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Abstract

We leverage crowd wisdom for multiple-choice ques-
tion answering, and employ lightweight machine learn-
ing techniques to improve the aggregation accuracy of
crowdsourced answers to these questions. In order to
develop more effective aggregation methods and eval-
uate them empirically, we developed and deployed a
crowdsourced system for playing the “Who wants to be
a millionaire?” quiz show. Analyzing our data (which
consist of more than 200,000 answers), we find that by
just going with the most selected answer in the aggrega-
tion, we can answer over 90% of the questions correctly,
but the success rate of this technique plunges to 60%
for the later/harder questions in the quiz show. To im-
prove the success rates of these later/harder questions,
we investigate novel weighted aggregation schemes for
aggregating the answers obtained from the crowd. By
using weights optimized for reliability of participants
(derived from the participants’ confidence), we show that
we can pull up the accuracy rate for the harder questions
by 15%, and to overall 95% average accuracy. Our re-
sults provide a good case for the benefits of applying
machine learning techniques for building more accurate
crowdsourced question answering systems.

1 Introduction
Question answering (QA) is studied as a fundamental prob-
lem by the artificial intelligence (AI) and the machine learn-
ing (ML) communities. While search engines can answer
well-formed factual queries successfully, their accuracy drops
significantly for non-factual and natural language questions.
There has been a substantial research effort on answering this
kind of questions by incorporating the information retrieval
(IR) and the natural language processing (NLP) techniques.
There are some encouraging real-life examples (now ; sir ;
Gunning et al. 2010; Ferrucci et al. 2010) of such systems,
however, achieving acceptable accuracy for QA still remains
a hard problem because both understanding and answering
of the questions require solving complex AI problems.

In our work, we leverage human intelligence to help AI for
more accurate QA. To this end, we consider crowdsourcing of
QA and employ lightweight ML techniques, i.e.optimization
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with methods such as block coordinate descent. In order
to simplify the problem further, we focus our attention to
multiple-choice question answering (MCQA ), because we
notice that for aggregation purposes it is more productive
to ask multiple choice questions than asking open-domain
questions. In contrast to open-domain questions which result
in a large set of possible answers, MCQA limits the answers
to predefined set of multiple choices, and this facilitates par-
ticipation of the crowd, improves the answer ratio and la-
tency, and simplifies the aggregation process. We contend
that providing multiple choice questions is feasible for many
applications, and it is also possible to automate the process
of adding multiple choices to an open-domain question (Lin,
Mausam, and Weld 2012).

In order to develop more effective aggregation methods
and evaluate them empirically, we developed and deployed a
crowdsourced system for playing the “Who wants to be a mil-
lionaire?” ( WWTBAM ) quiz show. Our work was inspired
by IBM Watson’s success at Jeopardy and aims to utilize the
crowd to answer WWTBAM questions accurately. We devel-
oped an Android app to let the crowd (i.e. the participants)
to play the game with their mobile devices while they watch
the quiz show on TV simultaneously1. Our WWTBAM app
has been downloaded and installed more than 300,000 times
and it has enabled us to collect large-scale real data about
MCQA dynamics. Over the period of 9 months, we have
collected over 3 GB of MCQA data using our Android app.
In our dataset, there are 1908 live quiz-show questions and
214,658 answers to those questions from the participants.

Studying the data we collected, we find that by just going
with the most selected answer in the aggregation (we call this
the majority voting - MV scheme), we can answer 92% of
the questions correctly, however, these are mostly entry-level
questions. In the show, there is a safe zone between 7th and
8th level questions, after which the questions become much
harder. After question 7, the success rates of MV plunge
quickly down to 60%. In other words, the correct answer
is half of the time not the most popular answer for these
harder questions. Ideally the final aggregated answer should
lean towards the answers of capable rather than unreliable
participants, but the ability of each participant is unknown a

1The app also has offline question answering option for the
participants who are not present when the show is on air.



Figure 1: The system architecture

priori.
In this paper, we investigate how we can improve the suc-

cess rates of these later/harder questions. To this end, we
investigate novel weighted aggregation schemes for aggre-
gating the answers obtained from the crowd. We propose to
integrate the process of estimating participant abilities and
deriving correct answers in a unified model. The basic idea in
our proposed scheme is that the correct answer is obtained by
a weighted voting among multiple participants where more
reliable participants have higher weights. The participants
who provide correct answers more often and more confidently
will be regarded more reliable.

