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* Processors do only one thing:

* From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

* This sequence is the CPU’s control flow (or flow of control)
Physical control flow

<startup>
inst,
inst,

Time Inst,
inst,,
<shutdown>



University at Buffalo

Department of Computer Science

and Engincering Altering the Control Flow

School of Engineering and Applied Sciences

e Up to now: two mechanisms for changing control flow:
* Jumps and branches
e Call and return
React to changes in program state

* |Insufficient for a useful system:
Difficult to react to changes in system state
* Data arrives from a disk or a network adapter
* Instruction divides by zero
e User hits Ctrl-C at the keyboard
* System timer expires

» System needs mechanisms for “exceptional control flow”
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* Exists at all levels of a computer system

* Low level mechanisms

* 1. Exceptions

- Change in control flow in response to a system event
(i.e., change in system state)

- Implemented using combination of hardware and OS software

* Higher level mechanisms
2. Process context switch
- Implemented by OS software and hardware timer

3. Signals
- Implemented by OS software
* 4. Nonlocal jumps: setjmp () and longjmp ()

- Implemented by C runtime library
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* An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)
* Kernel is the memory-resident part of the OS

* Examples of events: Divide by 0, arithmetic overflow, page fault, I/0
request completes, typing Ctrl-C

Event — |_current ¥ Exception
|_next Exception processing
| by exception handler

<

\ 4

* Return to |_current
* Return to |_next
*Abort S
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Exception
numbers
Code for e Each type of event has a
exception handler 0 unique exception number k
EXEIeption Code for
viable exception handler 1 _ _ _
C1>_ * k=index into exception table
o] Code for (a.k.a. interrupt vector)
u exception handler 2
n-1

e Handler k is called each time
oo o exception k occurs
exception handler n-1
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(partial) Taxonomy

ECF

Asynchronous

Interrupts

Synchronous

Traps

Faults

Aborts
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* Caused by events external to the processor
* Indicated by setting the processor’s interrupt pin
* Handler returns to “next” instruction

* Examples:

* Timer interrupt
- Every few ms, an external timer chip triggers an interrupt
- Used by the kernel to take back control from user programs
e |/O interrupt from external device
- Hitting Ctrl-C at the keyboard
- Arrival of a packet from a network
- Arrival of data from a disk Q
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* Caused by events that occur as a result of executing
an instruction:
* Traps
- Intentional, set program up to “trip the trap” and do something

- Examples: system calls, gdb breakpoints
- Returns control to “next” instruction

* Faults
- Unintentional but possibly recoverable

- Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

- Either re-executes faulting (“current”) instruction or aborts

e Aborts
- Unintentional and unrecoverable Q
- Examples: illegal instruction, parity error, machine check %
- Aborts current program 9 Y
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m Each x86-64 system call has a unique ID number
m Examples:

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file
57 fork Create process

59 execve Execute a program
60 exit Terminate process

62 kill Send signal to process



University at Buffalo

School of Engineering and Applied Sciences

D e Sk System Call Example: Opening File

e Usercalls: open (filename, options)

e Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:

e5d79: b802000000 mov SO0x2,%eax # open is syscall #2
e5d7e: 0f 05 syscall # Return value in %rax
e5d80: 48 3d 01 fO ff ff cmp SOxfffffffffffffO01,%rax

e5dfa: c3 retq

m %rax containssyscall number
m Otherargumentsin $rdi,
syscalld Exception %$rsi, $rdx, $rl0, $r8, $r9
cmp : m Returnvaluein $rax
Open file "
Returns m Negative value is an error
! corresponding to negative *

errno 11
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e epHIErSaence System Call Example: Opening File
e Usercalls: open (f1lename, options) =

e Calls __open function, which invokes system call instruction syscall

0000000
e5d79:
e5d7e: O
e5d80:
e5dfa: c
e call number
Srdi,
o o
syscall ¥, ,3r8,%r9
cmp .

Returns m Negative valueis an error =Y
v corresponding to negative
errno 12 o N
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int a[1000];
e User writes to memory location main ()
{
* That portion (page) of user’s memory a[500] = 13;
is currently on disk }
80483b7: c7 05 10 9d 04 08 0d movl  $0xd,0x8049d10

! Exception: page fault

movl >
Return and disk to memory

! reexecute movl
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O

int a[1000];

main ()

{

a[5000] = 13;
}
80483b7: c7 05 60 €3 04 08 0d movl  $0xd,0x804e360
l Exception: page fault
movl >
Detect invalid address
v » Signal process
* Sends SIGSEGV signal to user process Q
» User process exits with “segmentation fault”
14« X
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ECF

Asynchronous

Synchronous

Interrupts Traps Faults Aborts
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N

----------------------
LN
.
-
.

