
CSE 220: Systems Programming
Integers and Integer Representation

Ethan Blanton

Department of Computer Science and Engineering
University at Buffalo



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Administrivia

AI Quiz due tonight
Lab01 and Lab02 due Saturday night
PA0 due Monday night
There is no recording of the Basic Unix session
Basic Unix session repeats Saturday at 6 PM
Invenst Kickoff tonight, Davis 101, 5pm

M&T Bank Customer Group CIO Sonny Sonnonstein
Q&A, meet the team, hear their vision
(free food)

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Lab Exams

Lab Exam 1 is next week in your regular lab session

It will cover string and character manipulations

Look closely at your PA0, Chapters 1 & 2 of K&R

Closed notes, closed book

Do not discuss the exam with anyone

Make sure your SENS account works before your lab!

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Integer Complications

It seems like integers should be simple.

However, there are complications.
Different machines use different size integers
There are multiple possible representations
etc.

In this lecture, we will explore some of these issues in C.

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Memory as Bytes

Previously, I said “To the computer, memory is just bytes.”

While this isn’t precisely true, it’s close enough to get started.

The computer doesn’t “know” about data types.
A modern processor can probably directly manipulate:

Integers (maybe only of a single bit length!)
Maybe floating point numbers
…often, that’s all!

Everything else we create in software.

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Memory as …Words?
It is probably more accurate to say memory is just words.

What is a word?

A word is the native integer size of a given platform.
For example, 64 bits on x86-64, or 32 bits on an ARM
Cortex-A32.

A word can also (confusingly) be the width of the memory bus, if
the processor’s word size and its memory bus width are
different.

We will assume they are the same, at least for a while.

What is “native integer size”? What is the “width” of a memory
bus?

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

A Bit About Architecture

CPU
Main

memory

Peripherals

System
Bus

I/O (North)
Bridge

I/O (South)
Bridge

Memory
Bus

I/O
Bus

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Buses
A bus has a width, which is literally the number of wires it has.1

(This is a little less clear on a serial bus, where the width is a
protocol convention.)

Each wire transmits one bit per transfer.

Every bus transfer is of that width, though some bits may be
ignored.

Therefore, memory has a word size from the view of the CPU:
the number of wires on that bus.

1This is an over-simplification, but it remains true from the point of view of
the programmer’s model of the processor.

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

CPU ↔ Memory Transfer
The CPU fetches data from memory in words the width of the
memory bus.

It places those words in registers the width of a cpu word.
This register width is the native integer size.2

These word widths may or may not be the same.
(On x86-64, they are.)

If they’re not, a transfer may require:
multiple registers, or
multiple memory transfers.

2Some CPUs (including x86-64) can manipulate more than one size of
integer in a single register.

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Imposing Structure on Memory
That said, programming languages expose things like:

Booleans
classes
strings
structures

How is that?

We impose meaning on words in memory by convention.

E.g., as we saw before, a C string is a sequence of bytes that
happen to be adjacent in memory.

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Hexadecimal

A brief aside: we will be using hexadecimal (“hex”) a lot.

Hex is the base 16 numbering system.
One hex digit ranges from 0 to 15.
Contrast this to decimal, or base 10 —
one decimal digit ranges from 0 to 9.

In computing, hex digits are represented by 0-9 and then A-F.
A = 10 D = 13
B = 11 E = 14
C = 12 F = 15

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Hexadecimal

A brief aside: we will be using hexadecimal (“hex”) a lot.

Hex is the base 16 numbering system.
One hex digit ranges from 0 to 15.
Contrast this to decimal, or base 10 —
one decimal digit ranges from 0 to 9.

In computing, hex digits are represented by 0-9 and then A-F.
A = 10 D = 13
B = 11 E = 14
C = 12 F = 15

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Why Hex?
Hexadecimal is used because one hex digit is four bits.

This means that two hex digits represents one 8-bit byte.

On machines with 8-bit-divisible words, this is very convenient.
Hex Bin Hex Bin
0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 C 1100
5 0101 D 1101
6 0110 E 1110
7 0111 F 1111

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Integer Types
Platform-specific integer types you should know:

char: One character.
short: A short (small) integer
int: An “optimally sized” integer
long: A longer (bigger) integer
long long: An even longer integer

Their sizes are: 8 bits ≤ char ≤ short ≤ int ≤ long ≤ long long
Furthermore:
short, int ≥ 16 bits, long ≥ 32 bits, long long ≥ 64 bits

Whew!

