
‘-

1
Karthik Dantu

Tour of Computer Systems

Karthik Dantu

Ethan Blanton

Computer Science and Engineering

University at Buffalo

kdantu@buffalo.edu

Some portions of this lecture are borrowed from the CMU 15-213 and UNL CSCE 284H



‘-

2
Karthik DantuKarthik Dantu

• PA1 handout due today

• PA1 – Conway’s Game of Life

Administrivia



‘-

3
Karthik DantuKarthik Dantu

• Systems Knowledge
How hardware (processors, memories, disk drives, network 
infrastructure) plus software (operating systems, compilers, libraries, 
network protocols) combine to support the execution of application 
programs

How you as a programmer can best use these resources

• Useful outcomes from taking CSE 220
Become more effective programmers

Able to find and eliminate bugs efficiently

Able to understand and tune for program performance

Prepare for later “systems” classes in CS, CE, 
Operating Systems, Networks, Computer Architecture, Embedded Systems, Computer 
Security, etc.

Systems Knowledge is Power!



‘-

4
Karthik DantuKarthik Dantu

• Why do I need to know this stuff?
Abstraction is good, but don’t forget reality

• Most CS courses emphasize abstraction
Abstract data types

Asymptotic analysis

• These abstractions have limits
Especially in the presence of bugs

Need to understand details of underlying implementations

Sometimes the abstract interfaces don’t provide the level of control or 
performance you need

Important to Know How Things Work



‘-

5
Karthik DantuKarthik Dantu

• Example 1: Is x2 ≥ 0?

Floats: Yes!

ints:
40000 * 40000 --> 1600000000

50000 * 50000 --> ?

• Example 2: Is (x + y) + z  =  x + (y + z)?
Unsigned & Signed Ints: Yes!

Floats:
(1.0e20 + -1.0e20) + 3.14 --> 3.14

1.0e20 + (-1.0e20 + 3.14) --> ??

Great Reality #1



‘-

6
Karthik DantuKarthik Dantu

• Does not generate random values
Arithmetic operations have important mathematical properties

• Cannot assume all “usual” mathematical properties
Due to finiteness of representations

Integer operations satisfy “ring” properties
Commutativity, associativity, distributivity

Floating point operations satisfy “ordering” properties
Monotonicity, values of signs

• Observation
Need to understand which abstractions apply in which contexts

Important issues for compiler writers and serious application 
programmers

Computer Arithmetic

CSE 191



‘-

7
Karthik DantuKarthik Dantu

• Chances are, you’ll never write programs in assembly
Compilers are much better & more patient than you are

• But: Understanding assembly is key to machine-level execution 
model
Behavior of programs in presence of bugs

High-level language models break down

Tuning program performance
Understand optimizations done / not done by the compiler

Understanding sources of program inefficiency

Implementing system software
Compiler has machine code as target

Operating systems must manage process state

Creating / fighting malware
x86 assembly is the language of choice!

Great Reality #2



‘-

8
Karthik DantuKarthik Dantu

• Memory is not unbounded
It must be allocated and managed

Many applications are memory dominated

• Memory referencing bugs especially pernicious
Effects are distant in both time and space

• Memory performance is not uniform
Cache and virtual memory effects can greatly affect program 
performance

Adapting program to characteristics of memory system can lead 
to major speed improvements

Great Reality #3: Memory Matters



‘-

9
Karthik DantuKarthik Dantu

• C and C++ do not provide any memory protection
Out of bounds array references

Invalid pointer values
Abuse of malloc/free

• Can lead to nasty bugs
Whether or not bug has effect depends on the compiler

Action at a distance

Corrupted object logically unrelated to one accessed

Effect of bug may first be observed long after it occurred

• How do I deal with this?
Don’t – program in Java, Lisp and ML
Use/develop tools to detect memory errors (valgrind)

Memory Referencing Errors



‘-

10
Karthik DantuKarthik Dantu

int main() {

long int a[2];

double d = 3.14;

a[2] = 1073741824;

printf(“d=%.15g”,d);

exit(0);

}

Memory Bug Example



‘-

11
Karthik DantuKarthik Dantu

• Computer  controlled radiation therapy machine

• Six accidents between 1985 and 1987
100 times the recommended dose of radiation

Concurrent programming errors

Memory Bug – Therac 25

https://medium.com/swlh/software-architecture-therac-25-the-killer-radiation-machine-8a05e0705d5b



‘-

12
Karthik DantuKarthik Dantu

• Unintended acceleration

• ~9 million vehicles recalled

• “Stack overflow” 

• Toyota fined $1.2B for 
“concealing safety defects” 

Toyota Acceleration (2009-11)

https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf



‘-

13
Karthik DantuKarthik Dantu

• Frequently locked up and stopped 
responding 
Automatic reboots

• Priority inversion in “parallel” 
software

Mars Pathfinder (1997)

https://www.rapitasystems.com/blog/what-really-happened-to-the-software-on-the-mars-pathfinder-spacecraft



‘-

14
Karthik DantuKarthik Dantu

• Constant factors matter too!

• And even exact op count does not predict performance
Easily see 10:1 performance range depending on how code written

Must optimize at multiple levels: algorithm, data representations, 
procedures, and loops

• Must understand system to optimize performance
How programs compiled and executed

How to measure program performance and identify bottlenecks

How to improve performance without destroying code modularity and 
generality

Great Reality #4: Performance is more than 
Asymptotic Complexity



‘-

15
Karthik DantuKarthik Dantu

Memory Performance Example

• Hierarchical memory organization

• Performance depends on access patterns
• Including how step through multi-dimensional array

void copyji(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (j = 0; j < 2048; j++)
for (i = 0; i < 2048; i++)

dst[i][j] = src[i][j];
}

void copyij(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (i = 0; i < 2048; i++)

for (j = 0; j < 2048; j++)
dst[i][j] = src[i][j];

}

81.8ms4.3ms

2.0 GHz Intel Core i7 Haswell



‘-

16
Karthik DantuKarthik Dantu

• They need to get data in and out
I/O system critical to program reliability and performance

• They communicate with each other over networks
Many system-level issues arise in presence of network

Concurrent operations by autonomous processes

Coping with unreliable media

Cross platform compatibility

Complex performance issues

Great Reality #5: Computers do more than 
execute programs



‘-

17
Karthik DantuKarthik Dantu

• CPU, Memory, I/O

• Connected via the FSB and 
other buses

• Memory bus width determines 
access width

• Internal bus speeds (not CPU) 
determines overall speed

• Several layers of complexity 

What is a Computer?

http://www.technologyuk.net/computing/computer-hardware/motherboard.shtml



‘-

18
Karthik DantuKarthik Dantu

• Bus widths are fixed and determine access speed, addressable range and overall system speed

• Fixed number of registers 

• Address/data bus widths might be different

Modern CPU



‘-

19
Karthik DantuKarthik Dantu

Memory Hierarchy



‘-

20
Karthik DantuKarthik Dantu

OS Abstracts HW



‘-

21
Karthik DantuKarthik Dantu

• The computer system is more than just hardware

• We have to understand both the hardware and 
systems interfaces to properly understand and use 
a computer

• Next class – how numbers are represented!

Summary



‘-

22
Karthik DantuKarthik Dantu

• BO Chapter 1

Required Reading