PrY
““
o
-
.

Login sheli
Child

w @ Note: you can view the
hierarchy using the Linux

pstree command

... e.g.httpd .~ Login shell
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* A shellis an application program that runs programs on behalf of
the user.

e sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
e csh/tcsh BSD Unix C shell
* bash “Bourne-Again” Shell (default Linux shell)

« Simple shell
» Described in the textbook, starting at p. 753
« Implementation of a very elementary shell

» Purpose
- Understand what happens when you type commands
- Understand use and operation of process control operations
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Simple Shell Example
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* Shell designed to run indefinitely

* Should not accumulate unneeded resources
-  Memory

- Child processes
- File descriptors

* Our example shell correctly waits for and reaps foreground
jobs

e But what about background jobs?
* Will become zombies when they terminate
* Will never be reaped because shell (typically) will not terminate
* Will create a memory leak that could run the kernel out of memory
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» Solution: Exceptional control flow

* The kernel will interrupt regular processing to alert us when a
background process completes

* In Unix, the alert mechanism is called a signal



University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Signals

* A signal is a small message that notifies a process that an
event of some type has occurred in the system
* Akin to exceptions and interrupts

* Sent from the kernel (sometimes at the request of another
process) to a process

* Signal type is identified by small integer ID’s (1-30)
* Only information in a signal is its ID and the fact that it arrived

ID Name
2 SIGINT
9 SIGKILL

11 SIGSEG
\Y

14 SIGALR
M

17 SIGCHL
D

Default Action
Terminate
Terminate

Terminate
Terminate

Ignore

Corresponding Event
User typed ctrl-c
Kill program (cannot override or

ignore)
Segmentation violation

Timer signal

Child stopped or terminated
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» Kernel sends (delivers) a signal to a destination process
by updating some state in the context of the destination
process

» Kernel sends a signal for one of the following reasons:

* Kernel has detected a system event such as divide-by-zero
(SIGFPE) or the termination of a child process (SIGCHLD)
* Another process has invoked the kill system call to

explicitly request the kernel to send a signal to the destination
process

A Y
A Y
A Y
~
\\
22 A A
s (N
/' b
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Signal Concepts: Sending a Signal

O
User level
Process B
Process C
kernel
Pending for A Blocked for A Q
Pending for B Blocked for B
Pending for C Blocked for C b3,
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User level
Process B

Process C
w
®
=)
o
)
ol kernel
@)
Pending for A Blocked for A Q
X ending for B Blocked for B
Pending for C Blocked for C b4 .
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O

User level
Process A
Process C
kernel
Pending for A Blocked for A Q
Pending for B Blocked for B
1| Pending for C Blocked for C s,
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Signal Concepts: Sending a Signal

O
User level
Process B
Process A
/Pf/mj/ Blocked for A a
B Blocked for B
1 ending for C Blocked for C 6
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O
User level
Process B
Process A
Process C
kernel
Pending for A Blocked for A Q
Pending for B Blocked for B
0] Pending for C Blocked for C 7 .
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* A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

* Some possible ways to react:
* Ignore the signal (do nothing)
* Terminate the process (with optional core dump)

e Catch the signal by executing a user-level function called signal
handler

- Akin to a hardware exception handler being called in response to an
asynchronous interrupt:

(1) Signal received (2) Control passes
by process / to signal handler
curr Y. >
Inext (3) Signal
handler runs %

(4) Signal handler
returns to Y
next instruction 28 o« A
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* Asignal is pending if sent but not yet received
* There can be at most one pending signal of any particular type

* Important: Signals are not queued

- If a process has a pending signal of type k, then subsequent signals of
type k that are sent to that process are discarded

* A process can block the receipt of certain signals

* Blocked signals can be delivered, but will not be received until the
signal is unblocked

* A pending signal is received at most once a
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e Kernel maintains pending and blocked bit vectors
in the context of each process
* pending: represents the set of pending signals

- Kernel sets bit k in pending when a signal of type k is delivered
- Kernel clears bit k in pending when a signal of type k is received

