updated starting from C, which would not
be a distance sensitive approach. Therefore, we form the track as a set of trail
segments and update only a portion of the structure depending upon the distance
moved. Thus given a terminating point Trail maintains a track with lengths from
the terminating point that is almost close to minimum. This is important because
longer tracks have a higher cost of initialization and given that network nodes may
fail due to energy depletion or hardware faults, longer tracks increase the proba-
bility of a failed node along a track as well as increase the cost of detecting and
correcting failures in the track.

Given the track to an object, a find operation explores along circles of exponentially
increasing radii until the track is intersected and then follows the track to the
current location of the object. The tracks maintained in Trail only contain pointers
to the current location of an object and not the state information of the object.
Publishing the current state (namely location) of the object along all points in
track will violate distance sensitivity of updates because every move of the object
will result in updating the entire track. Following the trail of an object from any
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location leads to the current location of the object which contains the state of the
object. Yet Trail is distance sensitive in terms of the find in the sense that the
total cost of reaching the track for an object, and following the track to reach the
object is proportional to the distance of the finder from the object. Note that a
find explores along circles until a radii that is at most half the distance of the finder
to C and then searches at C where the track is certain to be found. Thus C serves
as a worst case landmark for finding objects in the network.

In our solution, we make some design decisions like choosing a single point to ter-
minate tracks from all points in the network and avoiding hierarchy in maintaining
the tracks. In Section 7, we analyze these aspects of our solution and compare them
with other possible approaches.

Organization of the paper: In Section 2, we describe the system model and
problem specification. In Section 3, we design the basic Trail protocol for a 2-d
real plane. Then, in Section 4, we present an implementation of the basic Trail
protocol for a 2-d sensor network. In Section 5, we discuss refinements of the basic
Trail protocol. In Section 6, we present results of our performance evaluation. In
Section 7, we analyze some design decisions made in our solution and compare
them with other possible approaches. In Section 8, we discuss related work and, in
Section 9, we make concluding remarks and discuss future work.

2. MODEL AND SPECIFICATION

The system consists of a set of mobile objects, and a network of static nodes that
each consist of a sensing component and a radio component. Tracking applications
execute on the mobile objects and use the sensor network to track desired mobile
objects. Object detection and association services execute on the nodes, as does
the desired Trail network tracking service.

The object detection and association service assigns a unique id, P , to every object
detected by nodes in the network and stores the state of P at the node j that is
closest to the object P . This node is called the agent for P and can be regarded
as the node where P resides. The problem of detecting objects in the network
and uniquely associating them with previous detections is thus orthogonal to the
tracking service that we discuss in this paper. Detection and association services
can be implemented in a centralized [Sinopoli et al. 2003] or distributed [Shin et al.
2003] fashion; the latter approach would suit integration with the tracking service
that we discuss in this paper. As a network level service, we do not make any
assumptions about the quality of these detections and leave the implications of
false detections and associations to be dealt with at the application layer.

Trail Network Service: Trail maintains an in-network tracking structure, trailP ,
for every object P . Trail supports two functions: find(P, Q), that returns the state
of the object P , including its location at the current location of the object Q issuing
the query and move(P, p’, p) that updates the tracking structure when object P
moves from location p′ to location p.

Definition 2.1 find(P, Q) Cost. The cost of the find(P, Q) function is the total
communication cost of reaching the current location of P starting from the current
location of Q.
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Definition 2.2 move(P, p’, p) Cost. The cost of the move(P, p′, p) function is the
total communication cost of updating trailP to the new location p and deleting the
tracking structure to the old location p′.

We note that our network service does not assume knowledge of the motion model
of objects being tracked, in contrast to some query services [Lu et al. 2005], and
as such the scope of every query in our case is the entire network as opposed to a
certain locality. Nor does it assume a bound on the number of querying objects in
the network or any synchrony between concurrent queries.

Network Model: To simplify our presentation, we first describe Trail in a 2-d
real continuous plane. We then refine the Trail protocol to suitably implement
in a random connected deployment of a wireless sensor network. In this model,
we impose a virtual grid on the random deployment and snap each node to its
nearest grid location (x, y). Each node is aware of this location. We refer to unit
distance as the one hop communication distance. dist(i, j) now stands for distance
between nodes i and j in these units. We describe this model in more detail and
the implementation of Trail in this discrete model in Section 4.

Fault Model: In the wireless sensor network, we assume that nodes can fail due
to energy depletion or hardware faults or there could be insufficient density at
certain regions, thus leading to holes in the network. However, we assume that the
network may not be partitioned; there exists a path between every pair of nodes in
the network.

3. TRAIL

In this section, we use geometric ideas to design Trail for a bounded 2-d real plane.
Let C denote the center of this bounded plane.

3.1 Tracking Data Structure

We maintain a tracking data structure for each object in the plane. Let P be
an object being tracked, and p denote its location on the plane. We denote the
tracking data structure for object P as trailP . Before we formally define this
tracking structure, we give a brief overview.

Overview: If trailP is defined as a straight line from C to P , then every time
the object moves, trailP has to be updated starting from C. This would not be a
distance sensitive approach. Hence we form trailP as a set of trail segments and
update only a portion of the structure depending upon the distance moved. The
number of trail segments in trailP increases as dist(p, C) increases. Rather, the end
points of the trail segments serve as marker points to update the tracking structure
when an object moves. The point from where the update is started depends on
the distance moved. Only, when P moves a sufficiently large distance, trailP is
updated all the way from C. We now formally define trailP .

Definition 3.1 trailP . The tracking data structure for object P , denoted by
trailP , for dist(p, C) ≥ 1 is a path obtained by connecting any sequence of points
(C, Nmx, ..., Nk, ..., N1, p) by line segments, where mx ≥ 1, and there exist auxil-
iary points c1..cmx that satisfy the properties (P1) to (P3) below. mx is defined as
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d(log2(dist(C, po)))e − 1, where po is the location of p when trailP was initialized
or updated starting from C.

For brevity, let Nk be the level k vertex in trailP ; let the level k trail segment in
trailP be the segment between Nk and Nk−1 ; let Seg(x, y) be any line segment
between points x and y in the plane.

—(P1): dist(ck, Nk) = 2k, (mx ≥ k ≥ 1).

—(P2): Nk−1, (mx ≥ k ≥ 1), lies on Seg(Nk, ck−1); Nmx lies on Seg(C, cmx).

—(P3): dist(p, ck) < 2k−b, (mx ≥ k ≥ 1) and b ≥ 1 is a constant.

If (dist(p, C) = 0), trailP is C; and if (0 ≤ dist(p, C) < 1), trailP is Seg(C, p).

(a) Initial
trailP

(b) P moves away
from c3

(c) P moves back
towards c3

Fig. 1. Examples of Trail to an Object P

Observations about trailP : From the definition of trailP , we note that the
auxiliary points c1..cmx are used to mark vertices N1..Nmx of trailP . P1 and P2
describe the relation between the auxiliary points and the vertices of trailP . Given
trailP , points c1..cmx are uniquely determined using P1 and P2. Similarly given
p and c1, ..cmx, trailP is uniquely determined. These properties are stated in the
following Lemmas.

Lemma 3.2. Given trailP , points c1..cmx are uniquely determined.

Proof. Extend Seg(C, Nmx) of trailP by a distance of 2mx to obtain cmx. Sim-
ilarly extend Seg(Nk, Nk−1) by 2k−1 to obtain ck−1 for 0 < k ≤ mx. Thus us-
ing properties P1 and P2 of trailp, points c1..cmx are uniquely determined given
C, Nmx, .., N1, p of trailP .

Lemma 3.3. Given c1, ...cmx and p, trailP is uniquely determined.
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Proof. Nmx lies on Seg(C, cmx) such that dist(cmx, Nmx) = 2mx. Similarly
Nk−1 lies on Seg(Nk, ck−1) such that dist(ck−1, Nk−1) = 2k−1 for 1 < k ≤ mx.
Thus C, Nmx, .., N1, p of trailP are uniquely determined.

By property P3, the maximum separation between p and any auxiliary point ck

decreases exponentially as k decreases from mx to 1. When an object moves a
certain distance away from its current location, trailP has to be updated from the
smallest index k such that property P3 holds at all levels. By changing parameter
b in property P3, we can tune the rate at which the tracking structure is updated.
We discuss these refinements in Section 5.

Note from the definition of trailP that mx is defined as d(log2(dist(C, po)))e − 1
where po was the location of the object when trailP was either created or up-
dated from C. The value of mx which denotes the number of trail segments
in trailP , depends on the distance of P from C. When trailP is first created,
c1, ..., cmx are initialized to location po, the number of levels mx is initialized to
d(log2(dist(C, po)))e − 1 and trailP is a straight line. The value of mx is updated
when trailP has moved a sufficient distance to warrant an update of trailP all the
way from C. The update (and create) procedure for trailP is described in more
detail in the following subsection.

We now show 3 examples of the tracking structure in Fig. 1. In this figure, b = 1.
Fig. 1(a) shows trailP when c3, ..c1 are collocated. When P moves away from this
location, trailP is updated and Fig. 1(b) shows an example of trailP where c2, c1

are displaced from c3. In Fig. 1(b), dist(c3, c2) = 2 units, dist(c2, c1) = 1 unit, and
p and c1 are collocated. Moreover, N3 lies on Seg(C, c3), N2 lies on Seg(N3, c2)
and so on. In Fig. 1(c) we show an example of a zigzag trail to an object P , when
P moves away from c3 and then moves back in the opposite direction.

3.2 Updating the trail

We now describe a procedure to update the tracking structure when object P
moves from location p′ to p such that the properties of the tracking structure are
maintained and the cost of update is distance sensitive.

Overview: When an object moves distance d away, if the distance dist(c1, p) ≤
1, then the trail is updated by replacing segment(N1, p

′) with segment(N1, p).
Otherwise, we find the minimal index m, along trailP such that dist(p, cj) < 2j−b

for all j such that mx ≥ j ≥ m and trailP is updated starting from Nm. In order to
update trailP starting from Nm, we find new vertices Nm−1...N1 and a new set of
auxiliary points cm−1...c1. Let N ′

m−1...N
′
1 and c′m−1...c

′
1 denote the old vertices and

old auxiliary points respectively. Starting from Nm, we follow a recursive procedure
to update trailP . This procedure is stated below:

Update Algorithm:

(1) If dist(p, c1) > 1, then let m be the minimal index on the trail such that
dist(p, cj) < 2j−b for all j such that mx ≥ j ≥ m.

(2) k = m

(3) while k > 1
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Fig. 2. Updating trailP
(a) ck−1 = p; Now obtain Nk−1 using property P2 as follows: the point on

segment Nk, ck−1, that is 2k−1 away from ck−1.
(b) k = k − 1

If no indices exist such that dist(ck, p) < 2k−1, then the trail is created starting
from C. This could happen if the object is new or if the object has moved a
sufficiently large distance from its original position. In this case, mx is set to
(dlog2(dist(C, p))e) − 1. cmx is set to p. Nmx is marked on Seg(C, p) at distance
2mx from cmx. Step 1 is executed with k = mx.