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Integer Modifiers

Every integer type may have modifiers.

Those modifiers include signed and unsigned.
All unmodified integer types except char are signed.
char may be signed or unsigned!
The keyword int may be elided for any type except int.
These two declarations are equivalent:
long long nanoseconds;
signed long long int nanoseconds;

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Integers of Explicit Size
The confusion of sizes has led to explicitly sized integers.
They live in <stdint.h>
Exact-width types are of the form intN_t.
They are exactly N bits wide; e.g.: int32_t.
Minimum-width types are of the form int_leastN_t.
They are at least N bits wide.

There are also unsigned equivalent types, which start with u:
uint32_t, uint_least8_t
N may be: 8, 16, 32, 64.

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

sizeof()
We will use the sizeof() operator in this lecture.
Sizeof looks like a function, but it’s not!

It is computed by the compiler.

sizeof() returns the size in bytes of its argument, which can be:
A variable
An expression that is “like” a variable
A type

(Expressions “like” a variable include, e.g., members of structures.)

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Looking at sizeof

Examples:
char str [32];
int matrix [2][3];

sizeof(int); // yields 4
sizeof(str); // yields 32
sizeof(matrix); // yields 24

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

dump_mem()

In the following slides, we will use the function dump_mem().
We will examine it in detail at some point, but for now:

dump_mem() receives a memory address and number of
bytes
It then prints the hex values of the bytes at that address

Don’t worry too much about its details for now.

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

A Simple Integer

First, a simple integer:
int x = 98303; // 0x17fff
dump_mem (&x, sizeof(x));

Output:
ff 7f 01 00

Let’s pull this apart.

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

A Simple Integer

First, a simple integer:
int x = 98303; // 0x17fff
dump_mem (&x, sizeof(x));

Output:
ff 7f 01 00

Let’s pull this apart.

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Byte Ordering

Why is 98303, which is 0x17fff, represented by ff 7f 01 00?

The answer is endianness.
Words are organized into bytes in memory — but in what order?

Big Endian: The “big end” comes first.
This is how we write numbers.
Little Endian: The “little end” comes first.
This is how x86 processors (and others) represent integers.

You cannot assume anything about byte order in C!

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Byte Ordering

Why is 98303, which is 0x17fff, represented by ff 7f 01 00?
The answer is endianness.
Words are organized into bytes in memory — but in what order?

Big Endian: The “big end” comes first.
This is how we write numbers.
Little Endian: The “little end” comes first.
This is how x86 processors (and others) represent integers.

You cannot assume anything about byte order in C!

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Sign Extension

char c = 0x80;
int i = c;

dump_mem (&i, sizeof(i));

Output:
80 ff ff ff

0xffffff80? Where did all those one bits come from?!

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Sign Extension

char c = 0x80;
int i = c;

dump_mem (&i, sizeof(i));

Output:
80 ff ff ff

0xffffff80? Where did all those one bits come from?!

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Positive Integers

A formal definition of a positive integer on a modern machine is:

Consider an integer of width w as a vector of bits, x⃗:

x⃗ = xw−1, xw−2, . . . , x0

This vector x⃗ has the decimal value:

x⃗ .
=

w−1∑
i=0

xi2i

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Calculating Integer Values

Consider the 8-bit binary integer 0010 1011:

00101011b = 0 · 27 + 0 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20

= 0 · 128+ 0 · 64+ 1 · 32+ 0 · 16+ 1 · 8+ 0 · 4+ 1 · 2+ 1 · 1
= 32+ 8+ 2+ 1
= 43

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Negative Integers

Previously, the variable c was sign extended into i.
As previously discussed, integers may be signed or unsigned.

Since integers are just bits, the negative numbers must have
different bits set than their positive counterparts.

There are several typical ways to represent this, the most
common being:

One’s complement
Two’s complement

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

One’s Complement
One’s complement integers represent a negative by inverting
the bit pattern.

