
‘-

1

Exceptions

Karthik Dantu

Ethan Blanton

Computer Science and Engineering

University at Buffalo

kdantu@buffalo.edu

‘-

2

Control Flow

<startup>
inst1
inst2
inst3
…
instn
<shutdown>

• Processors do only one thing:
• From startup to shutdown, a CPU simply reads and executes

(interprets) a sequence of instructions, one at a time
• This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time

‘-

3

Altering the Control Flow

• Up to now: two mechanisms for changing control flow:
• Jumps and branches
• Call and return
React to changes in program state

• Insufficient for a useful system:
Difficult to react to changes in system state

• Data arrives from a disk or a network adapter
• Instruction divides by zero
• User hits Ctrl-C at the keyboard
• System timer expires

• System needs mechanisms for “exceptional control flow”

‘-

4

Exceptional Control Flow
• Exists at all levels of a computer system

• Low level mechanisms
• 1. Exceptions

- Change in control flow in response to a system event
(i.e., change in system state)

- Implemented using combination of hardware and OS software

• Higher level mechanisms
• 2. Process context switch

- Implemented by OS software and hardware timer

• 3. Signals
- Implemented by OS software

• 4. Nonlocal jumps: setjmp() and longjmp()
- Implemented by C runtime library

‘-

5

Exceptions

• An exception is a transfer of control to the OS kernel in
response to some event (i.e., change in processor state)

• Kernel is the memory-resident part of the OS
• Examples of events: Divide by 0, arithmetic overflow, page fault, I/O

request completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler

• Return to I_current
• Return to I_next
• Abort

Event I_current
I_next

‘-

6

0
1

2
...

n-1

Exception Tables

• Each type of event has a
unique exception number k

• k = index into exception table
(a.k.a. interrupt vector)

• Handler k is called each time
exception k occurs

Exception
Table

Code for
exception handler 0

Code for
exception handler 1

Code for
exception handler 2

Code for
exception handler n-1

...

Exception
numbers

‘-

7

(partial) Taxonomy

Asynchronous
Synchronous

Interrupts Traps Faults Aborts

ECF

‘-

8

Asynchronous Exceptions (Interrupts)

• Caused by events external to the processor
• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction

• Examples:
• Timer interrupt

- Every few ms, an external timer chip triggers an interrupt
- Used by the kernel to take back control from user programs

• I/O interrupt from external device
- Hitting Ctrl-C at the keyboard
- Arrival of a packet from a network
- Arrival of data from a disk

‘-

9

Synchronous Exceptions

• Caused by events that occur as a result of executing
an instruction:

• Traps
- Intentional, set program up to “trip the trap” and do something
- Examples: system calls, gdb breakpoints
- Returns control to “next” instruction

• Faults
- Unintentional but possibly recoverable
- Examples: page faults (recoverable), protection faults

(unrecoverable), floating point exceptions
- Either re-executes faulting (“current”) instruction or aborts

• Aborts
- Unintentional and unrecoverable
- Examples: illegal instruction, parity error, machine check
- Aborts current program

‘-

10

System Calls

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

 Each x86-64 system call has a unique ID number
 Examples:

‘-

11

System Call Example: Opening File
• User calls: open(filename, options)

• Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:
...
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2
e5d7e: 0f 05 syscall # Return value in %rax
e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax
...
e5dfa: c3 retq

User code Kernel code

Exception

Open file
Returns

syscall
cmp

 %rax contains syscall number
 Other arguments in %rdi,

%rsi, %rdx, %r10, %r8, %r9
 Return value in %rax
 Negative value is an error

corresponding to negative
errno

‘-

12

System Call Example: Opening File
• User calls: open(filename, options)

• Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:
...
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2
e5d7e: 0f 05 syscall # Return value in %rax
e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax
...
e5dfa: c3 retq

User code Kernel code

Exception

Open file
Returns

syscall
cmp

 %rax contains syscall number
 Other arguments in %rdi,

%rsi, %rdx, %r10, %r8, %r9
 Return value in %rax
 Negative value is an error

corresponding to negative
errno

Almost like a function call
• Transfer of control
• On return, executes next instruction
• Passes arguments using calling convention
• Gets result in %rax

One Important exception!
• Executed by Kernel
• Different set of privileges
• And other differences:

• E.g., “address” of “function” is in %rax
• Uses errno
• Etc.

