University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Exceptions

Karthik Dantu
Ethan Blanton
Computer Science and Engineering
University at Buffalo
kdantul@buffalo.edu

University at Buffalo

Department of Computer Science

?c?ogl oEQ\ggilj!:rigeatliF A%piied Sciences C O n t ro I F I O W

* Processors do only one thing:

* From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

* This sequence is the CPU’s control flow (or flow of control)
Physical control flow

<startup>
inst,
inst,

Time Inst,
inst,,
<shutdown>

University at Buffalo

Department of Computer Science

and Engincering Altering the Control Flow

School of Engineering and Applied Sciences

e Up to now: two mechanisms for changing control flow:
* Jumps and branches
e Call and return
React to changes in program state

* |Insufficient for a useful system:
Difficult to react to changes in system state
* Data arrives from a disk or a network adapter
* Instruction divides by zero
e User hits Ctrl-C at the keyboard
* System timer expires

» System needs mechanisms for “exceptional control flow”

University at Buffalo

G5 Department of Computer Science

and Engincering Exceptional Control Flow

School of Engineering and Applied Sciences

* Exists at all levels of a computer system

* Low level mechanisms

* 1. Exceptions

- Change in control flow in response to a system event
(i.e., change in system state)

- Implemented using combination of hardware and OS software

* Higher level mechanisms
2. Process context switch
- Implemented by OS software and hardware timer

3. Signals
- Implemented by OS software
* 4. Nonlocal jumps: setjmp () and longjmp ()

- Implemented by C runtime library

University at Buffalo
Department of Computer Science

and Engineering EXCE pti O n S

School of Engineering and Applied Sciences

* An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)
* Kernel is the memory-resident part of the OS

* Examples of events: Divide by 0, arithmetic overflow, page fault, I/0
request completes, typing Ctrl-C

Event — |_current ¥ Exception
|_next Exception processing
| by exception handler

<

\ 4

* Return to |_current
* Return to |_next
*Abort S

University at Buffalo

G5 Eﬁé}éﬁ(gfggr?:gComputer Science Exce pti on Ta b I es

School of Engineering and Applied Sciences

Exception
numbers
Code for e Each type of event has a
exception handler 0 unique exception number k
EXEIeption Code for
viable exception handler 1 _ _ _
C1>_ * k=index into exception table
o] Code for (a.k.a. interrupt vector)
u exception handler 2
n-1

e Handler k is called each time
oo o exception k occurs
exception handler n-1

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

(partial) Taxonomy

ECF

Asynchronous

Interrupts

Synchronous

Traps

Faults

Aborts

University at Buffalo

e s = Asynchronous Exceptions (Interrupts)

School of Engineering and Applied Sciences

* Caused by events external to the processor
* Indicated by setting the processor’s interrupt pin
* Handler returns to “next” instruction

* Examples:

* Timer interrupt
- Every few ms, an external timer chip triggers an interrupt
- Used by the kernel to take back control from user programs
e |/O interrupt from external device
- Hitting Ctrl-C at the keyboard
- Arrival of a packet from a network
- Arrival of data from a disk Q

University at Buffalo

D o oPuterScence Synchronous Exceptions

School of Engineering and Applied Sciences

* Caused by events that occur as a result of executing
an instruction:
* Traps
- Intentional, set program up to “trip the trap” and do something

- Examples: system calls, gdb breakpoints
- Returns control to “next” instruction

* Faults
- Unintentional but possibly recoverable

- Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

- Either re-executes faulting (“current”) instruction or aborts

e Aborts
- Unintentional and unrecoverable Q
- Examples: illegal instruction, parity error, machine check %
- Aborts current program 9 Y

University at Buffalo

e [System Calls

School of Engineering and Applied Sciences

m Each x86-64 system call has a unique ID number
m Examples:

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file
57 fork Create process

59 execve Execute a program
60 exit Terminate process

62 kill Send signal to process

University at Buffalo

School of Engineering and Applied Sciences

D e Sk System Call Example: Opening File

e Usercalls: open (filename, options)

e Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:

e5d79: b802000000 mov SO0x2,%eax # open is syscall #2
e5d7e: 0f 05 syscall # Return value in %rax
e5d80: 48 3d 01 fO ff ff cmp SOxfffffffffffffO01,%rax

e5dfa: c3 retq

m %rax containssyscall number
m Otherargumentsin $rdi,
syscalld Exception %$rsi, $rdx, $rl0, $r8, $r9
cmp : m Returnvaluein $rax
Open file "
Returns m Negative value is an error
! corresponding to negative *

errno 11

University at Buffalo

School of Engineering and Applied Sciences

e epHIErSaence System Call Example: Opening File
e Usercalls: open (f1lename, options) =

e Calls __open function, which invokes system call instruction syscall

0000000
e5d79:
e5d7e: O
e5d80:
e5dfa: c
e call number
Srdi,
o o
syscall ¥, ,3r8,%r9
cmp .