Fig. 2 illustrates an update operation, when b = 1. In Fig. 2a, dist(p, p′) is 2
units. Hence update starts at N3. Initially c3, c′2, c′1 are at p′. We use the update
algorithm to determine new c2, c1 and thereby the new N2, N1. Using step (3a)
of the update algorithm, the new c2 and c1 lie at p. The vertex N2 then lies on
Seg(N3, c2) and N1 lies on Seg(N2, c1). In Fig. 2b, P moves further one unit. Hence
update now starts at N2. Using step (3a) of the update algorithm, the new c1 lies
at p and N1 lies on Seg(N2, c1).

Lemma 3.4. The update algorithm for Trail yields a path that satisfies trailP .

Proof. (1) Let m be the index at which update starts. By the condition in
step 1, dist(cj, p) < 2j−b for all mx ≥ j ≥ m. Now, for m > j ≥ 1, cj = p.
Therefore for m > j ≥ 1, dist(cj, p) < 2j−b. Thus property P3 is satisfied.

(2) Properties P2 and P1 are satisfied because m ≥ k > 1, we obtain Nk−1 as the
point on Seg(Nk, ck−1), that is 2k−1 away from ck−1.

(3) mx is defined for trailP , when trailP is created or updated starting from C.
When mx is (re)defined for trailP , cmx is the position of the object and mx is
set to (dlog2(dist(C, p))e) − 1.

Definition 3.5 Trail Stretch Factor. Given trailP to an object p, we define the
trail stretch factor for any point x on trailP as the ratio of the length along trailP
from x to p, to the Euclidean distance dist(x, p).

Lemma 3.6. The maximum Trail Stretch Factor for any point along trailP , de-
noted as TSp is sec(α) ∗ sec(α

2 ) where α = arcsin( 1
2b ).
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(a) Max Angle in Trail (b) Analyzing Stretch

Fig. 3. Analyzing Trail Stretch Factor

Proof. We prove Lemma 3.6 by using the following steps.

� (Maximum angle (6 pNkck)) Let the maximum angle formed by p and ck at
Nk in trailP for (mx ≥ k ≥ 1) be denoted as α. Refer Fig. 3(a)). Recall from
properties of trailP that dist(Nk, ck) = 2k and dist(p, ck) < 2k−b. Note that
6 pNkck is maximum when Seg(Nk, p) is tangent to a circle of radius 2k−b and
center ck. Therefore we have the following condition.

α < arcsin(
1

2b
) (1)

� (Maximum stretch at a given level k) Let x be any point on trailP which lies
on Seg(Nk+1, Nk). Refer Fig. 3(b). We note the following equation based on the
geometry of Fig. 3(b).

(dist(x, Nk) + dist(Nk, p))

dist(x, p)
=

(sin(θ) + sin(φ))

sin(θ + φ)
(2)

Also note that (θ + φ) = 6 pNkck. Using this, we get Eq. 3

(θ + φ) ≤ α (3)

Let f(θ, φ) denote the following function.

f(θ, φ) =
(sin(θ) + sin(φ))

sin(θ + φ)
(4)

It can be shown that f(θ, φ), where θ > 0, φ > 0 and θ + φ ≤ α is maximum
when θ = φ = α

2 . We state this as Proposition B.1 and prove it in Appendix B.
Substituting (θ = φ) in Eq. 2, we get the following condition.
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(dist(x, Nk) + dist(Nk, p))

dist(x, p)
≤ sec(

α

2
) (5)

Thus, we see that at a single level k the maximum stretch for trailP occurs when
6 pNkck is α for a point x on Seg(Nk+1, Nk) such that 6 pxNk = 6 xpNk. Since
6 pxNk = 6 xpNk when the maximum occurs, we also get the following equation.

(dist(x, Nk))

dist(x, p)
=

(dist(Nk, p))

dist(x, p)
=

sec(α
2 )

2
(6)

� (Maximum trail stretch factor from vertex Nk to p) In order to find the max-
imum stretch factor over multiple levels, we consider trailP to be split at vertices
Nk to N2 in such a way that the stretch is maximized at each level. Thus we let
6 pNjcj = α and 6 pNjNj−1 = 6 NjpNj−1 for all k ≥ j > 1. In Fig. 4, we show one
such trail segment, Seg(Nj, Nj−1) of trailP .

Fig. 4. Analyzing Trail Stretch

Using Eq. 6, we get the following equations:

dist(Nj−1, p)

dist(Nj , p)
=

sec(α
2 )

2
∀j : k ≥ j > 1 (7)

dist(Nj , Nj−1)

dist(Nj , p)
=

sec(α
2 )

2
∀j : k ≥ j > 1 (8)

When the above configuration is repeated at all levels of trailP , we determine
the ratio of the lengths of two successive trail segments, Seg(Nj−1, Nj−2) and
Seg(Nj, Nj−1). Using Eq. 7 and Eq. 8, we get the following equation.

dist(Nj−1, Nj−2)

dist(Nj , Nj−1)
=

sec(α
2 )

2
∀j : k ≥ j > 2 (9)
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Let Lk denote the length along trailP from vertex Nk. Using Eq. 9, we get:

Lk = dist(N2, N1) ∗
j=(k−2)

∑

j=0

(2 ∗ cos(
α

2
)j) + dist(N1, p) (10)

Let Rk denote the trail stretch factor from Nk.

Rk =
Lk

dist(Nk, p)
(11)

Upon simplification using Eq. 7, Eq. 8 and Eq. 10, we get:

Rk =
1

2 ∗ cos(α
2 ) − 1

+
1

(2 ∗ cos(α
2 ))k−1

∗ (1 − 1

2 ∗ cos(α
2 ) − 1

) (12)

Since, α < π
6 for b ≥ 1, 0 < 2 ∗ cos(α

2 ) − 1 ≤ 1. Therefore we get:

Rk ≤ 1

2 ∗ cos(α
2 ) − 1

(13)

Since, cos(α) = 2 ∗ cos2(α
2 ) − 1, cos(α

2 ) ≤ 1 and 0 < 2 ∗ cos(α
2 ) − 1 ≤ 1, we get:

Rk ≤ 1

cos(α)
(14)

� (Maximum trail stretch factor from any point in trailP to p) Let x be any
point on trailP which lies on a level k + 1 segment, i.e Seg(Nk+1, Nk), but is not
a vertex point. Let Lxp denote the length along trailP from x to p. Using Eq. 14
and Eq. 5, we have the following inequalities:

Lxp ≤ dist(x, Nk) + dist(Nk, p) ∗ sec(α)

≤ (dist(x, Nk) + dist(Nk, p)) ∗ sec(α)

≤ sec(
α

2
) ∗ sec(α) ∗ dist(x, p)

Thus we have proved that the maximum Trail Stretch Factor for any point along
trailP , denoted as TSp is sec(α) ∗ sec(α

2 ) where α = arcsin( 1
2b ).

Lemma 3.7. The length of trailP for an object P starting from a level k(0 <
k ≤ mx) vertex, denoted as Lk is bounded by (2k + 2k−b) ∗ TSp.

Proof Sketch: dist(ck, p) < 2k−b. Therefore, dist(Nk, p) < 2k + 2k−b. Then using
Lemma 3.6, the result follows.

Theorem 3.8. The upper bound on the amortized cost of updating trailP when
object P moves distance dm(dm > 1) is 4 ∗ (2b + 1) ∗ TSp ∗ dm ∗ log(dm).

Proof. Note that in update whenever trailP is updated starting at the level
k vertex, we set ck−1 = p. P can now move a distance of 2k−1−b before another

The Ohio State University Technical Report, Vol. , No. , 07 2006.



12 · Vinodkrishnan Kulathumani et al.

update starting at the level k vertex. Thus, between any two successive updates
starting from a level k vertex, the object must have moved at least a distance of
2k−1−b. The total cost to create a new path and delete the old path starting from
a level k vertex costs at most 2 ∗ Lk.

When an object moves a distance dm where dm > 1, it could involve multiple
updates at smaller distances. The object could be detected at multiple instances
over this distance dm. Therefore we calculate the upper bound on the amortized cost
of update when the object moves distance dm. We consider the minimum distance
to trigger an update to be 1 unit. Note that between any two successive updates
starting from a level k vertex, the object must have moved at least a distance of
2k−1−b. Thus over a distance dm, update can start at level (b + 1) vertex at most
dm times, update can start at level (b+ 2) vertex can at most bdm/2c times, and so
on. The update can start at level (blog2(dm)c+ b + 1) vertex at most once. Adding
the total cost, the result follows.

b Trail Stretch Update Cost

1 1.2 14 ∗ dm ∗ logdm

2 1.05 20 ∗ dm ∗ logdm

> 3 Approaches 1 4 ∗ (2b + 1) ∗ dm ∗ logdm

Fig. 5. Effect of b on Update cost

For illustration, we summarize the Trail Stretch factor and update costs for different
values of b in Fig. 5. We explain the significance of the refinement of Trail by varying
b in Section 5.

3.3 Basic Find Algorithm

Given trailP exists for an object P , we now describe a basic find algorithm that is
initiated by object Q at point q on the plane. We use a basic ring search algorithm to
intersect trailP starting from Q in a distance sensitive manner. We then show from
the properties of the Trail tracking structure that starting from this intersection
point, the current location of P is reached in a distance sensitive manner.

Basic find Algorithm:

(1) With center q, successively draw circles of radius 20, 21, ...2blog(dist(q,C))c−1,
until trailP is intersected.

(2) If trailP is intersected, follow it to reach object P ; else follow trailP from C
(note that if object exists, trailP will start from C).

Theorem 3.9. The cost of finding an object P at point p from object Q at point
q is O(df ) where df is dist(p, q).

Proof. Note that as q is distance df away from p, a circle of radius 2dlog(df )e will
intersect trailP . Hence the total length traveled along the circles before intersecting

trailP at point s is bounded by 2 ∗ π ∗
∑dlog(df )e

j=1 2j, i.e., 8 ∗ π ∗ df . The total cost
of connecting segments between the circles is bounded by 2 ∗ df .
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(a) find path (b) Farthest find point

Fig. 6. Basic find algorithm in Trail

Now, when the trail is intersected by the circle of radius 2dlog(df )e, the point s at
which the trail is intersected can be at most 3 ∗ df away from the object p. This
is illustrated in Fig. 6(b). In this figure, q is df + ∇ away from p. Hence the trail
can be missed by circle of radius 2log(df ). From Lemma 3.6, we have that distance
along the trail from s to p is at most 3 ∗ TSp ∗ df . Thus, the cost of finding an
object P at point p from object Q at point q is O(df ) where df is dist(p, q).

Remark on update cost: Note that in Theorem 3.8 we have characterized the
upper bound on the amortized cost of update when an object moves distance dm.
This is because over a distance of dm, the object can be detected in multiple instances
and consequently multiple update of the track can result over a distance dm. We
consider the minimum distance to trigger an update to be 1 unit. We add the total
cost resulting from each update and the sum of the cost of all these possible updates
results in an upper bound on the amortized cost.

But we note that, when an object makes a discrete or direct jump of distance
dm, the logarithmic factor in the cost disappears. In other words, when an object
disappears at a certain location and is later detected at another location, the cost
of individual updates need not be added. However there is an additional cost of
exploring to find an existing trail because we do not assume memory of the previous
location of an object. In the continuous setting we ignore the cost of finding an
existing trailP as it will exist within a distance of 1 unit. The cost of update when
an object makes a discrete jump of distance dm is summarized below.