To enable this effective aggregation technique, we intro-
duce two improvements. First, we ask the participants how
confident they are with their answers just after they choose
an answer. Then, for optimizing crowd’s results on harder
questions, we use lightweight ML techniques(Dai, Weld, and
others 2011; Kittur et al. 2013). We weight participants’ an-
swers according to their performance and the confidence of
their answers. We propose a novel method to estimate both
participant weights and aggregated answers simultaneously.
Our method is inspired by HITS algorithm (Kleinberg 1999)
for webpage authority and truth discovery (Yin, Han, and Yu
2007) for conflict resolving: The candidate answers from reli-
able participants should be weighted more in the aggregation.
Then using the optimized co-variants we aggregate weighted
answers in order to decide a final answer.

Our results present the effectiveness of using participants’
confidence while answering the questions to solve this prob-
lem. We are able to pull up the accuracy rate for the harder
questions by 15% over that of MV and to over 90% average
accuracy, by using optimized weights for answers derived
from participants’ confidence. These findings suggest that it
is feasible to build the superplayer by aggregating answers
from many players effectively using lightweight ML tech-
niques. Our WWTBAM application provides a good case
for the benefits of applying AI techniques for building more
accurate crowdsourced QA systems. In future work, we will
investigate adapting lessons learned from the WWTBAM
application to general/location-based crowdsourcing applica-
tions and recommendation systems.

The rest of the paper is organized as follows. We start with
summarizing the design, development, deployment, main-
tenance and use of our application in Section 2. Then we
provide the details about our dataset in Section 3. In Sec-
tion 4 we detail our methods to use this dataset for MCQA ,

starting with the basic majority voting. We present our results
in Section 5. We mention the related work in Section 6 and
we conclude our discussions in Section 7.

2 CrowdMillionaire Architecture
In this section, we detail the architecture of our crowdsourced
WWTBAM application: CrowdMillionaire . CrowdMillion-
aire enables the audience to play WWTBAM with their smart-
phones while watching the game show on TV simultaneously.
We targeted the Turkish audience due to high Android pen-
etration and popularity of the show in Turkey. Our mobile
app’s first version for the public use was released on Novem-
ber 08, 2012. Until now, the mobile app has been installed
more than 300,000 times (app ) and it has enabled us to
collect large-scale real data about MCQA dynamics.

The overall architecture of CrowdMillionaire is shown
in the Figure 1. CrowdMillionaire consists of three main
parts, (1) an admin part for entering the questions & multiple
choices while the game show is live on the TV, (2) a mobile
side for presenting the questions to the users and letting them
answer the questions, and (3) a server side for dispatching
the questions, collecting the answers, providing statistics and
running our MCQA algorithms.

Figure 2: A screenshot of the CrowdMillionaire mobile app during
an actual live game. The game and the questions are in Turkish. The
question and choices translate as ”Question:9 In Egyptian mythol-
ogy for weighing dead people’s sins, what does the god Anubis put
on the pan of the scale while there is their hearts on the other salver?
A) Feather B) Golden leaf C) Fig seed D) Strand”

When the show is on air, CrowdMillionaire sends an audi-
ble notification to alert the participants. They pick up their
phones or tablets and start playing by answering the ques-



tions which they see both on the TV and CrowdMillionaire
simultaneously, and enjoy the realtime gameplay. Figure 2
shows a screenshot of the LiveGame user interface (UI). Dur-
ing the live game, the participants see the current question &
four choices in big and clear fonts. On a smaller frame, the
answer of previous question is shown along with statistics
about it.

On the admin side, the project members type the questions
and multiple choices as they appear on the TV. We design
the system the way that enables the team members to enter
text as fast as possible using the admin UI while the game
show is on air. For this purpose, we divide the input job
into pieces: one of the project member types the question
while another types the choices simultaneously. This web
based admin UI, divide and distribute tasks dynamically if
more team members are available. It also enables the typing
task done on a single admin machine, when only one team
member is available. As soon as the typing is completed by
the team members, the server aggregates the inputs to form
the question & four choices and send them to the participants.
As a future work, we plan to extend dynamic admin UI to
a crowdsourced question entering mechanism (Lasecki et
al. 2012), and make the CrowdMillionaire a self-sustaining
system.