Returns m Negative valueis an error =Y
v corresponding to negative
errno 12 o N

University at Buffalo

e [Fault Example: Page Fault

School of Engineering and Applied Sciences

int a[1000];
e User writes to memory location main ()
{
* That portion (page) of user’s memory a[500] = 13;
is currently on disk }
80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

! Exception: page fault

movl >
Return and disk to memory

! reexecute movl

University at Buffalo

'8 pepariment of Computerscence - E |t Example: Invalid Memory Reference

School of Engineering and Applied Sciences

O

int a[1000];

main ()

{

a[5000] = 13;
}
80483b7: c7 05 60 €3 04 08 0d movl $0xd,0x804e360
l Exception: page fault
movl >
Detect invalid address
v » Signal process
* Sends SIGSEGV signal to user process Q
» User process exits with “segmentation fault”
14« X

University at Buffalo

GB | Department of Computer Science (pa rt | a I) Ta Xono my Handled in kernel

and Engineering

- Engineering . App"ecl - _—o

ECF

Asynchronous

Synchronous

Interrupts Traps Faults Aborts

University at Buffalo

GB | Department of Computer Science L| NUX P rocess H | erarc hy

and Engineering

School of Engineering and Applied Sciences

N

LN
.
-
.

PrY
““
o
-
.

Login sheli
Child

w @ Note: you can view the
hierarchy using the Linux

pstree command

... e.g.httpd .~ Login shell

University at Buffalo

S8 | Department of Computer Science S h o I I P ro g rams

and Engineering

School of Engineering and Applied Sciences

* A shellis an application program that runs programs on behalf of
the user.

e sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
e csh/tcsh BSD Unix C shell
* bash “Bourne-Again” Shell (default Linux shell)

« Simple shell
» Described in the textbook, starting at p. 753
« Implementation of a very elementary shell

» Purpose
- Understand what happens when you type commands
- Understand use and operation of process control operations

University at Buffalo
Ty Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

Simple Shell Example

University at Buffalo

Department of Computer Science

and Engineering PrOblem With She”S
School of Engineering and Applied Sciences

* Shell designed to run indefinitely

* Should not accumulate unneeded resources
- Memory

- Child processes
- File descriptors

* Our example shell correctly waits for and reaps foreground
jobs

e But what about background jobs?
* Will become zombies when they terminate
* Will never be reaped because shell (typically) will not terminate
* Will create a memory leak that could run the kernel out of memory

University at Buffalo

5 Department of Computer Science ECF to th e Rescue !

and Engineering

School of Engineering and Applied Sciences

» Solution: Exceptional control flow

* The kernel will interrupt regular processing to alert us when a
background process completes

* In Unix, the alert mechanism is called a signal

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Signals

* A signal is a small message that notifies a process that an
event of some type has occurred in the system
* Akin to exceptions and interrupts

* Sent from the kernel (sometimes at the request of another
process) to a process

* Signal type is identified by small integer ID’s (1-30)
* Only information in a signal is its ID and the fact that it arrived

ID Name
2 SIGINT
9 SIGKILL

11 SIGSEG
\Y

14 SIGALR
M

17 SIGCHL
D

Default Action
Terminate
Terminate

Terminate
Terminate

Ignore

Corresponding Event
User typed ctrl-c
Kill program (cannot override or

ignore)
Segmentation violation

Timer signal

Child stopped or terminated

University at Buffalo

e [Signal Concepts: Sending a Signal

School of Engineering and Applied Sciences

» Kernel sends (delivers) a signal to a destination process
by updating some state in the context of the destination
process

» Kernel sends a signal for one of the following reasons:

* Kernel has detected a system event such as divide-by-zero
(SIGFPE) or the termination of a child process (SIGCHLD)
* Another process has invoked the kill system call to

explicitly request the kernel to send a signal to the destination
process

A Y
A Y
A Y
~
\\
22 A A
s (N
/' b

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Signal Concepts: Sending a Signal

O
User level
Process B
Process C
kernel
Pending for A Blocked for A Q
Pending for B Blocked for B
Pending for C Blocked for C b3,

University at Buffalo
Department of Computer Science

Sl EvgineetE Signal Concepts: Sending a Signal

O

User level
Process B

Process C
w
®
=)
o
)
ol kernel
@)
Pending for A Blocked for A Q
X ending for B Blocked for B
Pending for C Blocked for C b4 .