Theorem 3.10. The cost of updating trailP when object P makes a discrete
jump of distance dm is O(dm).

Proof. When P moves distance dm away, an existing trailP can be intersected
at a cost of 8 ∗ π ∗ dm. This follows from the proof of Theorem 3.9. The highest
level at which the update can start is level (blog2(dm)c+ b + 1) vertex. The cost of
modifying the trail pointers is then bounded by 4 ∗ (2b + 1) ∗ TSp ∗ dm. The result
follows.

4. IMPLEMENTING TRAIL IN A WSN

In this section, we describe how to implement the Trail protocol in a WSN that is a
discrete plane, as opposed to a continuous plane as described in the previous section.
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Trail can be implemented in any random deployment of a WSN aided by some
approximation for routing along a circle. We describe one such implementation
below.

System model: Consider any random deployment of nodes in the WSN. We
impose a virtual grid on this deployment and snap each node to its nearest grid
location (x, y) and assume that each node is aware of this location. We refer to unit
distance as the one hop communication distance. dist(i, j) now stands for distance
between nodes i and j in these units. The separation along the grid is less than
or equal to the unit distance. When the network is dense, the grid separation can
be smaller. The neighbors of a node are a set of all nodes within unit distance
of the node. Thus when the grid separation is unit distance, there are at most 4
neighbors for each node. We also assume the existence of an underlying geographic
routing protocol such as GPSR [Karp and Kung 2000], aided by an underlying
neighborhood service that maintains a list of neighbors at each node.

Note: We have implicitly assumed in the above model that each location on the
grid is mapped to a unique node. This can be achieved by decreasing the size of
the grid to be equal to the smallest separation between any 2 nodes in the network.
However this assumption is not necessary. In other words, all nodes need not be
necessarily assigned to some location on the grid. Nodes can take turns to play the
role of a given location. But for ease of exposition, we have abstracted away these
possibilities in our model.

Fault Model: We assume that nodes in the network can fail due to energy de-
pletion or hardware faults, or there could be insufficient density at certain regions,
thus leading to holes in the network. However, we assume that the network may
not be partitioned; there exists a path between every pair of nodes in the network.
A node may also transiently fail. But we assume that the failed nodes return in
a clean or null state without any knowledge of tracks previously passing through
them. We do not consider arbitrary state corruptions in the nodes.

When implementing on a WSN grid, Trail is affected by the following factors:(1)
discretization of points to nearest grid location; (2) Overhead of routing between
any two points on the grid; and (3) holes in the network. We discuss these issues
in this section.

Routing stretch factor: When using geographic routing to route on a grid, the
number of hops to communicate across a distance of d units will be more than
d. We measure this stretch in terms of the routing stretch factor, defined as the
ratio of the communication cost (number of transmissions) between any two grid
locations, to the Euclidean distance d between two grid locations. It can be shown
that the upper bound on the routing stretch factor for the WSN unit grid is

√
2.

If we consider the grid to be of smaller separation than the communication range
(denser grid), then the routing stretch factor will decrease as any straight line will
now be approximated more closely when moving along the grid.

4.1 Implementing find on WSN Grid

We now describe how to implement the find algorithm in the WSN grid. As seen
in Section 3, during a find, exploration is performed using circles of increasing radii
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around the finder. However, in the grid model, we approximate this procedure and
instead of exploring around a circle of radius r, we explore along a square of side
2 ∗ r. The perimeter of the square spans a distance 8 ∗ r instead of 2∗π ∗ r. Tighter
approximations of circle are possible, but approximating with a square is simpler.
We characterize the upper bound on the find cost in the following Lemma, whose
proof can be found in Appendix C.

Lemma 4.1. The upper bound on the cost of finding an object P at point p from
object Q at point q is (32 + 3 ∗ sec(α) ∗ sec(α

2 ) ∗
√

2) ∗ df where df is dist(p, q) and
α = arcsin( 1

2b ).

(a) find in a WSN grid (b) update in a WSN grid

Fig. 7. Find and update algorithm in a WSN grid

4.2 Implementing Update on WSN Grid

For each object P in the network, trailP is maintained by parent / child pointers
at each node in the network. Starting from C, following the child pointers for P
would lead to the current location of P . Similarly, starting from p, following the
parent pointers at each node will lead to C.

We use three types of messages in the update actions. Initially, when an object is
detected at a node, it sends an explore message that travels in around the square
perimeters of increasing levels until it meets trailP or it reaches the center. Note
that if the object is updated continuously as it moves, then the explore message will
intersect the trail within a 1 hop distance. As before, the trail update is started from
the level m vertex node where m is the minimal index such that dist(cm, p) < 2m−1

for all j such that mx ≥ j ≥ m.

Starting from the level m node where update is started, a new track is created by
sending a grow message towards cm−1. Geographic routing is used to route the
message towards cm−1. On this route, the node closest to, but outside a circle of
radius 2m−1 around cm−1 is marked as Nm−1. This node keeps memory of cj for all
levels mx ≥ j ≥ m, which is used to determine the smallest level at which an update
should start. This procedure is then repeated at subsequent vertex motes and the
trail is updated. Fig. 7(b) shows how a trail is updated in the grid model with
the grid spacing set equal to the unit communication distance. The vertex pointers
N3, ...N1 are shown approximated on the boundary of the respective circles. Also,
starting from the level k node where update is started, a clear message is used to
delete the old path. We formally state the update and find algorithms in guarded
command notation in Appendix H.
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4.3 Fault-Tolerance

Due to energy depletion and faults, some nodes may fail leading to holes in the
WSN. Trail supports a graceful degradation in performance in the presence of node
failures. As the number of failures increase, there is only a proportional increase
in find and update costs as the tracking data structure and the find path get dis-
torted. This is especially good when there are a large number of small holes in the
network that are uniformly distributed across the network as has been the case in
our experiments with large scale wireless sensor networks [Bapat et al. 2005]. We
discuss the robustness of Trail under three scenarios: during update, during find
and maintaining an existing trail.

Tolerating node failures during update: A grow message is used to update a
trail starting at a level k mote and is directed towards the center of circle k− 1. In
the presence of holes, we use a right hand rule, such as in [Karp and Kung 2000],
in order to route around the hole and reach the destination. As indicated in the
update algorithm for WSN grid, during routing the node closest to, but outside a
circle of radius 2k−1 around ck−1 is marked as Nk−1. Since we assume that the
network cannot be partitioned, eventually such a node will be found. (If all nodes
along the circle have failed, the network is essentially partitioned).

Tolerating failures during a find: We now describe how the find message
explores in squares of increasing levels. When a find message comes across a hole,
it is rerouted around the hole using geographic routing only radially outwards of
the current level square. If during the re-route, we reach a distance from the source
of the find corresponding to the next level of search, we continue the search at the
next level and so on. Thus, in the presence of larger holes, we abandon the current
level and move to the next level, instead of routing around the hole back to the
current level of exploration.

(a) Find re-route along same
level

(b) Find re-route to next
level

Fig. 8. Tolerating failures during find

Maintaining an existing trail: Nodes may fail after a trail has been created.
In order to stabilize from these states, we use periodic heartbeat actions along the
trail. We assume that if a node has a transient failure, the node returns in a null
state. We do not handle arbitrary state corruptions in the nodes.
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The heartbeat actions are sent by each node along trailP to its child. At any
node r, if a heartbeat is not received from its child, a search message is sent using
geographic routing tracing the boundary of the hole. trailP is reinforced starting
from the first node where the search message intersects trailP using a reinforce
message along the reverse path. (If the goal is to find trailP in the shortest time,
the search should likely be enforced in both directions along the boundary of the
hole).

Tolerating failure of C: The terminating point C provides a sense of direction
to the trail and serves as a final landmark for the find operation. If C fails, the
node that is closest to C will takeover the role of C. However, even in the transient
stage when there is no C, the failure of C is tolerated locally. We describe this
below.

Consider that C and all nodes in a contiguous region around C have failed. In
this case, a search message will be initiated from the node closes to C that be-
longs to trailP . Because a contiguous set of nodes surrounding C have failed, the
search message eventually returns to the node initiating the search by following
the boundary of the hole. Thus an existing trailP terminates at the node that
belongs to trailp and is closest to C. Thus if a find message is unable to reach C,
then routing along the boundary of the hole will intersect trailP .

When a new node takes over the role of C, we do not assume that the state of the
original C is transferred. The new C has no knowledge of tracks passing through it.
Eventually, the maintenance actions for Trail will result in all tracks terminating
at C.

5. REFINEMENTS OF TRAIL

In Sections 3 and 4, we have described the basic Trail protocol. In this section,
we discuss two techniques to refine the basic Trail network protocol: (1) tuning
how often to update a Trail tracking structure, and (2) tuning the shape of a Trail
tracking structure. This yields a family of protocols.

In the first refinement we alter the parameter b to values greater than 1. By
increasing b, we update the track of an object more often. This results in straighter
tracks with smaller stretch factor. As tracks get straighter, the find pattern at
higher levels of the search can follow a triangular pattern (as illustrated in Fig. 9)
as opposed to complete circles. In fact, as b increases circular explorations can
be avoided at more levels of the find. Thus the average find cost in the network
decreases as b increases. In sum by increasing b, we increase the cost of update and
decrease the cost of find. This refinement can be used when the rate of updates is
small as compared to the rate of find. For example, as the speed of objects in the
network decreases, we can increase the value of b.

In the second refinement we change the length of each segment in Trail. In the
basic protocol, the segment at each level is a straight line to the next lower level.
In this refinement, we modify the length of each segment to be a straight line to
the next level plus an arc of length x× 2k. As x increases the amount of update at
each level increases, but the find exploration can now be smaller. Specifically when
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x = 2×π, the find is a straight line towards the center of the network. We call this
particular parameterization, the find-centric Trail protocol.

5.1 Tightness of Trail Tracking Structure

The frequency at which trailP is updated depends on parameter constant b in
property P3 of trailP . As seen in Section 3, for values of b > 1, trailP is updated
more and more frequently, hence leading to larger update costs. However, trailP
becomes tighter and tends to a straight line with the trail stretch factor approaching
1. We exploit this tightness of trailp to optimize the find strategy.

5.1.1 Optimization of find. The intuition behind this optimization is that since the
trail to any object P originates at C, the angle formed by p with C and the higher
level vertices is small and bounded. Hence as the levels of explorations increase in
find, we can progressively decrease the size of exploration from full circles. We now
describe the details of this optimization.

Lemma 5.1. Given trailP , (6 C, p, Nk) < (mx − k + 1) ∗ (arcsin( 1
2b )), where

(mx ≥ k ≥ 1).

The proof can be found in Appendix D.

From hereon, we let dpC denote the distance of any object P from C. After the
value of mx is defined for a trailP , object P can move for a certain distance before
mx is redefined. Therefore, given dpC , the value of mx in trailP cannot be uniquely
determined; however, we note that the value of mx can be bounded given dpC and
we define m̂xp as the highest possible value of mx in trailP , given dpC . We now
determine m̂xp.

Let R denote the network radius, defined as the maximum distance from C. Recall
that mx denotes the number of levels in the track for an object P . mx is defined
as d(log(dist(C, po)))e − 1 where po is the position of the object when trailP was
(re)created from C. Given network radius R, let > be the highest number of levels
possible for any object in the network. Thus in a given network, > = d(log(R))e−1.

