
‘-

1
Karthik Dantu

C – Structs and Dynamic Memory
Allocation

Karthik Dantu

Ethan Blanton

Computer Science and Engineering

University at Buffalo

kdantu@buffalo.edu

Portions of this lecture are borrowed from the U-W CSE 333 course slides

‘-

2
Karthik DantuKarthik Dantu

• Piazza has a search bar – use it!

• Corollary – name your posts descriptively so others can find
them!

• GitHub – commit regularly

• Git – learn features such as tagging

• Don’t push .o and executable files or other build products

Administrivia

‘-

3
Karthik DantuKarthik Dantu

Memory Allocation

So far, we have seen two kinds of memory allocation:

int counter = 0; // global var

int main(int argc, char** argv) {
counter++;
printf("count = %d\n",counter);
return EXIT_SUCCESS;

}

int foo(int a) {
int x = a + 1; // local var
return x;

}

int main(int argc, char** argv) {
int y = foo(10); // local var
printf("y = %d\n",y);
return EXIT_SUCCESS;

}

 counter is statically-allocated

• Allocated when program is loaded

• Deallocated when process gets reaped

 a, x, y are automatically-allocated

• Allocated when function is called

• Deallocated when function returns

‘-

4
Karthik DantuKarthik Dantu

Dynamic Allocation

• Situations where static and automatic allocation aren’t
sufficient:

• We need memory that persists across multiple function calls but not
the whole lifetime of the program

• We need more memory than can fit on the Stack

• We need memory whose size is not known in advance to the caller

// this is pseudo-C code
char* ReadFile(char* filename) {
int size = GetFileSize(filename);
char* buffer = AllocateMem(size);

ReadFileIntoBuffer(filename, buffer);
return buffer;

}

‘-

5
Karthik DantuKarthik Dantu

• What we want is dynamically-allocated memory
Your program explicitly requests a new block of memory

The language allocates it at runtime, perhaps with help from OS

Dynamically-allocated memory persists until either:
Your code explicitly deallocated it (manual memory management)

A garbage collector collects it (automatic memory management)

• C requires you to manually manage memory
Gives you more control, but causes headaches

Dynamic Memory Allocation

‘-

6
Karthik DantuKarthik Dantu

Aside: NULL

• NULL is a memory location that is guaranteed to be invalid
• In C on Linux, NULL is 0x0 and an attempt to dereference NULL

causes a segmentation fault

• Useful as an indicator of an uninitialized (or currently
unused) pointer or allocation error

• It’s better to cause a segfault than to allow the corruption of
memory!

int main(int argc, char** argv) {
int* p = NULL;
*p = 1; // causes a segmentation fault
return EXIT_SUCCESS;

}

‘-

7
Karthik DantuKarthik Dantu

• General usage:

• malloc allocates a block of memory of the requested size
Returns a pointer to the first byte of that memory
And returns NULL if the memory allocation failed!

You should assume that the memory initially contains garbage
You’ll typically use sizeof to calculate the size you need

malloc()

// allocate a 10-float array
float* arr = (float*) malloc(10*sizeof(float));
if (arr == NULL) {

return errcode;
}
... // do stuff with arr

var = (type*) malloc(size in bytes)

‘-

8
Karthik DantuKarthik Dantu

• General usage:

• Like malloc, but also zeros out the block of memory
Helpful when zero-initialization wanted (but don’t use it to mask bugs –
fix those)

Slightly slower; but useful for non-performance-critical code
malloc and calloc are found in stdlib.h

calloc()

var = (type*) calloc(num, bytes per element)

// allocate a 10-double array
double* arr = (double*) calloc(10, sizeof(double));
if (arr == NULL) {

return errcode;
}
... // do stuff with arr

‘-

9
Karthik DantuKarthik Dantu

• Usage: free(pointer);

• Deallocates the memory pointed-to by the pointer
Pointer must point to the first byte of heap-allocated memory
(i.e. something previously returned by malloc or calloc)

Freed memory becomes eligible for future allocation

Pointer is unaffected by call to free
Defensive programming: can set pointer to NULL after freeing it

free()

float* arr = (float*) malloc(10*sizeof(float));
if (arr == NULL)
return errcode;

... // do stuff with arr
free(arr);
arr = NULL; // OPTIONAL

free(pointer);

‘-

10
Karthik DantuKarthik Dantu

• Which lines have errors?

A. Line 1

B. Line 2

C. Line 4

D. Line 6

E. We’re lost…

Practice

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
int a[2];
int* b = malloc(2*sizeof(int));
int* c;

a[2] = 5;
b[0] += 2;
c = b+3;
free(&(a[0]));
free(b);
free(b);
b[0] = 5;

return EXIT_SUCCESS;
}

1
2
3
4
5
6
7

‘-

11
Karthik DantuKarthik Dantu

• Which line below is first
guaranteed to cause an error?