University at Buffalo

"5 |Departent of Computer Scence Signal Concepts: Sending a Signal

School of Engineering and Applied Sciences

O

User level
Process A
Process C
kernel
Pending for A Blocked for A Q
Pending for B Blocked for B
1| Pending for C Blocked for C s,

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Signal Concepts: Sending a Signal

O
User level
Process B
Process A
/Pf/mj/ Blocked for A a
B Blocked for B
1 ending for C Blocked for C 6

University at Buffalo

e [Signal Concepts: Sending a Signal

School of Engineering and Applied Sciences

O
User level
Process B
Process A
Process C
kernel
Pending for A Blocked for A Q
Pending for B Blocked for B
0] Pending for C Blocked for C 7 .

University at Buffalo

8 | Department of Computer Selence Sighal Concepts: Receiving a Signal

School of Engineering and Applied Sciences

O

* A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

* Some possible ways to react:
* Ignore the signal (do nothing)
* Terminate the process (with optional core dump)

e Catch the signal by executing a user-level function called signal
handler

- Akin to a hardware exception handler being called in response to an
asynchronous interrupt:

(1) Signal received (2) Control passes
by process / to signal handler
curr Y. >
Inext (3) Signal
handler runs %

(4) Signal handler
returns to Y
next instruction 28 o« A

University at Buffalo

B | Department of Computer science: §jong| Concepts: Pending and Blocked Signals

and Engineering

School of Engineering and Applied Sciences

O

* Asignal is pending if sent but not yet received
* There can be at most one pending signal of any particular type

* Important: Signals are not queued

- If a process has a pending signal of type k, then subsequent signals of
type k that are sent to that process are discarded

* A process can block the receipt of certain signals

* Blocked signals can be delivered, but will not be received until the
signal is unblocked

* A pending signal is received at most once a

University at Buffalo

5 pepariment of Computer science— Sjong| Concepts: Pending/Blocked Bits

and Engineering

School of Engineering and Applied Sciences

e Kernel maintains pending and blocked bit vectors
in the context of each process
* pending: represents the set of pending signals

- Kernel sets bit k in pending when a signal of type k is delivered
- Kernel clears bit k in pending when a signal of type k is received

* blocked: represents the set of blocked signals
- Can be set and cleared by using the sigprocmask function
- Also referred to as the signal mask.

University at Buffalo

"5 |Departent of Computer Scence Signal Concepts: Sending a Signal

School of Engineering and Applied Sciences

O
User level
Process A
O
/.9 Process C
2
/3
@
/ kernel
/ending for A Blocked for A Q
\ _“Sending for B Blocked for B
1| Pending for C Blocked for C YIRS

University at Buffalo

83 Deparment of Computer scence - Sanding Signals with /bin/kill Program

and Engineering

School of Engineering and Applied Sciences

O

e /bin/kill program

sends arbitrary signal 1inux> ./forks 16
Childl: pid=24818 pgrp=24817
tO @ process Or ProCess cpiigz: pid=24819 pgrp=24817

grOUp linux> ps
PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
* Examples 24818 pts/2 __ 00:00:02 forks
. . 24819 pts/2 00:00:02 forks
* /bin/kill -9 24820 gts/2 00:00:00 ps
24818 linux> /bin/kill -9 -24817
Send SIGKILL to process 24818 linux> ps
PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
e /bin/kill -9 - 24823 pts/2 00:00:00 ps
24817 linux>
Send SIGKILL to every process in Q‘\
process group 24817 \\
32 « A

University at Buffalo

5| pepariment of Computersience——— Sanding Signals from the Keyboard

and Engineering

School of Engineering and Applied Sciences

* Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP) to every
job in the foreground process group.