The server collects input from admin machines, packages
the question & the choices with some statistics and forward
them to all participants. Then, the participants select their
answers along with their confidence levels for their answers,
using their phones. Finally, the data is sent to the servers
through the Client APIs and saved in the database.

When the game is not live on the TV, our server machine on
the Amazon cloud (AWS EC2)(aws ), serve the participants
for the registration, the updates, the offline game playing and
some other participant queries such as the game statistics.
Furthermore when the show is on air, we run additional AWS
EC2 instances to prevent race conditions and bypass buffer-
ing queues. So that, we provide realtime gameplay experience
by fast question arrival and accurate live game statistics. We
leverage Google Cloud Messaging (GCM) (gcm ) push ser-
vice to send the questions and live statistics to the mobile
devices of the participants. Elasticity in our server design,
dynamic admin UI and delegating the question forwarding
to GCM help us to overcome the scalability issues we might
encounter at any stage.

A last note about mobile side: the participants are incen-
tivized by the joy and the desire of the gameplay itself. To
this end, they are forwarded to Statistics screen when the
live game is over. This component provides the list of the
most successful 100 participants of the game, ranked based
on the correct answer count and the response time. Note
that, this ranking algorithm also take the participants’ con-
fidence choices into account: they gain/lose more points if
they are right/wrong on their answers on which they were
more confident.

3 Dataset
In this section we give details about our MCQA related data.
Over the period of 9 months, we collected over 3 GB of
data using our CrowdMillionaire app. In our dataset, there

are 1908 questions and 214,658 unique answers to those
questions from CrowdMillionaire participants. In addition,
we have more than 5 million offline answers for archived live
questions.

Our dataset includes detailed information on the game
play. For example, our exhaustive timestamps show (1) how
much time it took for a question to arrive to a participant,
(2) when the question is actually presented to the participant
on her device, and (3) when exactly the participant answered
the question. After we clean and anonymize the data, we
will share this dataset with the research community in order
to advance the understanding of the MCQA dynamics. We
consider this as another contribution of our work.

Below we present some basic statistics about our data:
Program statistics: Our dataset includes live game data

from December 2012 to September 2013 (excluding the TV
show’s summer break). During this period, 2 or 3 programs
were aired on TV per week which adds up to 80 TV programs.
For each program the number of the contestants, who are
actually answering the questions on TV, changes depending
on the success of the contestants. The more the contestants are
successful, the less the number of contestants present during
a single TV show. We have 3.5 mean number of contestants
for each program.

Figure 4 shows the cumulative distribution for the number
of program played per participant. As the Figure indicates,
we strive to keep the same group of participants for each
program. Nearly, 98% of our participants played less than
5 games. On the other hand, we have a good number of
participants for each program regardless of their continuity.
Figure 3(c) shows the number of participants who played
WWTBAM using CrowdMillionaire . Average number of
participants per game is 733. We had more participants for
earlier programs2. It arises up to 3000 on the most popular
time of our app. CrowdMillionaire continues to attract a few
hundreds of people every program.

Question statistics: Figure 3(a) shows the number of ques-
tions per program. As the figure indicates, the number of
questions per program ranges from 9 to 373. Mean number
of questions per program is 23.85. Figure 5 shows number of
questions by question level. Apparently, the earlier questions
are more, because the later questions are presented if only
the contestant is not eliminated. The number of questions
decreases in an exponential style because the difficulty of the
questions increases by the level.

Answer statistics: Figure 3(b) shows the average number
of the questions answered per participant for each program.
The mean number of questions answered per participant in
programs ranges from 2 to 7 questions. As the Figure 3(b)
indicates, the average number of questions answered per
participant per program stabilized with 4 to 5 questions. On
the other hand, Figure 3(d) shows average number of answers

2This is due to the removal of other similar apps from the Google
Play Store because of the copyright claims–Since we comply with
the copyright of the game, we haven’t had any issues.