A. Line 1

B. Line 4

C. Line 6

D. Line 7

E. We’re lost…

Practice

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
int a[2];
int* b = malloc(2*sizeof(int));
int* c;

a[2] = 5;
b[0] += 2;
c = b+3;
free(&(a[0]));
free(b);
free(b);
b[0] = 5;

return EXIT_SUCCESS;
}

1
2
3
4
5
6
7

‘-

12
Karthik DantuKarthik Dantu

• There are all sorts of
ways to corrupt memory
in C

Memory Corruption

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
int a[2];
int* b = malloc(2*sizeof(int));
int* c;

a[2] = 5; // assign past the end of an array
b[0] += 2; // assume malloc zeros out memory
c = b+3; // mess up your pointer arithmetic
free(&(a[0])); // free something not malloc'ed
free(b);
free(b); // double-free the same block
b[0] = 5; // use a freed pointer

// any many more!
return EXIT_SUCCESS;

}

‘-

13
Karthik DantuKarthik Dantu

• A memory leak occurs when code fails to deallocate dynamically-
allocated memory that is no longer used
e.g. forget to free malloc-ed block, lose/change pointer to malloc-ed block

• What happens: program’s VM footprint will keep growing
This might be OK for short-lived program, since all memory is deallocated
when program ends

Usually has bad repercussions for long-lived programs
Might slow down over time (e.g. lead to VM thrashing)

Might exhaust all available memory and crash

Other programs might get starved of memory

Memory Leak

‘-

14
Karthik DantuKarthik Dantu

• Arrays require all elements to be of the same data type.

• Many times, we want to group items of different types in a
structure

• E.g., grade roster = {Name (char *), UBID (int) , Active
(bool) , Lab1 (float), PA0 (float), ..}

• struct: Derived data type composed of members that are
basic or other derived data types

Derived Data Types

‘-

15
Karthik DantuKarthik Dantu

• A struct is a C datatype that contains a set of fields
Similar to a Java class, but with no methods or constructors

Useful for defining new structured types of data

Behave similarly to primitive variables

• Generic declaration:

Structured Data

struct tagname {
type1 name1;
...
typeN nameN;

};

// the following defines a new
// structured datatype called
// a "struct Point"
struct Point {
float x, y;

};

// declare and initialize a
// struct Point variable
struct Point origin = {0.0,0.0};

‘-

16
Karthik DantuKarthik Dantu

Declaring structs

// the following defines a new
// structured datatype called
// a "struct Point"
struct Point {
float x, y;

};

// the following defines a new
// structured datatype called
// a "struct Point” and declares
// a variable “origin” of type
// struct Point
struct Point {
float x, y;

} origin;

Just specify the struct

(no space reserved)

specify the struct and
declare a variable

(space reserved)

‘-

17
Karthik DantuKarthik Dantu

• Use “.” to refer to a field in a struct

• Use “->” to refer to a field from a struct pointer
Dereferences pointer first, then accesses field

Using structs

struct Point {
float x, y;

};

int main(int argc, char** argv) {
struct Point p1 = {0.0, 0.0}; // p1 is stack allocated
struct Point* p1_ptr = &p1;

p1.x = 1.0;
p1_ptr->y = 2.0; // equivalent to (*p1_ptr).y = 2.0;
return EXIT_SUCCESS;

}

‘-

18
Karthik DantuKarthik Dantu

• You can assign the value of a struct from a struct of the same type –
this copies the entire contents!

Copy by Assignment

struct Point {
float x, y;

};

int main(int argc, char** argv) {
struct Point p1 = {0.0, 2.0};
struct Point p2 = {4.0, 6.0};a

printf("p1: {%f,%f} p2: {%f,%f}\n", p1.x, p1.y, p2.x, p2.y);
p2 = p1;
printf("p1: {%f,%f} p2: {%f,%f}\n", p1.x, p1.y, p2.x, p2.y);
return EXIT_SUCCESS;

}

‘-

19
Karthik DantuKarthik Dantu

• Generic format: typedef type name;

• Allows you to define new data type names/synonyms
Both type and name are usable and refer to the same type

Be careful with pointers – * before name is part of type!

typedef

typedef type name;

// make "superlong" a synonym for "unsigned long long"
typedef unsigned long long superlong;

// make "str" a synonym for "char*"
typedef char *str;

// make "Point" a synonym for "struct point_st { ... }“
// make "PointPtr" a synonym for "struct point_st*"
typedef struct point_st {

superlong x;
superlong y;