Thus, a 32-bit 1:
00000000 00000000 00000000 00000001
And a 32-bit -1:
11111111 11111111 11111111 11111110
Formally, this is like a positive integer, except:

xw−1
.
= −2w−1 + 1

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Decoding Negative One’s Complement
Therefore, 4-bit -1: 1110

1110b = 1 · (−23 + 1) + 1 · 22 + 1 · 21 + 0 · 20

= 1 · −7+ 1 · 4+ 1 · 2+ 0 · 1
= −7+ 4+ 2
= −1

This is fine, except there are two zeroes!:

0000b = 0 · (−23 + 1) + 0 · 22 + 0 · 21 + 0 · 20

1111b = 1 · −23 + 1 · 22 + 1 · 21 + 1 · 20

= −7+ 4+ 2+ 1

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Decoding Negative One’s Complement
Therefore, 4-bit -1: 1110

1110b = 1 · (−23 + 1) + 1 · 22 + 1 · 21 + 0 · 20

= 1 · −7+ 1 · 4+ 1 · 2+ 0 · 1
= −7+ 4+ 2
= −1

This is fine, except there are two zeroes!:

0000b = 0 · (−23 + 1) + 0 · 22 + 0 · 21 + 0 · 20

1111b = 1 · −23 + 1 · 22 + 1 · 21 + 1 · 20

= −7+ 4+ 2+ 1

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Two’s Complement

Most (modern) machines use two’s complement.

Two’s complement differs slightly from one’s complement.
Its w− 1th bit is defined as:

xw−1
.
= −2w−1

(Recall that one’s complement added 1 to this!)

This means there is only one zero — all 1s is -1!

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Decoding Two’s Complement

Consider 1110 in two’s complement:

1110b = 1 · −23 + 1 · 22 + 1 · 21 + 0 · 20

= −8+ 4+ 2+ 0
= −2

w-bit Two’s complement integers run from −2w−1 to 2w−1 − 1.

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Decoding Two’s Complement

Consider 1110 in two’s complement:

1110b = 1 · −23 + 1 · 22 + 1 · 21 + 0 · 20

= −8+ 4+ 2+ 0
= −2

w-bit Two’s complement integers run from −2w−1 to 2w−1 − 1.

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Negative Integer Bit Patterns
In general, the high-order bit of a negative integer is 1.

In our previous example:
char c = 0x80;
int i = c;
c is signed, and thus equivalent to -128.

It is then sign extended into i by duplicating the high bit to the
left.

This results in an i that also equals -128.
Why?

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Negative Integer Bit Patterns
In general, the high-order bit of a negative integer is 1.

In our previous example:
char c = 0x80;
int i = c;
c is signed, and thus equivalent to -128.
It is then sign extended into i by duplicating the high bit to the
left.

This results in an i that also equals -128.
Why?

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Computing c and i

char c = 0x80;
Here, c is -128 plus no other bits set.
int i = c;
What is i if we sign extend?

11111111 11111111 11111111 10000000
What is the value of that two’s complement integer?

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Computing c and i

char c = 0x80;
Here, c is -128 plus no other bits set.
int i = c;
What is i if we sign extend?
11111111 11111111 11111111 10000000
What is the value of that two’s complement integer?

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Computing Sign Extension

11111111 11111111 11111111 10000000
Remember that the high 1 bit indicates −2w−1, or −231, here.

We then add in each of the other bits as positive values.

Every bit from 27 through 230 is set, and 20 through 26 are unset:

−231 + 230 + 229 + . . . + 28 + 27

…this sums to -128!

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Computing Sign Extension

11111111 11111111 11111111 10000000
Remember that the high 1 bit indicates −2w−1, or −231, here.

We then add in each of the other bits as positive values.

Every bit from 27 through 230 is set, and 20 through 26 are unset:

−231 + 230 + 229 + . . . + 28 + 27

…this sums to -128!

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Computing Sign Extension

11111111 11111111 11111111 10000000
Remember that the high 1 bit indicates −2w−1, or −231, here.

We then add in each of the other bits as positive values.

Every bit from 27 through 230 is set, and 20 through 26 are unset:

−231 + 230 + 229 + . . . + 28 + 27

…this sums to -128!

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Summary

The CPU and memory deal only in words
Buses and registers have native word widths
Integers have different:

Bit widths
Endianness
Sign representation

One’s and two’s complement representation

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

Next Time …

Conditions and Flow Control

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

References I
Required Readings
[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s

Perspective. Third Edition. Chapter 1: Intro, 1.1, 1.4.1; Chapter 2: Intro, 2.1 through
2.1.3, 2.2. Pearson, 2016.

©2019 Ethan Blanton / CSE 220: Systems Programming



Administrivia Introduction Architecture Integer Types Examining Memory Integers Summary References

License

Copyright 2019 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2019 Ethan Blanton / CSE 220: Systems Programming

https://www.cse.buffalo.edu/~eblanton/

	Administrivia
	Introduction
	Architecture
	Integer Types
	Examining Memory
	Integers
	Summary