‘-

13

Fault Example: Page Fault

• User writes to memory location

• That portion (page) of user’s memory
is currently on disk

int a[1000];
main ()
{

a[500] = 13;
}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code Kernel code

Exception: page fault
Copy page from
disk to memoryReturn and

reexecute movl

movl

‘-

14

Fault Example: Invalid Memory Reference

• Sends SIGSEGV signal to user process

• User process exits with “segmentation fault”

int a[1000];
main ()
{

a[5000] = 13;
}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault

Detect invalid address
movl

Signal process

‘-

15

(partial) Taxonomy

Asynchronous
Synchronous

Interrupts Traps Faults Aborts

ECF

Signals

Handled in user process

Handled in kernel

‘-

16

Linux Process Hierarchy

Login shell

ChildChild

GrandchildGrandchild

[0]

Daemon
e.g. httpd

init [1]

Login shell

Child

…

Note: you can view the
hierarchy using the Linux
pstree command

‘-

17

Shell Programs

• A shell is an application program that runs programs on behalf of
the user.

• sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
• csh/tcsh BSD Unix C shell
• bash “Bourne-Again” Shell (default Linux shell)

• Simple shell
• Described in the textbook, starting at p. 753

• Implementation of a very elementary shell

• Purpose
- Understand what happens when you type commands

- Understand use and operation of process control operations

‘-

18

Simple Shell Example

linux> ./shellex
> /bin/ls -l csapp.c
-rw-r--r-- 1 bryant users 23053 Jun 15 2015 csapp.c
> /bin/ps
PID TTY TIME CMD

31542 pts/2 00:00:01 tcsh
32017 pts/2 00:00:00 shellex
32019 pts/2 00:00:00 ps
> /bin/sleep 10 &
32031 /bin/sleep 10 &
> /bin/ps
PID TTY TIME CMD

31542 pts/2 00:00:01 tcsh
32024 pts/2 00:00:00 emacs
32030 pts/2 00:00:00 shellex
32031 pts/2 00:00:00 sleep
32033 pts/2 00:00:00 ps
> quit

Must give full pathnames for programs

Run program in background

Sleep is running
in background

‘-

19

Problem with Shells

• Shell designed to run indefinitely
• Should not accumulate unneeded resources

- Memory
- Child processes
- File descriptors

• Our example shell correctly waits for and reaps foreground
jobs

• But what about background jobs?
• Will become zombies when they terminate
• Will never be reaped because shell (typically) will not terminate
• Will create a memory leak that could run the kernel out of memory

‘-

20

ECF to the Rescue!

• Solution: Exceptional control flow
• The kernel will interrupt regular processing to alert us when a

background process completes
• In Unix, the alert mechanism is called a signal

‘-

21

Signals
• A signal is a small message that notifies a process that an

event of some type has occurred in the system
• Akin to exceptions and interrupts
• Sent from the kernel (sometimes at the request of another

process) to a process
• Signal type is identified by small integer ID’s (1-30)
• Only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event

2 SIGINT Terminate User typed ctrl-c

9 SIGKILL Terminate Kill program (cannot override or
ignore)

11 SIGSEG
V

Terminate Segmentation violation

14 SIGALR
M

Terminate Timer signal

17 SIGCHL
D

Ignore Child stopped or terminated

‘-

22

Signal Concepts: Sending a Signal

• Kernel sends (delivers) a signal to a destination process
by updating some state in the context of the destination
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as divide-by-zero

(SIGFPE) or the termination of a child process (SIGCHLD)
• Another process has invoked the kill system call to

explicitly request the kernel to send a signal to the destination
process

‘-

23

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A

Pending for B Blocked for B

Pending for C Blocked for C

‘-

24

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A

Pending for B Blocked for B

Pending for C Blocked for C

‘-

25

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A

Pending for B Blocked for B

Pending for C Blocked for C1

‘-

26

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A

Pending for B Blocked for B

Pending for C Blocked for C1

‘-

27

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A

Pending for B Blocked for B

Pending for C Blocked for C0

‘-

28

Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:
• Ignore the signal (do nothing)
• Terminate the process (with optional core dump)
• Catch the signal by executing a user-level function called signal

handler
- Akin to a hardware exception handler being called in response to an

asynchronous interrupt:

(2) Control passes
to signal handler

(3) Signal
handler runs

(4) Signal handler
returns to
next instruction

Icurr
Inext

(1) Signal received
by process

‘-

29

Signal Concepts: Pending and Blocked Signals

• A signal is pending if sent but not yet received
• There can be at most one pending signal of any particular type
• Important: Signals are not queued

- If a process has a pending signal of type k, then subsequent signals of
type k that are sent to that process are discarded

• A process can block the receipt of certain signals
• Blocked signals can be delivered, but will not be received until the

signal is unblocked

• A pending signal is received at most once

‘-

30

Signal Concepts: Pending/Blocked Bits

• Kernel maintains pending and blocked bit vectors
in the context of each process

• pending: represents the set of pending signals
- Kernel sets bit k in pendingwhen a signal of type k is delivered
- Kernel clears bit k in pendingwhen a signal of type k is received

• blocked: represents the set of blocked signals
- Can be set and cleared by using the sigprocmask function
- Also referred to as the signal mask.