} Point, *PointPtr; // similar syntax to "int n, *p;"

Point origin = {0, 0};

‘-

20
Karthik DantuKarthik Dantu

• You can malloc and free structs, just like other data type
sizeof is particularly helpful here

Dynamically-allocated Structs

// a complex number is a + bi
typedef struct complex_st {

double real; // real component
double imag; // imaginary component

} Complex, *ComplexPtr;

// note that ComplexPtr is equivalent to Complex*
ComplexPtr AllocComplex(double real, double imag) {

Complex* retval = (Complex*) malloc(sizeof(Complex));
if (retval != NULL) {
retval->real = real;
retval->imag = imag;

}
return retval;

}

‘-

21
Karthik DantuKarthik Dantu

• In most languages, arguments can
be
Passed by value

Passed by reference

• C uses pass-by-value

• Example

Aside: Arguments in C

void swap(int a, int b) {
int tmp = a;
a = b;
b = tmp;

}

int main() {
int a = 1;
int b = 2;

printf(“a before swap=%d\n”,a);
printf(“b before swap=%d\n”,b);
swap(a,b);
printf(“a after swap=%d\n”,a);
printf(“b after swap=%d\n”,b);

return 0;
}

before swap a = 1
before swap b = 2
after swap a = 1
after swap b = 2

https://denniskubes.com/2012/08/20/is-c-pass-by-value-or-reference/

‘-

22
Karthik DantuKarthik Dantu

• FIX: pass a pointer to the variables

Aside: Arguments in C

void swap(int *a, int *b) {
int tmp = *a;
*a = *b;
*b = tmp;

}

int main() {
int a = 1;
int b = 2;

printf(“a before swap=%d\n”,a);
printf(“b before swap=%d\n”,b);
swap(&a,&b);
printf(“a after swap=%d\n”,a);
printf(“b after swap=%d\n”,b);

return 0;
}

before swap a = 1
before swap b = 2
after swap a = 2
after swap b = 1

https://denniskubes.com/2012/08/20/is-c-pass-by-value-or-reference/

‘-

23
Karthik DantuKarthik Dantu

• Structs are passed by value, like everything else in C
Entire struct is copied

To manipulate a struct argument, pass a pointer instead

Structs as Arguments

typedef struct point_st {
int x, y;

} Point, *PointPtr;

void DoubleXBroken(Point p) { p.x *= 2; }

void DoubleXWorks(PointPtr p) { p->x *= 2; }

int main(int argc, char** argv) {
Point a = {1,1};
DoubleXBroken(a);
printf("(%d,%d)\n", a.x, a.y); // prints: (,)
DoubleXWorks(&a);
printf("(%d,%d)\n", a.x, a.y); // prints: (,)
return EXIT_SUCCESS;

}

‘-

24
Karthik DantuKarthik Dantu

• Exact method of return depends on calling conventions
Often returned in memory for larger structs

Returning Structs

// a complex number is a + bi
typedef struct complex_st {

double real; // real component
double imag; // imaginary component

} Complex, *ComplexPtr;

Complex MultiplyComplex(Complex x, Complex y) {
Complex retval;

retval.real = (x.real * y.real) - (x.imag * y.imag);
retval.imag = (x.imag * y.real) - (x.real * y.imag);
return retval; // returns a copy of retval

}

‘-

25
Karthik DantuKarthik Dantu

• Value passed: passing a pointer is cheaper and takes less
space unless struct is small

• Field access: indirect accesses through pointers are a bit
more expensive and can be harder for compiler to optimize

• For small structs (like struct complex_st), passing a copy
of the struct can be faster and often preferred if function only
reads data; for large structs use pointers

Pass Copy of Struct or Pointer?

‘-

26
Karthik DantuKarthik Dantu

• Write a program that defines:
A new structured type Point

Represent it with floats for the x and y coordinates

A new structured type Rectangle
Assume its sides are parallel to the x-axis and y-axis

Represent it with the bottom-left and top-right Points

A function that computes and returns the area of a Rectangle

A function that tests whether a Point is inside of a Rectangle

Exercise #1

‘-

27
Karthik DantuKarthik Dantu

• Implement AllocSet() and FreeSet()
AllocSet() needs to use malloc twice: once to allocate a new
ComplexSet and once to allocate the “points” field inside it

FreeSet() needs to use free twice

Extra: Exercise #2

typedef struct complex_st {
double real; // real component
double imag; // imaginary component

} Complex;

typedef struct complex_set_st {
double num_points_in_set;
Complex* points; // an array of Complex

} ComplexSet;

ComplexSet* AllocSet(Complex c_arr[], int size);
void FreeSet(ComplexSet* set);