3The only exception is the TV show in which the contestant
was able to see the final question that is worth 1 million in Turkish
currency. In that special show, there were only 2 questions.
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(a) Number of questions for each program.
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(b) Average number of answers per participant for each pro-
gram.
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(c) Number of participants for each program.
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(d) Average number of answers per question for each pro-
gram.

Figure 3: Program Statistics
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Figure 4: CDF for number of program played per participants.

per question for each program. Although the average answer
per question is stable around 100, it changes according to
the popularity of a WWTBAM program (i.e. episode on TV),
or the popularity of our CrowdMillionaire app at the time.
The peak number for average answers was above 600. This
happened once CrowdMillionaire was the only game on the
Google Play to play WWTBAM 2, and once again when the
final question appeared 3.

4 Methodology
In this section, we present our methods to incorporate crowd-
sourcing and ML techniques in order to build a crowdsourced
WWTBAM player. Our objective is to collect the answers
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Figure 5: Number of questions by question level.

from the crowd, and then aggregate them using ML tech-
niques to accurately answer the questions. Below we formu-
late the problem and then introduce our solutions.

Problem Formulation: We have a question set Q, and
each question in this set q ∈ Q is answered by a set of
participants Pq. For a given question q, each participant in
the set p ∈ Pq gives a candidate answer xp

q , and it can be one
of the choices in set S = {A,B,C,D}. Our objective is to
aggregate candidate answers {xp

q}p∈Pq
among participants,

and get an aggregated answer x∗q for each question q.



4.1 Majority Voting ( MV )
A naive solution for aggregating the candidate answers is
to select the choice which is claimed by the majority of the
participants. Recall that, each candidate answer xp

q can be
one of the choices in set S . Therefore in majority voting, for
each question q, the highest voted choice by the participants
is selected as the final answer x∗q :

x∗q = argmax
x∈S

∑
p∈Pq

1(xp
q = x), (1)

where 1(·) is an indicator function, which outputs 1 when xp
q

is the same as x; otherwise, outputs 0.

4.2 Confident Only Voting ( CO )
Each candidate answer xp

q has a corresponding confidence
label cpq attached. Namely, when a participant provides an
answer xp

q , she is asked to indicate how confident her answer
is, and this confidence label cpq is attached to her answer. A
participant can define her confidence level using one of our
predefined confidence labels which are {“certain”, “guess-
ing”, “no idea”}.

We propose to filter the collected data by only choosing
xp
q which has a confidence label “certain”. To this end, for

each question q we define a participant set Pcertain
q in which

each candidate answer xp
q has a confidence label cpq equals to

“certain”. Then, we run the majority voting on this subset to
decide the aggregated final answer x∗q for each question q:

x∗q = argmax
x∈S

∑
p∈Pcertain

q

1(xp
q = x). (2)

4.3 Confidence Weighted Voting ( CW )
The aforementioned two algorithms are unweighted in the
sense that participants have equal weights when aggregating
their answers. In the following, we propose several weighted
aggregation strategies. As the basic weight covariant, we use
the answer confidence value cpq defined above. Instead of
eliminating the candidate answers which are not labeled with
“certain” as in the above method, here we set weights wp

q
according to the confidence labels cpq . Our insight here is to
give higher weights to the answers of participants who are
more confident, and lower weights otherwise as follows:

x∗q = argmax
x∈S

∑
p∈Pq

wp
q · 1(xp

q = x), (3)

where wp
q is set according to the confidence label cuq by this

rule: for confidence labels “certain”, “guessing” and “no
idea”, we set the weights to be 3, 2 and 1 respectively.

4.4 Participant-Mine Voting ( PM )
In our WWTBAM game scenario, it is natural to assume
that some participants perform better than others. In order
to leverage this fact, we introduce the concept of partici-
pants’ weights, denoted as wp. Note that wp is different than
wp

q as it is not specific to a question. In this algorithm, if a
participant’s weight wp is high, the candidate answers from
her will be more trustful. We can incorporate such weights

into the aggregation using weighted combination. Thus in a
weighted aggregation scheme, we trust more in the candidate
answers xp

q that are provided by the participants with better
performance.

