
CSE 220: Systems Programming
Memory Allocation

Ethan Blanton

Department of Computer Science and Engineering
University at Buffalo

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Allocating Memory

We have seen how to use pointers to address:
An existing variable
An array element from a string or array constant

This lecture will discuss requesting memory from the system.

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

The Heap

We will see more about the heap later, but it represents memory
that is:

allocated and released at run time
managed explicitly by the programmer
only obtainable by address

Heap memory is just a range of bytes to C.

Memory from the heap is given a type by the programmer.

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Heap Allocations

Each allocation from the heap is represented by a pointer.

Each allocation has a fixed size.

This size is declared at allocation time.

Accesses outside of the allocation must not be made using the
returned pointer!

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Releasing Memory

Memory can be released back to the heap.

This memory can then be used for future heap allocations.

It can potentially (but often is not) be returned to the OS.

Memory that has been released must not be accessed again.

The compiler and runtime will not detect accesses to released
memory!

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

void *

The type void * is used to indicate a pointer of unknown type.

You may recall that void indicates a meaningless return value.

void * is treated specially by the C compiler and runtime:
It can contain any pointer type
Type checks are mostly bypassed assigning to/from void *
Any attempt to dereference a void * pointer is an error

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Pointer Assignments
Consider the following:
int i;
double d;
int *pi = &i;
double *pd = &d;
Each of these pointers is typed. These are errors:
pi = pd;
pd = pi;

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Pointer Assignments
Consider the following:
int i;
double d;
int *pi = &i;
double *pd = &d;
This is where it gets dangerous:
void *p = pi;
pd = p;

This is perfectly legal.
(What does it mean?)

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

The Standard Allocator
The C library contains a standard allocator.
#include <stdlib.h>

void *malloc(size_t size);
void *calloc(size_t nmemb , size_t size);
void *realloc(void *ptr , size_t size);
void free(void *ptr);

These functions allow you to:
Request memory (malloc(), calloc(), realloc())
Release memory (free())

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Allocating

The allocating functions request memory in slightly different
ways.
void *malloc(size_t size);
void *calloc(size_t nmemb , size_t size);
void *realloc(void *ptr , size_t size);

All three return a non-null void pointer on success.

All three return NULL on failure.

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

malloc()
void *malloc(size_t size);

Malloc returns a void * pointer, which can point to anything.

It allocates at least size bytes.
size is often the result of a sizeof() expression.
To allocate an integer:

Determine the size of an int
Request enough memory to hold one

int *pi = malloc(sizeof(int));

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Allocating an array

To allocate an array with 10 int entries dynamically, we:
Determine the size of a single int
Tell the system we want ten of those
Assign the result to an appropriate pointer

int *array = malloc (10 * sizeof(int));

The variable array can now be used as a regular int array.

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

calloc()

void *calloc(size_t nmemb , size_t size);

The closely-related calloc() allocates cleared memory.

The memory returned by malloc() is uninitialized.
The memory returned by calloc() is set to bitwise zero.

Note that invocation is slightly different!

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

realloc()
void *realloc(size_t nmemb , size_t size);

Allocation sizes are fixed, but you can request a resize.

realloc() will attempt to change the size of an allocation.

If it cannot, it may create a new allocation of the requested size.

Normal usage is:
ptr = realloc(ptr , newsize);

This handles the case where the resize is not possible.

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

free

void free(void *ptr);

Free accepts a void * pointer, which can point to anything.

Freed memory returns to the system to be allocated again later
via malloc().
free(array);

Note that free does not modify the value of its argument.
Thus you cannot “tell” that a pointer has been freed!

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Failed allocations

Allocations can fail.

A failed allocation will return NULL.
On a modern machine, this usually means an unreasonable
allocation.

E.g., you accidentally allocated 2 GB instead of 2 KB.

On smaller systems, failed allocations are normal.

Often you can’t do much about a failed allocation, of course.

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Use-after-free
A common class of error is use-after-free.

This is when a freed pointer is used.

This is particularly dangerous, because the allocator may reuse
that pointer.

Therefore, it is:
Pointing to usable memory
Not valid
Likely to corrupt data!

Setting free’d pointers to NULL can help prevent this.

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Summary

The heap is where you manually allocate memory.
The C standard library contains a flexible allocator.
Heap allocations are sized by the programmer.

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

Next Time …

Aggregate data types (for real this time)

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

References I

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Heap Void Pointers The Standard Allocator Allocation Errors Summary References

License

Copyright 2019 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2019 Ethan Blanton / CSE 220: Systems Programming

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	The Heap
	Void Pointers
	The Standard Allocator
	Allocation Errors
	Summary