Lemma 5.2. Given dpC , m̂xp = minimum(dlog(dpC)e,>).

The proof can be found in Appendix E.

Since given dpC , the index of highest level mx in trailp cannot be uniquely deter-
mined, we state the maximum angle formed by 6 CpNk in terms of m̂xp rather than
mx. When the actual mx in trailP is lesser than m̂xp, then the actual maximum
angles formed by 6 C, p, Nk where 1 ≤ k ≤ mx is lower than the maximum angles
stated in the following equation.

(6 C, p, Nk) < (m̂xp − k + 1) ∗ (arcsin(
1

2b
)) (15)

We note from the above properties that the angles formed by p with C and the
higher level vertices are small and bounded. For example, the angle formed by p
with C and Nmx is less than (arcsin( 1

2b )). Because of this, at higher levels of the
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search, a find operation does not have to explore in circles and yet can be guaranteed
to intersect the track for an object. In the analysis below, we characterize the
minimum size of exploration required at each level of exploration given the distance
of finder object q from C. Only for ease of explanation, we assume that b = 3.

Let Q be the finder at distance dqC from C. Thus m̂xq = minimum(dlog(dqC)e,>).
Let P be an object which should be found at the level k exploration. At level k of
the exploration, trailP for any location of P within the circle of radius 2k around
q should be intersected. A circular exploration of radius 2k around q is sufficient
to achieve this. We now characterize the necessary exploration.

We show that, at levels of exploration k where k ≥ m̂xq − 7, circular explorations
can be avoided and instead a pattern of exploration along the base of an isosceles
triangle with apex q and length of base determined by Fig. 10 is sufficient to intersect
the trails of all objects at distance 2k from Q. The base of the isosceles triangle is
such that segment(C, q) is the perpendicular and equal bisector of the base of the
triangle. At levels of exploration k < m̂xq − 7, exploration along the entire circle
is necessary. For reasons of exposition, we have moved the procedure to determine
the necessary exploration at each level, to Appendix F.

Exploration level k Length of triangle base Height of triangle

m̂xq − 1 2 ∗ 2k 2k

m̂xq − 2 2.5 ∗ 2k 2k

m̂xq − 3 3.1 ∗ 2k 2k

m̂xq − 4 3.7 ∗ 2k 2k

m̂xq − 5 4.3 ∗ 2k 2k

m̂xq − 6 5 ∗ 2k 2k

m̂xq − 7 6.2 ∗ 2k 2k

Fig. 10. Optimized find: pattern of exploration

Fig. 9. Optimized find: example

Optimized find algorithm (b=3):

(1) Explore at levels k ranging from 0 to
(blog(dqC)c − 1). If k < (m̂xq − 7), explore
using a circle of radius 2k around q. Else ex-
plore along the base of an isosceles triangle
with apex q and length of base determined
by Fig. 10. The base of the triangle is such
that segment(C, q) is the perpendicular and
equal bisector of the base of the triangle.

An example for the modified find algorithm is
shown in Fig. 9. In this figure the object q is at
distance 48 units from C. m̂xq is 6. blog(dqC)c−
1 = 4. Therefore, the levels of exploration are in
the range 0..4. Exploration is along the base of triangles at all levels. (This figure
is not to scale but for illustration.)

Impact of the Optimization: The optimization of find at higher levels is thus
significant in that it yields: (1) smaller upper bounds for objects that are far away
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from the finder; and (2) lower average cost of find(p, q) over all possible locations
of q and p.

As described earlier when b = 3, circular explorations are avoided at the highest
7 levels of the find operation. As the value of b increases, the number of levels
at which circular explorations can be avoided, increases. But by increasing b, we
update the track of an object more often. Thus by increasing b, we increase the
cost of update and decrease the cost of find.

We note that there are limits to tuning the frequency of updates, because for
extreme values of b distance sensitivity may be violated. For example, for large
values of b, that cause dist(p, ck) < y where y is a constant we end up with having
to update the entire trailP when an object moves only a constant distance y.
Similarly, for values of b < 0, the Trail Stretch Factor becomes unbounded with
respect to distance from an object. Thus an object could be only δ away from a
point on trailP , yet the distance along trailP from this point to the p could travel
across the network.

5.2 Modifying Trail Segments

The second refinement to Trail is by varying the shape of the tracking structure
by generalizing property P2 of trailP . Instead of trail segment k between vertex
Nk and Nk−1 being a straight line, we relax the requirement on trail segment k to
be of length at most (2 ∗ π + 1) ∗ 2k. By publishing information of P along more
points, the find path can be more straight towards C. An extreme case is when
trail segment k is a full circle of radius 2k centered at ck and Seg(Nk, Nk−1). We
call this variation of Trail the find-centric Trail.

Fig. 11. Find-centric Trail

5.2.1 Find-centric Trail. In this refinement,
the find procedure eschews exploring the circles
(thus traversing only straight line segments) at
the expense of the update procedure doing more
work. This alternative data structure is used
when objects are static or when object updates
are less frequent than that of find queries in a
system. Let trailP for object P consist of seg-
ments connecting C, Nmx, .., N1, p as described
before and, additionally, let all points on the
circles Circk of center ck and radius 2k con-
tain pointers to their respective centers, where
mx ≥ k > 0.

Starting at q, the find path now is a straight line towards the center. If a circle with
information about object P is intersected then, starting from this point, a line is
drawn towards the center of the circle. Upon intersecting the immediate inner circle
(if there is one), information about its respective center is found, with which a line
is drawn to this center. Object P is reached by following this procedure recursively.
We characterize the upper bound on the find cost in the following Lemma, whose
proof can be found in Appendix G.
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Lemma 5.3. In find-centric Trail, when b = 1, the total cost of finding an object
P at point p from object Q at point q is 16 ∗ df where df = dist(p, q).

We note that when events are static, the optimal publish structure is much smaller
than publishing along circular tracks. We have studied optimal publish structures
for querying in a static context in a related work [Demirbas et al. 2006].

Summary: In this section, we presented two refinements of Trail that lead to a
family of protocols. In the first refinement we altered the rate of updates. In the
second refinement, we altered the amount of updates at each level. One can choose
an appropriate parameterization depending on the expected rate of updates and
finds in the network.

As an example, given the expected rate of updates and expected rate of find op-
erations in the network, we can use the value of b in refinement 1 that minimizes
the sum of update costs and find cost over a given interval of time. We can com-
pare this cost with that of find-centric Trail and then choose the most appropriate
parameterization. The find centric version of trail is especially beneficial when the
rate of updates is much smaller than that of finds.

6. PERFORMANCE EVALUATION

In this section, we first evaluate the performance of Trail using simulations in
JProwler [Vanderbilt University ] and then describe an experimental evaluation of
Trail on a network of 105 Mica2 motes. The goals of our simulation are: (1) to
study the effect of routing stretch and discretization errors on the trail stretch
factor, (2) to study the effect of uniform node failures on the performance of Trail,
(3) to compare the average costs for find and update, as opposed to the upper
bounds we derived earlier, and (4) to analyze the performance of Trail when scaled
in the number of objects. Our simulation involves a network of 8100 Mica2 motes
arranged in a 90 × 90 grid. We also experimentally evaluate the performance of
Trail on a network of 105 Mica2 motes in the Kansei testbed[Arora et al. 2006].
This implementation has been used to support a distributed intruder interceptor
tracking application where the goal of the interceptor is to catch the intruders as
far away from an asset as possible. The goals of the experimental evaluation are
to study the performance of Trail on a real network and analyze the performance
under different scaling factors such as the number of objects in the system, the
frequency of queries, and the speed of the objects in the network.

6.1 Simulation

Our simulation involves a 90×90 Mica2 mote network arranged on a grid. The cen-
ter of the network is placed at one corner, thus essentially simulating one quadrant
of the network. This setup lets us test the protocol over larger distances without
update and find operations reaching the center. We use JProwler as our simula-
tion platform with a Gaussian radio fading model. The mean interference range is
a grid area of 5 × 5 square units. Packet transmission time is set at 40 ms. We
implement geographic routing on a grid to route messages in the network. In the
presence of failures we use a left hand rule to route around the failure [Karp and
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Kung 2000]. We assume an underlying link maintenance layer because of which the
list of up neighbors is known at each node.

Performance of update operations: We determine the number of messages
exchanged for object updates over different distances when an object moves con-
tinuously in the network. We consider the unit grid separation, where each node
has at most 4 communication neighbors. The number of neighbors may be lesser
due to failures. We calculate the amortized cost by moving an object in different
directions and then observing the cumulative number of messages exchanged up
to each distance from the original position to update the tracking structure. The
results are shown in Fig. 12(a). The jumps visible at distances 4 and 8 show the
impact of the log(d) factor in the amortized cost. At these distances, the updates
have to be propagated to a higher level. We also study the effect of uniform failures
in the network on the increase in update costs. We consider fault percentages up to
20. We see from the figure that even with failures the average communication cost
increases log linearly with distance. This indicates that the failures are handled
locally.

(a) Trail update cost (amortized) (b) Trail stretch factor

Fig. 12. Trail update costs and Trail stretch factor

Trail stretch factor: From Section 3, we note that in the continuous model, for
an object P at distance dpC from C, length of trailP is less than 1.2 ∗dpC . We now
study the effect of routing overhead and the discretization factor on the length of
the tracking structure that is created. We measure the trail length in terms of the
number of hops along the structure. Fig. 12(b) shows the average ratio of distance
from C to the length of the trail during updates over different distances from the
original position. The parameter b = 1 in these simulations.

When the trail is first created, the trail stretch is equal to the routing stretch factor
from C to the original location. In the absence of failures, we notice that the trail
stretch is around 1.4 at updates of smaller distances and then starts decreasing.
This can be explained by the fact the trail for an object starts bending more uni-
formly when the update is over a large distance. Even in the presence of failures,
the trail stretch factor increases to only about 1.6 times the actual distance.

Performance of find: We first compare the average find costs of Trail with upper
bounds derived. We study this in the presence of no interference, i.e. there is only
one finder in the network. We fix the finder at distance 40 units from C. We vary
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the distance of object being found from 2 to 16. We evaluate using the basic find
algorithm with b = 1. In Fig. 13(a) and Fig. 13(b), we show the average number of
messages and the average latency for the find operation respectively.

(a) Average messages (find) (b) Average latency (find)

Fig. 13. Trail: find cost

The analytical upper bound 38∗d (obtained from Lemma 4.1 for b = 1) is indicated
using dotted lines in Fig. 13(a), and we see that the number of messages exchanged
during find operations are significantly lower. When there is only one finder in the
network, there is no interference. Therefore there are no re-transmissions except for
the case when there is a loss due to probabilistic fading. Therefore the latencies are
roughly equal to the number of messages times the message transmission time per
hop. The jumps at distances 3, 5 and 9 are due to increase in levels of exploration at
these distances. The results of the above simulations thus validate our theoretical
bounds derived in Section 3 and 4.

Impact of interference: We now evaluate the effect of interference when multiple
objects are present in the network. Note that Trail operates in a model where
queries are generated in an asynchronous manner. We first evaluate the effect on
find latency when objects are uniformly distributed across the network. We then
evaluate the performance in a more severe environment where all the objects being
found are collocated in the network.

