
CSE 220: Systems Programming
The Compiler and Toolchain

Ethan Blanton

Department of Computer Science and Engineering
University at Buffalo

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

The C Toolchain

The C compiler as we know it is actually many tools.

This is due to:
C’s particular history
Common compiler design
The specific design goal of compilation in parts

What we actually invoke is the compiler driver.

The compiler is only a single step of the multi-step process!

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

Compiling a C Program

A C program consists of one or more source files.

The C compiler driver passes the source code through several
stages to translate it into machine code.
A source file1 is sometimes called a translation unit.

Each stage may be invoked individually …more later.

1Plus some other stuff
©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

The Complete Toolchain

.c source

Included
Headers

CPP

Linker

C Compiler

Assembler

External
Libraries

Pre-
processed
.i source

Compiled
.s assembly

Executable
Object
.o file

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

The C Compiler Driver
First, we will ignore most stages of compilation.

The C compiler driver can take a .c source file and produce an
executable directly.

We’ll look at that with Hello World:
#include <stdio.h>

int main(int argc , char *argv []) {
printf("Hello , world !\n");
return 0;

}

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

Compiling Hello World
We compile Hello World as follows:
gcc -Wall -Werror -O2 -g -std=c99 -o helloworld helloworld.c

This command says:
-Wall: Turn on all warnings
-Werror: Treat all warnings as errors
-O2: Turn on moderate optimization
-g: Include debugging information
-std=c99: Use the 1999 ISO C Standard
-o helloworld: Call the output helloworld
helloworld.c: Compile the file helloworld.c

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

Compiling Hello World II
The C compiler driver ran all of the steps necessary to build an
executable for us.

The C preprocessor handled including a header
The compiler produced assembly
The assembler produced object code
The linker produced helloworld

[elb@westruun]~/.../posix$./helloworld
Hello, world!

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

Compiling in Steps

The compiler driver can be used to invoke each step of the
compilation individually.

It can also be used to invoke up to a step.

The starting step is determined by the input filename.

The ending step is determined by compiler options.

We will explore each step in some detail.

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

The C Preprocessor

The preprocessor does just what it sounds like.

It performs certain source code transformations before the C is
processed by the compiler.

It doesn’t understand C, and can be used for other things!

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

Functions of the Preprocessor
The C preprocessor applies preprocessor directives and macros
to a source file, and removes comments.

Directives begin with #.
#include: (Preprocess and) insert another file
#define: Define a symbol or macro
#ifdef/#endif: Include the enclosed block only if a symbol
is defined
#if/#endif: Include only if a condition is true
…

Preprocessor directives end with the current line (not a
semicolon).

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

Including headers

The #include directive is primarily used to incorporate headers.

There are two syntaxes for inclusion:
#include <file>
Include a file from the system include path (defined by the
toolchain)
#include "file"
Include a file from the current directory

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

Defining Symbols and Macros

The #define directive defines a symbol or macro:

#define PI 3.14159

#define PLUSONE(x) (x + 1)

PLUSONE(PI) /* Becomes (3.14159 + 1) */

Macros are expanded, not calculated!
The expansion will be given directly to the compiler.

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

Conditional Compilation

The various #if directives control conditional compilation.

#ifdef ARGUMENT
/* This code will be included only if ARGUMENT is

a symbol defined by the preprocessor --
regardless of its expansion */

#endif

The #ifndef directive requires ARGUMENT to be undefined.

The #if directive requires ARGUMENT to evaluate to true.

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

Using the Preprocessor

The preprocessor can be invoked as gcc -E.

Using the preprocessor correctly and safely is tricky.

For now, it is best to limit your use of the preprocessor.

We’ll talk more about cpp later.

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

The C Compiler
The compiler transforms C into machine-dependent assembly
code.

It produces an object file via the assembler.

The compiler is the only part of the toolchain that understands C.

It understands:
The semantics of C
The capabilities of the machine

It uses these things to transform C into assembly.

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

Assembly Language

Assembly language is machine-specific, but human-readable.

Assembly language contains:
Descriptions of machine instructions
Descriptions of data
Address labels marking variables and functions (symbols)
Metadata about the code and compiler transformations

All of the semantics of the C program are in the assembly.

The structure of the assembly may be very different!

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

Compiling to Assembly

Let’s compile to assembly using -S:

$ gcc -Wall -Werror O2 -std=c99 -S helloworld.c

On the next slides, we’ll examine the output from helloworld.s.

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

helloworld.s I
.file "helloworld.c"
.section .rodata.str1.1,"aMS",@progbits,1

.LC0:
.string "Hello, world!"
.section .text.startup,"ax",@progbits
.p2align 4,,15
.globl main
.type main, @function

We’ll get to the details later, but for now notice:
.LC0: is a local label
.string declares a string constant (no newline!)
The .globl and .type directives declare that we’re defining
a global function named main

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

helloworld.s II
main:
.LFB11:

.cfi_startproc
leaq .LC0(%rip), %rdi
subq $8, %rsp
.cfi_def_cfa_offset 16
call puts@PLT
xorl %eax, %eax
addq $8, %rsp
.cfi_def_cfa_offset 8
ret
.cfi_endproc

We’ll skip the postamble, for now.
©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

The Generated Code
First of all, you aren’t expected to understand the assembly.

leaq .LC0(%rip), %rdi
This code loads the string constant’s address (from .LC0).

Then, later:
call puts@PLT
…it calls puts() to output the string.

Note that the C compiler:
Noticed we were outputting a static string
Noticed it ended in a newline
Replaced the (complicated) printf() with the (simpler)
puts() and a modified string

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

The Assembler
The assembler transforms assembly language into machine
code.

Machine code is binary instructions understood by the
processor.

The output of the assembler is object files.

An object file contains:
Machine code
Data
Metadata about the structure of the code and data

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

Compiling to an Object File

You may wish to compile to an object file.

This is used when multiple source files will be linked.

In this case, use -c:

$ gcc -Wall -Werror -O2 -std=c99 -c helloworld.c

This will produce helloworld.o.

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

The Linker

The linker turns one or more object files into an executable.

An executable is:
The machine code and data from object files
Metadata used by the OS to run a complete program

An executable’s metadata includes:
The platform on which it runs
The entry point (where it should start execution)
Anything it requires from libraries, etc.

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

Linking
Compiling any input files without an explicit output stage will
invoke the linker.

gcc -Wall -Werror -O2 -std=c99 -o helloworld helloworld.o

This command will link helloworld.o with the system libraries to
produce helloworld.
You can view the linkage with ldd:
[elb@westruun]~/.../posix$ ldd helloworld

linux-vdso.so.1 (0x00007ffe34d1a000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f24dacbb000)
/lib64/ld-linux-x86-64.so.2 (0x00007f24db25c000)

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

Summary

The “C compiler” is actually a chain of tools
We invoke the compiler driver
The preprocessor transforms the source code
The compiler turns C into assembly language
The assembler turns assembly language into machine code
in object files
The linker links object files into an executable

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

Next Time …

More pointers
More data representation
Floating point

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

References I
Required Readings
[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s

Perspective. Third Edition. Chapter 1: Intro, 1.1-1.4. Pearson, 2016.

©2019 Ethan Blanton / CSE 220: Systems Programming

Introduction The Compiler Driver Preprocessor Compiler Assembler Linker Summary References

License

Copyright 2019 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2019 Ethan Blanton / CSE 220: Systems Programming

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	The Compiler Driver
	Preprocessor
	Compiler
	Assembler
	Linker
	Summary