In this scheme, we should figure out how to link participant
weights with their performance. To tackle this challenge,
we propose a novel optimization method to estimate both
participant weights and aggregated answers simultaneously.
The basic principle is inspired by HITS algorithm (Kleinberg
1999) for webpage authority and truth finding (Yin, Han,
and Yu 2007) for conflict resolving: The candidate answers
from reliable participants should be weighted more in the
aggregation, and the participants who provide correct answers
should be assigned higher weights. Based on this principle,
we formulate the task as the following optimization problem:

min
{x},{wp}

∑
q∈Q

∑
p∈Pq

wp · d(xp
q , x)

s.t. wp ≥ 0,
∑
p

wp = 1, (4)

where d(·) is a distance function which measures the differ-
ence between xp

q and x. In order to regularize the participants’
weights and prevent them to be infinity we set

∑
p wp = 1 as

a constraint function .
From Eq. (4), we can see that there are two sets of un-

known variables, i.e., {x} and {wp}. Therefore, a natural
way to solve this optimization problem is to use block coor-
dinate descent techniques (Bertsekas 1999). Specifically, we
adopt a two-step procedure which iteratively updates one set
of variables to minimize the objective function while keeping
the other set of variables unchanged.

As our proposed solution is an iterative procedure, it may
lose some information if we assume that at each step only
one candidate answer is true. To avoid this disadvantage,
we represent candidate answers and aggregated answers by
index vectors, which allow us to consider all possible values
during the iterative procedure. For example, candidate answer
“A” can be coded as (1, 0, 0, 0), “B” is (0, 1, 0, 0), and so on.
In this case, we can use L2-norm function for the distance
function d(·) to measure the distance between two index
vectors.

4.5 Confidence-Mine Voting ( CM )
Here we proposed another method to combine Confidence
Weighted Voting ( CW ) and Participant Mine Voting ( PM
) to utilize the power of weighted aggregation. The idea is
simple: on top of the PM method, we incorporate the confi-
dence labels into the index vectors. For example, consider
a participant who provides a candidate answer “A”. Then,
based on the confidence label attached to her answer, the
index vector is defined as follows:

If her answer has a confidence label “certain”, then the
index vector will be (1, 0, 0, 0). If the confidence label is
“guessing”, then the index vector will be ( 12 ,

1
6 ,

1
6 ,

1
6 ). Finally,

if the confidence label is “no idea”, then the index vector will
be ( 13 ,

2
9 ,

2
9 ,

2
9 ). For the candidate answers “B”, “C” and “D”,

they will be transformed into the index vectors in similar way.
Then running our optimization algorithm defined in Eq. (4)



on these vector values, we calculate a weight {wp} for every
participant p ∈ P . Finally based on these calculated weights,
we choose an aggregated answer x∗q for every question q ∈ Q
similar to the previous PM method. Thus, the only difference
between PM and CM is the input vectors that we use to
initiate the optimization.

4.6 Bing Fight
In order to compare the performance of our methods with
the search engine based QA systems, we implemented the
algorithm defined by (Lam et al. 2002). Despite the authors
state Google performs better, we build the system based on
Bing, because Google started to limit the number of queries
for automated search requests.4.

In the naive counting method, we produce the search en-
gine query string by concatenating each choice with the ques-
tion. Therefore, for each question in our dataset, we have four
different search engine queries. We search these four queries
on Bing, and calculate the total number of result pages, i.e.
number of hits , for each of them. The final answer of this
method is the choice with the maximum number of hits . Note
that, we do not make any query modifications suggested in
DistanceScore (Lam et al. 2002) algorithm such as ignoring
some buzz words or decoupling phrases of the question and
choices, because they are not in the scope of our work.

We defineB(·) as the function that returns number of result
pages i.e. number of hits for a query string. In the following
equation, stringq denotes the question text as stringx de-
notes a choice string, which is different for each of the four
x ∈ S:

x∗q = argmax
x∈S

B(stringx||stringq). (5)

As an alternative, we also tested the backward keyword
association approach defined in another work (Tonoike, Ut-
suro, and Sato 2004). It can answer only the 24.93% of the
questions, which is the random success rate in a 4-choice
classification. Thus, we do not discuss its results in Section 5.

x∗q = argmax
x∈S

B(stringx||stringq)/B(stringx). (6)

5 Evaluation
In this section, we evaluate our methods described in Sec-
tion 4 using our WWTBAM data. Table 1 shows how each
of these methods perform by question level. As shown in
Figure 5, we do not have statistically significant number of
questions from level 11 and 12 in our dataset. Thus, we do
not include the results for those questions as they are not
enough to accurately measure the performance of our algo-
rithms. Note that, for any of the algorithms, if more than
one choice has the maximum vote, then we count it as unde-
cided.When calculating the accuracy of the algorithms, we
count the undecided questions as failure (i.e. not as success).