In the presence of interference, messages are likely to be lost and we have im-
plemented the following reliability mechanism to counter that. Forwarding a find
message by the next hop is used as an implicit acknowledgment. find messages are
retransmitted up to 4 times by each node. The interval to wait for an acknowl-
edgment is doubled after every retransmission starting with 100 ms for the first
retransmission. Note that 100 ms is a little more than twice the transmission time
for each message. Also upon sensing traffic, the MAC layer randomly backs off the
transmission within a window of 10 ms. The maximum number of MAC retries are
set to 3.

In the first scenario we uniformly distribute the objects in a 50×50 area in the center
of the quadrant being simulated. By distributing the objects in the middle of the
quadrant being simulated, we avoid the decrease in find messages simply because
an object is close to the boundary. We simulate 10, 20, 30, 40 and 50 objects in
the network. We observe no significant increase in latency up to 30 objects. For
the case of 40 and 50 objects in the network we observe increase in average latency
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(a) Average latency (find) (b) Loss percentage (find)

Fig. 14. Effect of interference on find cost

especially at larger distances. At larger distances, find messages from different
objects interfere to a significant extent. Despite messages being re-transmitted up
to 4 times, we also see losses during the find operation at distances greater than 12
units. The loss percentages at different distances are shown in Fig. 14(b)

(a) Average latency (find) (b) Loss percentage (find)

Fig. 15. Effect of interference on find cost: objects being found colocated

We now consider a more severe scenario where all the objects being found are at
the same location. We compute the average latency for the find operation when
objects issuing find query are uniformly distributed around this location, at different
distances. As expected, we see from Fig. 15(a) and Fig. 15(b) that interference is
severe at smaller distances. We see loss percentages as high as 60% when there are
9 pairs of objects at small distances.

Summary of evaluation: We observe from the above figures that Trail has a find
time that grows linearly with distance. When scaled in the number of objects up
to 50, with objects uniformly distributed in a 50×50 area and concurrently issuing
queries, the query response time still does not increase substantially. However at
a scale of 40 objects and distances of greater than 12 units we observe losses of
around 10% during the find operation. This is because, at larger distances find
messages from different objects interfere to a significant extent. In a potentially
more severe scenario where all objects being found are at the same location and
objects issuing find are distributed uniformly around that location, interference is
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significant at smaller distances. We see loss percentages as high as 60% when there
are 9 pairs of objects at small distances.

We now describe an experimental evaluation of Trail on a network of Mica2 nodes,
summarize our observations and inferences and then discuss tehniques to handle
the effect of interference.

6.2 Experimental Evaluation on Real Network

We have implemented Trail for the special case of a long linear topology network
for demonstrating an intruder interceptor tracking application. We have experi-
mentally validated the performance of this version of Trail on 105 Mica2 motes in
the Kansei testbed [Arora et al. 2006] under different scaling factors such as the
number of objects in the system, the frequency of queries, and the speed of the
objects in the network. This implementation has used to support a distributed in-
truder interceptor tracking application where the goal of the interceptor is to catch
the intruders as far away from an asset as possible. This application was demon-
strated at Richmond Field Station in Berkeley in 2005 as part of the DARPA NEST
Program. In this section, we describe the results of these experiments.

Experimental setup: We use a network of 105 XSM-Stargate pairs in a 15 × 7
grid topology with 3 ft spacing in the Kansei testbed. The XSMs are a Mica2
family of nodes with the same Chipcon radio but with additional sensors mounted
on the sensor board. The XSMs are connected to Stargate via serial port and the
Stargates are connected via Ethernet in a star topology to a central PC. We are
able to adjust the communication range by adjusting the power level and the XSMs
can communicate reliably up to 6 ft at the lowest power level but the interference
range could be higher. Trail operates asynchronously with no scheduling to prevent
collisions. Hence, we implement an implicit acknowledgement mechanism at the
communication layer for per hop reliability. The forwarding of a message acts
as acknowledgment for the sender. If an acknowledgment is not received, then
messages are retransmitted up to 3 times.

Object traces: We now describe how the object motion traces are obtained.
Motes were deployed in a grid topology with 10 m spacing at Richmond field sta-
tion. Sensor traces were collected for objects moving through this network at dif-
ferent orientations. Based on these traces, tracks for the objects are formed using a
technique described in [Arora et al. 2004]. These tracks are of the form (timestamp,
location) on a 140m × 60m network. These object tracks are then converted to
tuples of the form (id, timestamp, location, grid position) where grid position is the
node closest to the actual location on the 15×7 network and id is a unique identifier
for each object. These detections are injected into the XSM in the testbed corre-
sponding to the grid position via the Stargate at the appropriate time, using the
inject framework in Kansei. Thus, using real object traces collected from the field
and using the injector framework, we emulate the object detection and association
layer to evaluate the performance of our network services.

Parameters: We evaluate the performance of Trail under different scaling factors
such as increasing number of objects, higher speed of objects and higher query
frequency in terms of the reliability and latency of the service. We run Trail with 2,
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4, 6 and 10 mobile objects, in pairs. One object in each pair is the object issuing find
query and the other object is the object being located. In each of these scenarios,
we consider query frequency of 1 Hz, 0.5 Hz, 0.33 Hz and 0.25 Hz. The object
speed affects the operation of Trail in terms of the rate at which grow and clear
messages are generated. We consider 3 different object update rates, one in which
objects generate an update every 1 second, every 2 seconds and every 3 seconds.
Considering that the object traces were collected with humans walking across the
network acting as objects with average speed of about 1 m/s, object update rates
of 1 Hz and 0.5 Hz enable a tracking accuracy of 1m and 2m respectively. Note
that each update can generate multiple grow and clear messages.

In the 4, 6 and 10 objects scenario, we consider a likely worst case distribution of
the objects where all objects issuing find and all objects being found are within
communication range. Moreover, as optimal pursuit control requirements suggest
[Cao et al. 2006], the query frequencies depend on relative locations and are lesser
when objects are far apart, but we consider all objects issuing queries at the same
frequency. If the replies are not received before the query period elapsed, then the
message is considered lost. The loss percentages are based on 100 find queries at
every distance and the latencies are averaged over that many readings.

Scaling in number of objects: Fig. 16 shows the latency and loss for find
operations as the number of objects increases with query frequency fixed at 0.33
Hz and object updates fixed at 0.5 Hz. Fig. 17 shows the latency and loss for find
operations as the number of objects increases with query frequency fixed at 0.5 Hz
and object updates fixed at 0.5 Hz.

Scaling in query frequency: Here we analyze how the latency and reliability
of Trail are affected as the query frequency increases. In Fig. 18, we show the
reliability and latency of Trail with 6 objects under query frequencies of 1 Hz, 0.5
Hz, 0.33 Hz and 0.25 Hz, with object update rate of 0.5 Hz.

Scaling in object speed: Fig. 19 shows the latency and loss for find operations
with increasing object speeds that generate updates at 0.33 Hz, 0.5 Hz and 1 Hz.
The query frequency is 0.5 Hz and the number of objects is 6.

(a) Latency of Trail (b) Loss ratio

Fig. 16. Scaling in number of objects (query frequency 0.33 Hz, object update 0.5 Hz)
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(a) Latency of Trail (b) Loss ratio

Fig. 17. Scaling in number of objects (query frequency 0.5 Hz, object update 0.5 Hz)

(a) Latency of Trail (b) Loss ratio

Fig. 18. Scaling in query frequency (6 objects, object update rate 0.5 Hz)

Summary of experimental evaluation: We observe from the above figures
that Trail offers a query response time that grows linearly with the distance from
an object. Trail operates in an environment where objects can generate updates
and queries asynchronously and in such an environment, interference increases the
response time. From our experiments, we observe that query latency and loss
percentages increase with number of objects and speed of objects but the loss ratio
is not severe. As seen in Fig. 16, scaling the number of objects up to 10 yields a loss
rate of up to 7% with a query frequency 0.5 Hz and an object update rate of 0.5
Hz. As seen in Fig. 19, scaling the object speeds to generating 1 update per second
results in a loss rate of up to 7 % even with 6 objects in the system and query
frequency of 0.5 Hz. Increasing query frequencies has a more severe impact on loss
percentages especially with more objects in the network. In Fig. 18, we notice that
with 6 objects in the network, loss increases substantially as the query frequency
becomes 1 Hz; this happens due to higher interference leading to congestion.

Handling interference: To tolerate network interference, spatial and temporal
correlations that exist in the application can be exploited in the following way. The
rate at which information is needed by the pursuer is known. The network service
can be notified of the next instant at which the state of the evader is needed and the
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location where the query results need to be sent. The query results can then arrive
just in time. Advance knowledge about the query and the deadline can be used
to decrease the interference in the network when multiple pursuers query about
evaders in the network and more so when the objects are densely located. Another
possibility to deal with interference is a synchronous push version of the network
tracking service where snapshots of objects are published to subscribers in a distance
sensitive manner thereby avoiding interference. By the same token, applications
should be aware of other extreme conditions (in terms of object number and speed)
for effectively using the service. For example, applications may compensate for
losses by increasing their query frequency, but this should account for extreme
scenarios where the increased frequency itself results in higher interference.

(a) Latency of Trail (b) Loss ratio

Fig. 19. Scaling in object speed (6 objects, query frequency 0.5 Hz)

7. DISCUSSION

In our solution, we made some design decisions like choosing a single point to ter-
minate tracks from all points in the network and avoiding hierarchy in maintaining
the tracks. In this section, we analyze these aspects of our solution and compare
them with other possible approaches. We find that by avoiding hierarchy, we do
not need to partition the network into clusters and maintain these clusters, we can
be more locally fault-tolerant and we can obtain tighter tracks for any object. We
also formally define the notion of terminating points, differentiate those from clus-
terheads of a hierarchy, and analyze the effect of more terminating points on the
maximum find cost and maximum update cost in the network.

Terminating points vs clusterheads: There are some hierarchy based solutions
[Demirbas et al. 2004; Funke et al. 2006] for the problem of object tracking in
a distance sensitive manner, where the network is hierarchically partitioned into
clusters and information of objects is maintained at clusterheads at each level. Even
in these solutions, information about an object is published across the network to
local clusterhead(s) at each level in the hierarchy, all the way up to one or more
clusterheads at the highest level in the hierarchy. We call these points at the highest
level of the hierarchy as terminating points.
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Formally, a terminating set τ is a smallest set of points such that tracks of objects
from every location in the network pass through at least one point in τ . The
cardinality of a set τ is denoted as µτ . There can be one or more terminating sets,
each with one or more terminating points. In Stalk [Demirbas et al. 2004] there
is a unique clusterhead at the highest level, thus there is a single terminating set
with a single terminating point. In LLS [Abraham et al. 2004] and DSIB [Funke
et al. 2006], there are multiple clusterheads at the highest level. Thus there are
multiple terminating sets, each with one terminating point. Tracks from every point
in the network pass through each of those clusterheads. Thus each clusterhead at
the highest level constitutes a terminating set by itself. In Trail there is a unique
terminating set with a unique terminating point, namely C.

It is in the process of maintaining tracks from a terminating point that we have
avoided hierarchy in Trail. In hierarchy based solutions, to maintain tracks and to
answer queries, tracks from terminating points necessarily pass through these clus-
terheads, where as Trail avoids hierarchy by determining anchors for the tracking
paths on-the-fly based on the motion of objects.