e SIGINT — default action is to terminate each process
* SIGTSTP — default action is to stop (suspend) each process

pid=20

) pid=40
pgid=20

pgid=40

pid=21 pid=22
pgid=20 pgid=20
Foreground

process group 20

University at Buffalo

Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Exampleof ctrl-candctrl-=z

bluefish> ./forks 17

Child: pid=28108 pgrp=28107
Parent: pid=28107 pgrp=28107
<types ctrl-z>

Suspended
bluefish> ps w

PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28107 pts/8 T 0:01 ./forks 17
28108 pts/8 T 0:01 ./forks 17
28109 pts/8 R+ 0:00 ps w
bluefish> fg
./forks 17

<types ctrl-c>
bluefish> ps w

PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28110 pts/8 R+ 0:00 ps w

STAT (process state) Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader
+: foreground proc group

See “man ps” for more
details

University at Buffalo

S8 | Department of Computer Science Rece |V| N g S | g Nd I S

and Engineering

School of Engineering and Applied Sciences

O
e Suppose kernel is returning from an exception
handler and is ready to pass control to process p
Process q
user code
kernel code } context switch
. I
Time : user code
: kernel code } context switch
|
: user code
|
|
q\
35 # 3 i

University at Buffalo

G5 Eﬁé};ézcé?fggr?:;omputer Science R ece |V| N g S | g na I S

School of Engineering and Applied Sciences

Suppose kernel is returning from an exception handler and
is ready to pass control to process p

Kernel computes pnb = pending & ~blocked
* The set of pending nonblocked signals for process p

If (pnb == 0)

* Pass control to next instruction in the logical flow for p

Else

* Choose least nonzero bit kin pnb and force process p to receive
signal k

* The receipt of the signal triggers some action by p
* Repeat for all nonzero k in pnb
* Pass control to next instruction in logical flow for p "

University at Buffalo

G5 Department of Computer Science

and Engineering DEfa u It ACth NS

School of Engineering and Applied Sciences

e Each signal type has a predefined default action, which is one of:
* The process terminates

* The process stops until restarted by a SIGCONT signal
* The process ignores the signal

University at Buffalo

o LR ooyt Selnce Installing Signal Handlers

School of Engineering and Applied Sciences

* The signal function modifies the default action associated
with the receipt of signal signum:

* handler t *signal(int signum, handler t
*handler)

e Different values for handler:
* SIG_IGN: ignore signals of type signum
* SIG_DFL: revert to the default action on receipt of signals of type
signum

e Otherwise, handler is the address of a user-level signal handler
- Called when process receives signal of type signum
- Referred to as “installing” the handler
- Executing handler is called “catching” or “handling” the signal

- When the handler executes its return statement, control passes back to
instruction in the control flow of the process that was interrupted by
receipt of the signal

University at Buffalo
Department of Computer Science

and Engineering S|gna| Handhng Examp|e

School of Engineering and Applied Sciences

void sigint handler (int sig) /* SIGINT handler */
{
printf ("So you think you can stop the bomb with ctrl-c,

sleep(2);

printf ("Well...");
fflush (stdout) ;
sleep(l);

printf ("OK. :-)\n");
exit (0) ;

int main(int argc, char** argv)
/* Install the SIGINT handler */
if (signal (SIGINT, sigint handler) == SIG ERR)

unix error ("signal error");

/* Wait for the receipt of a signal */
pause () ;

return 0O;

do you?\n");

sigint.c

39

University at Buffalo

e [Blocking and Unblocking Signals

School of Engineering and Applied Sciences

* Implicit blocking mechanism

* Kernel blocks any pending signals of type currently being handled.
e E.g., ASIGINT handler can’t be interrupted by another SIGINT

* Explicit blocking and unblocking mechanism
* sigprocmask function

* Supporting functions
* sigemptyset — Create empty set
e sigfillset —Add everysignal number to set
* sigaddset —Add signal number to set
* sigdelset — Delete signal number from set

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Temporarily Blocking Signals

sigset t mask, prev mask;

Sigemptyset (&mask) ;
Sigaddset (&mask, SIGINT) ;

/* Block SIGINT and save previous blocked set */
Sigprocmask (SIG BLOCK, &mask, &prev mask);

E /* Code region that will not be interrupted by SIGINT */

/* Restore previous blocked set, unblocking SIGINT */
Sigprocmask (SIG_SETMASK, é&prev mask, NULL);

University at Buffalo
GB | Department of Computer Science

and Engineering S umma ry

School of Engineering and Applied Sciences

* Signals provide process-level exception handling
e Can generate from user programs
* Can define effect by declaring signal handler
* Be very careful when writing signal handlers

* Nonlocal jumps provide exceptional control flow
within process
* Within constraints of stack discipline