We first run the Bing Fight on our question set. We directly
queried via Turkish questions, so there is no translation effect.
It can answer 30.50% of all questions successfully, that is

4At the time we write this paper, this limit is 100 queries per day

Table 1: Success Rates

Level Bing MV CW CO PM CM
1 37.09 96.00 97.68 98.43 97.69 96.00
2 26.87 95.89 97.65 97.60 97.28 95.52
3 27.10 96.17 97.20 96.77 97.24 96.17
4 30.16 93.25 94.96 95.76 97.46 95.24
5 26.64 93.86 94.04 95.83 96.04 95.61
6 31.41 92.14 91.80 92.22 94.95 96.33
7 34.94 95.78 94.34 96.82 95.18 96.98
8 31.20 75.20 73.50 79.82 90.58 93.60
9 24.72 73.03 70.59 77.87 90.91 92.13

10 34.15 65.85 60.00 72.22 84.10 90.24

a little less than the expected performance according to the
previous works (Awadallah and Rauber 2006; Lam et al.
2002). This performance loss is due to several reasons such as:
(1) the undecided questions, (2) using Bing instead of Google,
which might perform better according to works mentioned in
Section 6 and (3) not making the small query optimizations
which are mentioned in the related work too. Ignoring the
undecided questions, overall success rate increases to 37.06%
which is closer to the results in previous works (Awadallah
and Rauber 2006; Lam et al. 2002).

Using the MV algorithm, i.e. the elemental crowdsourc-
ing algorithm, the crowd is able to answer 95% of the ear-
lier/easier questions correctly. Although the MV is successful
enough on those easier questions, its success rate plummets
on the higher level questions as seen in the second column
of Table 1 and in Figure 6(a). These results also represent
an interesting fact about the format of the TV show: the suc-
cess rates of the MV decrease more than 20% between the
7th and the 8th questions, because the hardness of the ques-
tions increase a lot after the safe zone of the TV show (i.e.
7th question). This distinctive change in the performance
of crowd enables us to clearly categorize easier and harder
questions based on question level. Figure 6(a) shows how the
MV algorithm and Bing Fight performs by question level. It
is clear form the graph that even the elemental crowdsourcing
algorithm significantly outperforms the Bing Fight.

Regardless of whether they use the confidence data or not,
all of our crowdsourced methods are able to answer roughly
95% of the lower level questions correctly. Namely, failure is
a rare case. On those lower level questions, the CW or CO
methods are able to answer some of the questions which the
MV fails on, but on the other hand the CW or CO methods
fail on some other questions which the MV answers correctly.
However, when it comes to the higher level questions (i.e.
8th question and above), even the basic confidence-based
methods seem to be more successful than the MV as seen on
the Figure 6(b). Henceforth, our discussions will focus on
the harder questions.

As it is clear from the Figure 6(b), the CO method slightly
outperforms the CW method on the higher level questions.
On the other hand, CW is a more robust algorithm as it is
less dependent on the size of data. Although our data is big
enough and we did not observe any problems caused by small
data size while running our tests, picking only the “certain”
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(b) Majority Voting vs Confident Only Voting and Confidence
Weighted Voting
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(c) Majority Voting vs Participant Weighted Voting and Confidence-
Mine Voting

Figure 6: Comparative performance results of our Methods

labeled answers can reduce the data size significantly. In some
other domains, this reduced data size may cause problems,
such as fluctuation and speculation on final answers as they
may be dominated by a small number of faulty participants.
Therefore, using the CW and the CO together in a hybrid
fashion would be more dependable when the data size is
not big enough. In that hybrid approach, CO function can
lead the final decisions and CW can be used when CO cannot
decide comfortably. That way, first only the “certain” answers
will be counted, and in case of a close result then the hybrid
algorithm will decide considering other answers too.