Merits of avoiding hierarchy: By avoiding hierarchical solutions we do not need
either a distributed clustering service that partitions the network into clusterheads
at different levels and maintains this clustering or a special (maybe centralized)
allocation of infrastructure nodes. By avoiding a hierarchy of such special nodes
Trail is also more locally fault tolerant. For example in the case of a find operation,
failure to retrieve information from an information server at a given level would
require the find to proceed to a server at the higher level [Funke et al. 2006]. This
is particularly expensive at higher levels of the hierarchy. On the other hand in
Trail a find operation redirects around a hole created by failed nodes using routing
techniques such as the left hand rule [Karp and Kung 2000] and such faults can
be handled, in a sense, proportional to the size of the fault. Similarly, tracks to
existing objects can be repaired more efficiently. As the number of failures increase,
there is only a proportional increase in find and update costs.

Moreover, avoiding hierarchies allows for minimizing the length of tracking paths
given a terminating point. We analytically compare the performance of Trail with
that of other hierarchy based solutions for tracking objects in Section 8 and we
observe that Trail is more efficient than other solutions. Trail has about 7 times
lower update costs at almost equal find costs. By using a tighter tracking structure,
we are also able to decrease the upper bound find costs at larger distances and
thereby decrease the average find cost across the network.

Choice of terminating points: In Appendix A, we have formally analyzed the
choice of a unique terminating point for tracks from all points in the network and
the tradeoffs associated with multiple terminating sets and multiple terminating
points per set in terms of the maximum find and update costs in the network. We
provide a summary of our analysis here.

We consider 2 cases: a single terminating set with multiple terminating points and
multiple terminating sets each with one terminating point.

Single terminating set with multiple terminating points: Intuitively, there exists
a possibility of decreasing the maximum track length in the network by dividing
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the network into regions and having a local terminating point per region. The
maximum track length and therefore the maximum update cost in the network
thus depends on the size of the largest region. We are faced with the question of
how small can these regions be. We show in Appendix A, that in order to maintain
find distance sensitivity, the diameter of the largest region can only be a constant
order less than the diameter of the network, i.e., at least Ω(N) in a N ×N network.
Thus, there can be only a constant order of cost decrease compared to having only
one terminating point. Moreover, decreasing the maximum update cost by dividing
the network into smaller regions results in proportionate increase in the maximum
find cost. This is because if from any finder location, a track belonging to an object
in any location in the network is to be found, then it must be the case that the find
trajectory contains all points in the terminating set, thereby increasing the worst
case find cost.

Multiple terminating sets: If there are multiple terminating sets then it is sufficient
for find to traverse the terminating point in any such set. In this case there is a
likelihood of decreasing the maximum find cost when compared to having only set
of terminating points because tracks can be found by reaching a terminating point
in any of the terminating sets. The maximum find cost in the network depends on
the size of the largest region. However, we show in Appendix A that to maintain
update distance sensitivity, the size of the largest region has to be at least Ω(N)
in a N × N network. Also when the number of terminating sets is greater than 1,
update has to traverse the terminating point in all terminating sets in the worst
case. Thus the maximum update cost in the network increases.

Maintaining a track with respect to local terminating points could be advantageous
if it is more likely that querying object and the object being found are closer.
Thus, a find will never run into the scenario of having to traverse all regions in the
network. Similarly, maintaining a track with respect to multiple terminating point
sets could be advantageous if objects are likely to move within bounded regions
within a network. In this paper we consider all distances between querying object
and tracked object to be equally likely and do not restrict mobility of the objects.
Hence we consider only the case where there is a unique terminating set with a
single terminating point, namely C.

We note that it is also feasible to select a different terminating point for different
types of objects. In this paper we describe how to maintain tracks for objects with
respect to one terminating point and guarantee find and update distance sensitivity.
A different terminating point can be chosen for each type of object based on hash
functions and each type of finder object can choose the respective terminating points
as a worst case landmark; but this concept is orthogonal to that of maintaining
tracks with respect to a given terminating point.

Tolerating failure of the terminating point: In Section 4 we have shown that
in Trail, we can locally tolerate the failure of even C. Our protocol actions are
such that when C fails or a set of nodes in a contiguous region around C fail, track
for an object will terminate at any node that is closest to the boundary formed by
the hole. Thus during a find operation, a redirection rule as in GPSR is bound to
intersect the track and once again the faults are tolerated locally.

The Ohio State University Technical Report, Vol. , No. , 07 2006.



Trail: A Distance Sensitive Network Service For Distributed Object Tracking · 31

Memory efficiency: Note that the tracks maintained in Trail only contain point-
ers to the current location of an object and not the state information of the object.
Thus Trail is memory efficient even at C.

Handling bottleneck at C: The notion of C as a terminating point can be
simply extended to construct a circle of constant radius δ around the center of the
network and define each point on this circle as a terminating set. Thus tracks from
any point in the network pass through all points on this circle. find can intersect
any point on this circle to obtain a pointer to the object. The maximum update
cost increases by a factor of δ and the maximum find cost decreases by a factor of
δ, and still maintaining distance sensitivity. The responsibility of handling queries
is now distributed evenly around C.

8. RELATED WORK

In this section, we discuss related work and also compare the performance of Trail
with other protocols designed for distance sensitive tracking and querying.

Tracking: As mentioned earlier, mobile object tracking has received significant
attention [Awerbuch and Peleg 1995; Demirbas et al. 2004; He et al. 2006] and we
have focused our attention on WSN support for tracking. Some network tracking
services [Dolev et al. 1995] have non-local updates, where update cost to a tracking
structure may depend on the network size rather than distance moved. There are
also solutions such as [Awerbuch and Peleg 1995; Demirbas et al. 2004; Abraham
et al. 2004] that provide distance sensitive updates and location.

Locality Aware Location Services (LLS) [Abraham et al. 2004] is a distance sensi-
tive location service designed for mobile ad-hoc networks. In LLS, the network is
partitioned into hierarchies and object information is published in a spiral struc-
ture at well known locations around the object, thus resulting in larger update
costs whenever an object moves. The upper bound on the update cost in LLS is
128 ∗ dm ∗ log(dm), where dm is the distance an object moves, as opposed to the
14 ∗ dm ∗ log(dm) cost in Trail; the upper bounds on the find cost are almost equal.
Moreover, as seen in Section 5, we can further reduce the upper bound on the find
cost at higher levels in Trail.

The Stalk protocol [Demirbas et al. 2004] uses hierarchical partitioning of the net-
work to track objects in a distance sensitive manner. The hierarchical partitioning
can be created with different dilation factors (r ≥ 3). For r = 3 and 8 neighbors
at each level, at almost equal find costs, Stalk has an upper bound update cost of
96∗d∗ log(d). This increase occurs because of having to query neighbors at increas-
ing levels of the partition in order to establish lateral links for distance sensitivity
[Demirbas et al. 2004].

Both Stalk and LLS use a partitioning of the network into hierarchical clusters which
can be complex to implement in a WSN, whereas Trail is cluster-free. Moreover,
in Stalk, the length of the tracking structure can span the entire network as the
object keeps moving and, in LLS, the information about each object is published
in a spiral structure across the network. In comparison, Trail maintains a tighter
tracking structure (i.e., with more direct paths to the center) and is thus more
efficient and locally fault-tolerant.
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Fig. 20. Trail: analytical comparison

In [Awerbuch and Peleg 1995], a hierarchy of regional directories is constructed and
the communication cost of a find for an object df away is O(df ∗ log(N)) and that
of a move of distance dm is O(dm ∗ log(D) ∗ log(N)) (where N is the number of
nodes and D is the network diameter). A topology change, such as a node failure,
however, necessitates a global reset of the system since the regional directories
depend on a non-local clustering program that constructs sparse covers.

Querying and storage: Querying for events of interest in WSNs has also received
significant attention [Intanogonwiwat et al. 2003; Ratnasamy et al. 2002; Liu et al.
2004] and some of them focus on distance sensitive querying. We note that Trail,
specifically the find-centric approach can also be used in the context of static events.

In [Liu et al. 2004], a balanced push-pull strategy is proposed that depends on the
query frequency and event frequency; given a required query cost, the advertise
operation is tuned to do as much work as required to satisfy the querying cost. In
contrast, Trail assumes that query rates depend on each subscriber (and potentially
on the relative locations of the publisher and subscriber), and it also provides
distance sensitivity during find and move operations, which is not a goal of [Liu
et al. 2004]. In directed diffusion [Intanogonwiwat et al. 2003], a tree of paths is
created from all objects of interest to the tracker. All these paths are updated when
any of the objects move. Also, a controller initiated change in assignment would
require changing the paths. By way of contrast, in Trail, we impose a fixed tracking
structure, and tracks to all objects are rooted at one point. Thus, updates to the
structure are local. Rumor routing [Braginsky and Estrin 2002] is a probabilistic
algorithm to provide query times proportional to distance; the goal of this work is
not to prove a deterministic upper bound. Moreover, its algorithm does not describe
how to update existing tracks locally and yet retain distance sensitive query time
when objects move.

Geographic Hash tables [Ratnasamy et al. 2002] is a lightweight solution for the
in-network-querying problem of static events. The basic GHT is not distance sen-
sitive since it can hash the event information to a broker that is far away from a
subscriber. The distance sensitivity problem of GHT can be alleviated to an extent
by using geographically bounded hash functions at increasing levels of a hierarchical
partitioning as used in DIFS protocol. Still, attempting such a solution suffers from
a multi-level partitioning problem: a query event pair nearby in the network might
be arbitrarily far away in the hierarchy. However, we do note that GHT provides
load balancing across the network, especially when the types of events are known
and this is not the goal of Trail.

Distance Sensitive Information Brokerage [Funke et al. 2006] protocol performs a
hierarchical clustering of the network and information about an event is published
to neighboring clusters at each level. Using Find-centric Trail we can query infor-
mation about static events in a distance sensitive manner. We also note that when
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events are static, the optimal publish structure is much smaller than publishing
along circular tracks. We have studied optimal publish structures for querying in
a static context in a related work [Demirbas et al. 2006].

Spatio-temporal query services Motivated by a class of applications in which
mobile users are interested in continuously gathering information in real time from
their vicinities, a network data service called spatio temporal query has been pro-
posed in [Lu et al. 2005]. The spatial constraint for the network service comes
from an energy efficiency point of view; only nodes relevant to a query area should
be involved in contributing the query result. The temporal constraint is due to a
requirement on data freshness for the query results. An approximate motion model
for the mobile user is assumed. Specifically the motion can be predicted over a
small interval of time. The query area at any time is a function of the current
location of the mobile user. The key difference in Trail is that the query area in
consideration is the entire network as opposed to a function of the querier location
as in [Lu et al. 2005].

We note that, when Trail is used in the context of a distributed pursuer evader game,
spatial and temporal correlations that exist in the application can be exploited using
ideas presented in [Lu et al. 2005] to improve the performance of the application
and the network. The rate at which information is needed by the pursuer is known.
The network service can be notified of the next instant at which the state of the
evader is needed and the location where the query results need to be sent. The
query results can then arrive just in time. Constraints on evader speed can be
exploited as follows. Subsequent queries for evader location can originate from the
previous evader location and the results can be routed back to the pursuer.