* blocked: represents the set of blocked signals
- Can be set and cleared by using the sigprocmask function
- Also referred to as the signal mask.
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O
User level
Process A
O
/.9 Process C
2
/3
@
/ kernel
/ending for A Blocked for A Q
\ _“Sending for B Blocked for B
1| Pending for C Blocked for C YIRS
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e /bin/kill program

sends arbitrary signal  1inux> ./forks 16
Childl: pid=24818 pgrp=24817
tO @ process Or ProCess cpiigz: pid=24819 pgrp=24817

grOUp linux> ps
PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
* Examples 24818 pts/2 __ 00:00:02 forks
. . 24819 pts/2 00:00:02 forks
* /bin/kill -9 24820 gts/2 00:00:00 ps
24818 linux> /bin/kill -9 -24817
Send SIGKILL to process 24818 linux> ps
PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
e /bin/kill -9 - 24823 pts/2  00:00:00 ps
24817 linux>
Send SIGKILL to every process in Q‘\
process group 24817 \\
32 « A
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* Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP) to every
job in the foreground process group.

e SIGINT — default action is to terminate each process
* SIGTSTP — default action is to stop (suspend) each process

pid=20

) pid=40
pgid=20

pgid=40

pid=21 pid=22
pgid=20 pgid=20
Foreground

process group 20
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Exampleof ctrl-candctrl-=z

bluefish> ./forks 17

Child: pid=28108 pgrp=28107
Parent: pid=28107 pgrp=28107
<types ctrl-z>

Suspended
bluefish> ps w

PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28107 pts/8 T 0:01 ./forks 17
28108 pts/8 T 0:01 ./forks 17
28109 pts/8 R+ 0:00 ps w
bluefish> fg
./forks 17

<types ctrl-c>
bluefish> ps w

PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28110 pts/8 R+ 0:00 ps w

STAT (process state) Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader
+: foreground proc group

See “man ps” for more
details
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O
e Suppose kernel is returning from an exception
handler and is ready to pass control to process p
Process q
user code
kernel code } context switch
. I
Time : user code
: kernel code } context switch
|
: user code
|
|
q\
35 # 3 i
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Suppose kernel is returning from an exception handler and
is ready to pass control to process p

Kernel computes pnb = pending & ~blocked
* The set of pending nonblocked signals for process p

If (pnb == 0)

* Pass control to next instruction in the logical flow for p

Else

* Choose least nonzero bit kin pnb and force process p to receive
signal k

* The receipt of the signal triggers some action by p
* Repeat for all nonzero k in pnb
* Pass control to next instruction in logical flow for p "
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e Each signal type has a predefined default action, which is one of:
* The process terminates

* The process stops until restarted by a SIGCONT signal
* The process ignores the signal
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* The signal function modifies the default action associated
with the receipt of signal signum:

* handler t *signal(int signum, handler t
*handler)

e Different values for handler:
* SIG_IGN: ignore signals of type signum
* SIG_DFL: revert to the default action on receipt of signals of type
signum

e Otherwise, handler is the address of a user-level signal handler
- Called when process receives signal of type signum
- Referred to as “installing” the handler
- Executing handler is called “catching” or “handling” the signal

- When the handler executes its return statement, control passes back to
instruction in the control flow of the process that was interrupted by
receipt of the signal
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void sigint handler (int sig) /* SIGINT handler */
{
printf ("So you think you can stop the bomb with ctrl-c,

sleep(2);

printf ("Well...");
fflush (stdout) ;
sleep(l);

printf ("OK. :-)\n");
exit (0) ;

int main(int argc, char** argv)
/* Install the SIGINT handler */
if (signal (SIGINT, sigint handler) == SIG ERR)

unix error ("signal error");

/* Wait for the receipt of a signal */
pause () ;

return 0O;

do you?\n");

sigint.c

39
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* Implicit blocking mechanism

* Kernel blocks any pending signals of type currently being handled.
e E.g., ASIGINT handler can’t be interrupted by another SIGINT

* Explicit blocking and unblocking mechanism
* sigprocmask function

* Supporting functions
* sigemptyset — Create empty set
e sigfillset —Add everysignal number to set
* sigaddset —Add signal number to set
* sigdelset — Delete signal number from set
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Temporarily Blocking Signals

sigset t mask, prev mask;

Sigemptyset (&mask) ;
Sigaddset (&mask, SIGINT) ;

/* Block SIGINT and save previous blocked set */
Sigprocmask (SIG BLOCK, &mask, &prev mask);

E /* Code region that will not be interrupted by SIGINT */

/* Restore previous blocked set, unblocking SIGINT */
Sigprocmask (SIG_SETMASK, é&prev mask, NULL);
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* Signals provide process-level exception handling
e Can generate from user programs
* Can define effect by declaring signal handler
* Be very careful when writing signal handlers

* Nonlocal jumps provide exceptional control flow
within process
* Within constraints of stack discipline