Figure 6(c) reveals that our optimized weight based meth-
ods perform significantly better than all the other methods,

especially on the harder questions. On those harder questions,
the PM method can successfully find the correct answers, for
half of the situations where majority of the crowd fail. Then
by incorporating the confidence data to the optimization, our
CM method performs above 90% for all the question levels.
This great improvement indicates using a lightweight training
on our crowdsourced data, we are able to build a super-player
for the WWTBAM game.

6 Related Work
6.1 MCQA studies on WWTBAM
In recent years, ML and IR communities have been producing
large and growing literature on question answering(Gunning,
Chaudhri, and Welty 2010). Today, there are many studies
on question answering in the form of game playing. IBM
Watson’s (Ferrucci et al. 2010) Jeopardy challenge is the
best known example of such systems. In order to outper-
form the human contestants, IBM Watson’s Jeopardy system
leverages NLP, ML and IR techniques. MCQA is drawing
researchers’ attention and there are several recent works on
MCQA. WWTBAM has been regarded as a challenge for
MCQA. Lam et al. (Lam et al. 2002) describe how search
engines can be utilized to play WWTBAM game. Their basic
method is to race the hit numbers of question+choice pairs
by searching the possible combinations of such pairs on the
search engines. With this naive strategy, out of 635 questions,
their system is able to answer 44.4% of them using MSN.com
and 55.6% of them using Google. In their advanced approach,
they use the proximity of the question and the choice key-
words as they appear in the search results. With the help of
this strategy, their system is able to answer 68.9% of the
questions. In (Tonoike, Utsuro, and Sato 2004), authors work
on Japanese WWTBAM questions, and they try to detect the
question phrase to decouple the choices before performing
the hit race. With this keyword association, their system is
able to answer the questions with 79% overall success rate.
However, in another work (Awadallah and Rauber 2006), the
same method performs 45% on Arabic WWTBAM dataset.
The authors of the latter work, on the other hand, are able to
pull the performance up to 55% with an improved method on
Arabic questions. Their system also performs 62% on English
questions. In a recent work (Molino et al. 2013) on WWT-
BAM, authors build a virtual player to play the game using
Italian questions. Similar to IBM Watson’s Jeopardy system,
their virtual player leverages the information retrieved from
Wikipedia. The overall success rate of their system is 76.33%.
However, in none of the works above, the performance is
proportional to the difficulty of the questions, because they
are based on IR techniques as opposed to our system that
leverages the crowd’s intelligence.

6.2 Crowdsourced Question Answering
Crowdsourcing has been employed for answering subjec-
tive, relative, or multidimensional location-based queries
for which the traditional search engines perform poorly.
Two examples of location-based question answering systems
are our previous work (Bulut, Yilmaz, and Demirbas 2011;
Demirbas et al. 2010). AskMSR (Brill, Dumais, and Banko



2002) leans on the redundant data on the web instead of the
complex NLP techniques. SMSFind (Chen, Subramanian,
and Brewer 2010) is an example of SMS-based question an-
swering systems. It leverages the search engines to answer
the questions automatically. It tries to find the best match-
ing answer by using both IR and NLP techniques. Although
SMSFind is not a truly crowdsourced answering system, it is
remarkable in the sense that the authors point out what type
of questions are ambiguous to their system and where the
human intelligence is needed. In another work, CrowdDB
(Franklin et al. 2011), authors present an SQL-like query pro-
cessing system to collect large amount of data with the help
of microtask-based crowdsourcing. CrowdDB is piggybacked
to Amazon Mechanical Turk (amt ).

7 Conclusion
In this paper, we present crowdsourced methods using
lightweight ML techniques to build an accurate MCQA sys-
tem. The accuracy of our MCQA methods are promising. By
using optimized weights for answers derived from partici-
pants’ confidence, we are able to build a super player for the
WWTBAM game that can answer the questions from all dif-
ficulty levels with an accuracy of above 90%. In future work,
we will investigate adapting lessons learned from the WWT-
BAM application to general/location-based crowdsourcing
applications and recommendation systems.
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