9. CONCLUSIONS AND FUTURE WORK

We have presented Trail, a family of protocols for distance sensitive distributed
object tracking in WSNs. Trail avoids the need for hierarchical partitioning by
determining anchors for the tracking paths on-the-fly, and is more efficient than
other hierarchy based solutions for tracking objects: it allows 7 times lower updates
costs at almost equal find costs and can tolerate faults more locally as well.

Importantly, Trail maintains tracks from object locations to only one terminating
point, the center of the network. Moreover, since its tracks are almost straight to
the center with a stretch factor close to 1, Trail tends to achieve the lower bound
on the total track length. By using a tight tracking structure, Trail is also able to
decrease the upper bound find costs at larger distances and thereby decrease the
average find cost across the network.

Trail is a family of protocols and we have shown that refinements of the basic Trail
protocol are well suited for different network sizes and query frequency settings.
We have validated the distance sensitivity and fault tolerance properties of Trail in
a simulation of 90 × 90 network using JProwler. We have also successfully imple-
mented and tested the Trail protocol in the context of a pursuer evader application
for a medium size (over 100 node) mote network.

Trail operates in an environment where objects can generate updates and queries

The Ohio State University Technical Report, Vol. , No. , 07 2006.



34 · Vinodkrishnan Kulathumani et al.

asynchronously. We note that in such an environment, due to the occurrence of
collisions, there can be an increase in the message complexity for querying and
updates especially when the objects are densely located in the network. As future
work, we are considering a push version of the network tracking service where snap-
shots of objects are published to subscribers in a distance sensitive manner, both
in time and information, in order to increase the reliability and energy efficiency of
the service when the density of objects in the network is high.

We also note that spatial and temporal correlations that exist in the application can
be exploited to improve the performance of the application and the network. Two
such examples are as follows. (1) The rate at which information is needed by the
pursuer is known. The network service can be notified of the next instant at which
the state of the evader is needed and the location where the query results need to
be sent. The query results can then arrive just in time. Advance knowledge about
the query and the deadline can be used to decrease the interference in the network
when multiple pursuers query about evaders in the network and more so when the
objects are densely located. (2) Constraints on evader speed can be exploited as
follows. Subsequent queries for evader location can originate from the previous
evader location and the results can be routed back to the pursuer. Thus the energy
efficiency of the network can be improved.
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A. TECHNICAL NOTE: ON TERMINATING POINTS FOR TRACKING MOBILE

OBJECTS

In this section, we define the notion of terminating points for schemes that track
mobile objects in a distance sensitive manner in terms of update and find. We also
analyze the tradeoffs with respect to the choice of terminating points.

Let O be a set of mobile objects in a network of size N × N . Mobile objects are
of two types: finder objects (Of ) and mover objects (Om). Thus O is a union of
disjoint sets Of and Om. Let p denote the location of any object P . Let Tracker be
a distance sensitive tracking scheme. Tracker maintains a track trackP for every
object P that belongs to Om. trackP is a set of points that contain information
pertaining to P . This information could be the actual state of P or simply a pointer
following which leads to the actual state of P . The length of trackP is the length
of the shortest curve connecting all points in trackP . Tracker offers two functions:
find(P, Q), that returns state of P to Q, where Q belongs to Of and P belongs to
Op; and move(P, p′, p) that updates trackP when P moves from p′ to p. Tracker
satisfies property F (find distance sensitivity) and property U (update distance
sensitivity) stated below:

Definition A.1 find distance sensitivity. Tracker satisfies property F if the cost
of find(P, Q) grows linearly with dist(p, q).

Definition A.2 update distance sensitivity. Tracker satisfies property U if the
cost of move(P, p′, p) grows linearly with dist(p, p′).

Note that in this document we consider only discrete moves of the objects. When
the motion of the object is continuous, a subset of Tracker schemes may have
a property that the cost of move is proportional to the distance of move in an
amortized sense.

From here on we assume that there is only one mover in the network and track for
that object is represented as track and we drop the identity subscript. We refer to
track for the mover at location x in the network simply as track for point x.

Definition A.3 Terminating Set τ . A terminating set τ in Tracker is a smallest
set of points such that track for every point in the network passes through at least
one point in τ .

The cardinality of a terminating set τ is denoted as µτ . The points contained in a
terminating set are called as terminating points of that set. Note that there could
also be multiple terminating sets in the network with each set containing an equal
but any number of points. In other words there are multiple smallest sets of points
such that track for every point in the network passes through at least one point in
each of those sets. For example in the case of Trail and Stalk [Demirbas et al. 2004],
there is only terminating set and this set has exactly one point, namely the center of
the network. Thus τ = {C}. In DSIB [Funke et al. 2006] and LLS [Abraham et al.
2004], each set containing one publish location at the highest level constitutes a
terminating set. Thus in those schemes there are multiple terminating sets but the
cardinality of each set is 1. In the simple horizontal vertical double ruling scheme,
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each horizontal line is a terminating set because every vertical track passes through
at least one point in each of those sets.

Lemma A.4. A terminating set τ cannot be an empty set.

Proof. track for each point in the network is at least equal to the point itself.
Thus τ cannot be empty.

In Trail, we have chosen a unique terminating set consisting of a unique terminating
point. We now analyze the tradeoffs involved when the terminating set is not unique
and when a terminating set contains more terminating points. We consider 2 cases:
a single terminating set with multiple terminating points and multiple terminating
sets each with one terminating point.

Case 1:µτ ≥ 1 We note that it is possible to decrease the maximum track length
in the network by dividing the network into regions and tracks being maintained
with respect to a terminating point in each region. (The disproportionate updates
that can be caused when an object keeps switching between boundaries can be
avoided by making the regions overlap.) The question then arises as to how small
the regions can be and yet maintain distance sensitivity. We now analyze the limits
for decreasing the track length and its effect on maximum find cost.

Given any location f of a finder, let Lf denote the length of the find trajectory
traversed from the finder location, after which the track for any point in the network
is found. Thus Lf denotes the worst case find cost from location f . Let ˆ Lf denote
the maximum value of Lf in the network.

Lemma A.5. For F to hold, L̂f = O(N).

Proof. Note that the maximum distance between any two points in the network
is O(N). The result follows.

Lemma A.6. L̂f is at least equal to the length of traversing all points in τ .

Proof. From the definition of a terminating set, τ is a minimum set of points
through which tracks from all points pass through.

Using Lemma A.6, we state the following Theorem.

Theorem A.7. The maximum find cost in the network is minimized when µτ =
1.

Proof. In the worst case, a find trajectory has to traverse all terminating points
in the terminating set. Compared to any configuration of terminating points when
µτ > 1, there exists a configuration of the terminating point when µτ = 1, such
that L̂f is lower.

Using Lemmas A.5 and A.6, we get the following Lemma.

Lemma A.8. All terminating points in τ must be traversable in O(N).
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Tha above Lemma imposes a lower bound the maximum size of the regions in the
following way. Let a region Rt be a set of points that choose t as a terminating
point. Let ρR denote the distance of the farthest point in the region from t. Let
ρ̂R denote the maximum distance from a terminating point in any region of the
network. We state the following Theorem.

Theorem A.9. In order to preserve F , ρ̂R = Ω(N).

Proof. Recall that all terminating points in τ must be traversed in O(N). If
ρ̂R < Ω(N), then the maximum diameter of any region in the network is less than
Ω(N) in the N × N network and therefore all terminating points in τ cannot be
traversed in O(N).

Summary: The maximum track length in the network depends on the size of the
largest region. We note the maximum track length can be decreased by dividing
the network into regions and having local terminating points per region. However,
the size of the largest region can only be a constant order less than the diameter of
the network. For instance dividing the network into infinitesimally small regions or
even regions of size O(

√
N) will violate F . Also when µτ > 1, find has to traverse

all the points in τ in the worst case. Thus the maximum find cost in the network
increases.

Case 2: Multiple terminating sets: Now we consider the case where there are
multiple terminating sets each with one terminating point and analyze the tradeoffs
in find and update cost. If there are multiple terminating sets then it is sufficient
for find to traverse the terminating point in any such set. In this case there is a
likelihood of decreasing the maximum find cost when compared to having only set
of terminating points because tracks can be found by reaching a terminating point
in any of the terminating sets. An example of this is the case where all tracks pass
through a common set of points as opposed to just one common point. Thus the
cardinality of each terminating point set is 1 because all tracks pass through each
point, but there are multiple such points.

Similar to case 1, we can show that the maximum find cost can be decreased by
dividing the network into regions and having one terminating set per region. We
state the following Theorems whose proofs are similar to that of case 1.

Theorem A.10. The maximum update cost in the network is minimized when
the number of terminating sets is 1.

Theorem A.11. In order to preserve U , ρ̂R = Ω(N), where ρ̂R is the maxi-
mum distance of any point in the network from the terminating point in its local
terminating set.

Summary: The maximum find cost in the network depends on the size of the
largest region. We note the maximum find length can be decreased by dividing the
network into regions and having local terminating points per region. However, the
size of the largest region can only be a constant order less than the diameter of the
network. For instance dividing the network into infinitesimally small regions or even
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regions of size O(
√

N) will violate F . Also when the number of terminating sets is
greater than 1, update has to traverse the terminating point in all terminating sets
in the worst case. Thus the maximum update cost in the network increases.

Choice of unique terminating point: Maintaining a track with respect to local
terminating points and a single terminating set could be advantageous if it is more
likely that querying object and the object being found are closer and therefore
it is unlikely that all terminating points in the set have to be traversed. Similarly
maintaining a track with respect to multiple terminating sets could be advantageous
if objects are likely to move within bounded regions within a network. In this paper
we consider all distances between querying object and tracked object to be equally
likely and do not restrict mobility of the objects. Hence we consider only the case
where there is a unique terminating point, namely C.

Note that even if the network is divided into a constant number of regions, the
concept of maintaining a track with respect to any terminating point is the same
as in Trail. Note also that the tracks that are maintained in Trail with respect to
the terminating point are tight with a stretch factor that is less than 1.2 times the
shortest distance to the terminating point.

Multiple terminating sets with multiple terminating points: The cases
that we have presented can be extended to the case of multiple terminating sets,
each with multiple terminating points when there is more knowledge of find and
update patterns within each region.

B. PROOF OF MAXIMA OF EXPRESSION IN EQ. 4

Proposition B.1. Let f(θ, φ) be defined as in Eq. 16.

f(θ, φ) =
(sin(θ) + sin(φ))

sin(θ + φ)
(16)

The maximum value of f(θ, φ) where θ > 0, φ > 0, and 0 < (θ + φ) ≤ α is sec( α√
2
)

and occurs when θ = φ = α
2 .

Proof. To simplify, we use the following transformation matrix.

x =
θ + φ√

2

y =
−θ + φ√

2

where, 0 < x ≤ α√
2

and |y| ≤ x.

Based on the above transformation, f(θ, φ) can be written in terms of x, y as follows:

g(x, y) =
(sin(x+y√

2
) + sin(x−y√

2
))

sin(
√

2 ∗ x)
(17)

Now we first find the value of y at which function g(x, y) is maximum given a value
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Fig. 21. Finding maxima for f(θ, φ)

of x. For this we differentiate g(x, y) partially with respect to y and equate the
result to 0.

∂g(x, y)

∂y
= 0

⇒
(cos(x+y√

2
) − cos(x−y√

2
))

√
2 ∗ sin(

√
2 ∗ x)

= 0

⇒ y = 0

Thus we find that for function g(x, y) at any given value of x, y = 0 is the only
stationary point since x > 0. Differentiating g(x, y) partially twice with respect to
y, we note that result is less than 0 when y = 0.

∂2g(x, y)

∂y2

∣

∣

∣

y=0
= − 1

cos( x√
2
)

< 0

Thus for any given value of x, g(x, y) is maximum when y = 0.

Also, when y = 0, g(x, y) = 1
cos( x

√

2
) which increases monotonically when x > 0

and since x ≤ α√
2
, the maximum value is sec( α√

2
) and the maximum occurs when

x = α√
2
, i.e, (θ + φ) = α.

C. PROOF OF LEMMA 4.1

In the WSN virtual grid, the total cost of exploring along squares up to level

2log(df )is given by 8 ∗ ∑dlogde
j=0 2j , i.e 32 ∗ df . Recall from the proof of Theorem

3.7 that when the trail is intersected by the circle of radius 2dlog(df )e, the point
s at which the trail is intersected can be at most 3 ∗ df away from the object p.
The cost of reaching p from the point of intersection with trailP is bounded by
3 ∗ df ∗ TSp ∗

√
2 where TSp is the maximum trail stretch factor possible for P .

Note that there is an additional stretch of
√

2 because of routing along a grid. The
result follows.
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D. PROOF OF LEMMA 5.1

Recall from Eq. 1, (6 p, Nj , cj) < (arcsin( 1
2b )), where Nj is any level j vertex

where mx ≥ j ≥ 1. Since Nj, Nj−1 and cj−1 form a straight line, recall that
6 NjpNj−1 + 6 pNjNj−1 = 6 pNjcj for mx > j ≥ 1. Similarly, since C, Nmx and
cmx form a straight line, also recall that 6 CpNmx + 6 pCNmx = 6 pNmxcmx. Using
these we have the following equations.

(6 NjpNj−1) < (arcsin(
1

2b
)) ∀j : (mx > j ≥ 1) (18)

(6 C, p, Nmx) < (arcsin(
1

2b
)) (19)

Using Eq. 18 and Eq. 19, we obtain 6 CpNk by summing up as follows.

(6 C, p, Nk) = 6 CpNmx +
mx
∑

j=k+1

(6 NjpNj−1)

< (mx − k + 1) ∗ (arcsin(
1

2b
))

E. PROOF OF LEMMA 5.2

Let mx be the index of the highest level in trailP . Using property P3 we get that
dist(p, cmx) < 2mx−b.

dist(C, cmx) ≤ dpC + dist(p, cmx)

< dpC + 2mx−b

By the definition of mx, 2mx < dist(C, cmx). Therefore we get the following equa-
tion.

2mx < dpC + 2mx−b

Since b ≥ 1, we get the following equation.

dpC > 2mx−1

Thus mx ≤ d(log(dpC))e. Hence, m̂xp = minimum(dlog(dpC)e,>).

F. ANALYSIS OF NECESSARY EXPLORATION FOR OPTIMIZED FIND ALGO-

RITHM

Let Q be the finder at distance dqC from C. Thus m̂xq = minimum(dlog(dqC)e,>).
In the basic find algorithm, the find operation will explore at all levels k where
0 ≤ k ≤ blog(dqC)c − 1 and at each level in circles of radius 2k. In terms of m̂xq,
the highest level of exploration for any location of q in the network is m̂xq −1. This
is because when m̂xq = >, it follows that m̂xq = blog(dqC)c and the highest level
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of exploration in m̂xq −1. When m̂xq = dlog(dqC)e, the highest level of exploration
is m̂xq − 2. Thus in either case, the level of exploration is bounded by m̂xq − 1.

Let P be an object which should be found at the level k exploration. At level k of
the exploration, trailP for any location of P within the circle of radius 2k around
q should be intersected. A circular exploration of radius 2k around q is sufficient
to achieve this. We now determine the necessary exploration.

Since dist(p, q) ≤ 2k , dpC ≤ dqC + 2k. Thus at any level k of the exploration,
m̂xp ≤ dlog(dqC + 2k)e. Note that dqC ≤ m̂xq and k ≤ (m̂xq − 1). Therefore
m̂xp ≤ m̂xq + 1.

We now outline our procedure for level of exploration k = m̂xq − 2.

Level of Exploration k = m̂xq − 2 Refer to Fig. 22. Let αb denote the value of
arcsin( 1

2b ) for a given b. Since in our analysis we consider b = 3, using Eq. 15 we
get that the maximum angle 6 CpNk is (m̂xp −k +1)∗ (α3). Since the finder object
Q is unaware of m̂xp, the worst case estimate for m̂xp is used, i.e. m̂xp = m̂xq + 1.
Thus, the maximum angle 6 CpNk = 3 ∗ α3.

Fig. 22. Level of exploration k = m̂xq − 2

Given this angle, we are interested in determining the smallest segment(X”,X’) that
will intersect trailP for any location of P within the dotted circle. This is obtained
by drawing a segment from point p′ and p′′ at angle 3 ∗α3 with segment(C,p’) and
segment(C,p”) respectively. Point X ′ is obtained by extending this segment such
that dist(X ′, Y ′) = 2k. Point X ′′ is obtained similarly. Now segment(X’, X”) will
intersect trails of all objects at distance 2k from q, where k = m̂xq − 2.

From Fig. 22, we note that 6 qCp′ = arctan(1
4 ) and 6 Cp′X ′) = 3 ∗ α3. Plugging

in the values we obtain the minimum required exploration at level k = ˆ̂mxq − 2 as
follows (approximated to one decimal place):

dist(X ′, X ′′) = 2.5 ∗ 2k

Similarly, we determine the necessary pattern of exploration at levels 0, .., m̂xq −
1. Finally we show that, at levels of exploration k where k ≥ m̂xq − 7, circular
explorations can be avoided and instead a pattern of exploration along the base
of an isosceles triangle with apex q and length of base determined by Fig. 10 is
sufficient to intersect the trails of all objects at distance 2k from Q. The base of the
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isosceles triangle is such that segment(C, q) is the perpendicular and equal bisector
of the base of the triangle. At levels of exploration k < m̂xq − 7, exploration along
the entire circle is necessary.

Note: All distances dqC in the range 2m̂xq−1 < dqC ≤ 2m̂xq , result in the same
value of m̂xq. But in the above analysis, we assumed dqC = 2m̂xq . This results
in finding the maximum exploration needed because when dqC is smaller, 6 Cp′X ′

increases, thus decreasing 6 V p′X ′ and lowering the length of exploration.

G. PROOF OF LEMMA 5.3

Let Q lie between circles of level k and k − 1 of the find-centric trail for P . The
worst case find cost occurs when q is just outside the level k − 1 circle. Note that
dist(p, ck−1) < 2k−2 and therefore dist(p, q) > 2k−2

Now, q can travel distance 2 ∗ 2k to reach circle k. Let the point of intersection of
the find path from q and circle k be t. The cost of following pointers from t to the
centers of inner circles recursively and reaching P is given by (20 + 21 + ... + 2k),
i.e., 2 ∗ 2k.

The ratio of find cost to the distance is thus less than 4∗2k

2k−2 , i.e 16. Hence if
dist(p, q) = d, then the maximum cost of finding object P is 16 ∗ d.
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H. TRAIL PROTOCOL ACTIONS IN GUARDED COMMAND

Protocol Trail at mote j
Var

j.childp : child pointer for object p
j.prntp : parent pointer
j.detectp : boolean
j.levelp : level of mote j
j.vertexp : boolean indicating if j is a vertex
j.centp : location of P when j was last updated
nh : temporary variable to store the next hop for any message

Fig. 23. Trail: State at Mote j
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Track Update Actions

〈U1〉 :: ((j.detectp) ∧ (j.childp 6= j)) −→
j.childp = j;
nh = nexthop of exploration;
send(j,nh) (explore(p, j));

[]
〈U2〉 :: recvk,j(explore(p,m)) −→

if (j == C)
nh = nexthop towards m;
w = dlog(dist(C,m))e − 1;
send(j,nh) (grow(p,m, w));

else

if (¬j.childp)
nh = nexthop of exploration;
send(j,nh) (explore(p,m));

else

if ((j.vertexp) ∧ (dist(j.centp, m) < 2j.levelp−1))
send(j,j.childp) clear(p)
nh = nexthop towards m;
send(j,nh) grow(p,m, j.levelp − 1);
j.childp = nh;

else

send(j,prntp) (explore(p,m));
fi

fi

fi

[]
〈U3〉 :: recvk,j(grow(p,m,w)) −→

if (j == m)
j.prntp = k;

else

nh = nexthop towards m;
if (dist(j.centp, m) > 2w−1)) ∧ (dist(j.centp, nh) ≤ 2w−1))

j.vertexp, j.centp, j.levelp, j.childp = true, m, w, nh;
send(j,nexthop) grow(p,m, w − 1);

else

j.prntp, j.levelp = k, w;
send(j,nh) grow(p,m, w);
j.childp = nh;

fi

fi

[]
〈U4〉 :: recvk,j(clear(p)) −→

j.childp = ⊥;
if ((j.childp 6= j))

send(j, j.prntp) (clear(p);
fi

Fig. 24. Trail: Update Actions
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Actions for Finding Object

〈F1〉 :: recvk,j(find(p, q)) −→
if (j.childp == ⊥)

nh = nexthop of exploration;
sendj,nh (find(p, q)) ;

[]
(j.childp 6= j) ∧ (j.childp 6= ⊥)

sendj,j.cp (find(p, q)) ;
[]
(j.childp = j);

nh = nexthop towards p;
sendj,nh (found(p, q)) ;

fi

[]
〈F1〉 :: recvk,j(found(p, q));−→

if (j 6= q)
nh = nexthop towards p;
sendj,nh (found(p,q));

fi

Fig. 25. Trail: Find Actions
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Stabilizing Actions for Track Updates

〈S1〉 :: (j.childp 6= ⊥) ∧ (j.SendHbT imeoutp) −→
sendj,j.childp (hearbeatp)
reset j.SendHbT imeoutp

[]
〈S2〉 :: recvk,j(heartbeatp) ∧ (j.prntp == k) −→

j.ReceiveHbT imeouti = HeartBeatT ime

[]
〈S3〉 :: (j.prntp 6= ⊥) ∧ (j.ReceiveHbT imeouti) −→

sendj,nexthop (reroute(p, j, j.nextvertex))
[]
〈S4〉 :: recvk,j(reroute(p,m, n)) −→

if (j.childp 6= ⊥)
send(j, nexthop) reinforce(p, m, j);
send(j, j.childp) clear(p);
j.childp = nexthop;

else

sendj,nexthop (reroute(p,m, n))
fi

[]
〈S4〉 :: recvk,j(reinforce(p, m, n)) −→

if (j.childp 6= m)
send(j, nexthop) reinforce(p, m, n);
j.childp = nexthop;
j.prntp = k;

else

j.prntp = k;
fi

Fig. 26. Trail: Stabilizing Actions
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