‘-

31

Signal Concepts: Sending a Signal

Process A

Process B

Process C

kernel

User level

Pending for A Blocked for A

Pending for B Blocked for B

Pending for C Blocked for C1

‘-

32

Sending Signals with /bin/kill Program

• /bin/kill program
sends arbitrary signal
to a process or process
group

• Examples
• /bin/kill –9
24818
Send SIGKILL to process 24818

• /bin/kill –9 –
24817
Send SIGKILL to every process in
process group 24817

linux> ./forks 16
Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
PID TTY TIME CMD

24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps
linux> /bin/kill -9 -24817
linux> ps
PID TTY TIME CMD

24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

‘-

33

Sending Signals from the Keyboard

• Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP) to every
job in the foreground process group.

• SIGINT – default action is to terminate each process
• SIGTSTP – default action is to stop (suspend) each process

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

‘-

34

Example of ctrl-c and ctrl-z

bluefish> ./forks 17
Child: pid=28108 pgrp=28107
Parent: pid=28107 pgrp=28107
<types ctrl-z>
Suspended
bluefish> ps w

PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28107 pts/8 T 0:01 ./forks 17
28108 pts/8 T 0:01 ./forks 17
28109 pts/8 R+ 0:00 ps w
bluefish> fg
./forks 17
<types ctrl-c>
bluefish> ps w

PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28110 pts/8 R+ 0:00 ps w

STAT (process state) Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader
+: foreground proc group

See “man ps” for more
details

‘-

35

Receiving Signals

• Suppose kernel is returning from an exception
handler and is ready to pass control to process p

Process q Process p

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

‘-

36

Receiving Signals

• Suppose kernel is returning from an exception handler and
is ready to pass control to process p

• Kernel computes pnb = pending & ~blocked
• The set of pending nonblocked signals for process p

• If (pnb == 0)
• Pass control to next instruction in the logical flow for p

• Else
• Choose least nonzero bit k in pnb and force process p to receive

signal k
• The receipt of the signal triggers some action by p
• Repeat for all nonzero k in pnb
• Pass control to next instruction in logical flow for p

‘-

37

Default Actions

• Each signal type has a predefined default action, which is one of:
• The process terminates
• The process stops until restarted by a SIGCONT signal
• The process ignores the signal

‘-

38

Installing Signal Handlers

• The signal function modifies the default action associated
with the receipt of signal signum:

• handler_t *signal(int signum, handler_t
*handler)

• Different values for handler:
• SIG_IGN: ignore signals of type signum
• SIG_DFL: revert to the default action on receipt of signals of type
signum

• Otherwise, handler is the address of a user-level signal handler
- Called when process receives signal of type signum
- Referred to as “installing” the handler
- Executing handler is called “catching” or “handling” the signal
- When the handler executes its return statement, control passes back to

instruction in the control flow of the process that was interrupted by
receipt of the signal

‘-

39

Signal Handling Example
void sigint_handler(int sig) /* SIGINT handler */
{

printf("So you think you can stop the bomb with ctrl-c, do you?\n");
sleep(2);
printf("Well...");
fflush(stdout);
sleep(1);
printf("OK. :-)\n");
exit(0);

}

int main(int argc, char** argv)
{

/* Install the SIGINT handler */
if (signal(SIGINT, sigint_handler) == SIG_ERR)

unix_error("signal error");

/* Wait for the receipt of a signal */
pause();

return 0;
} sigint.c

‘-

40

Blocking and Unblocking Signals

• Implicit blocking mechanism
• Kernel blocks any pending signals of type currently being handled.
• E.g., A SIGINT handler can’t be interrupted by another SIGINT

• Explicit blocking and unblocking mechanism
• sigprocmask function

• Supporting functions
• sigemptyset – Create empty set
• sigfillset – Add every signal number to set
• sigaddset – Add signal number to set
• sigdelset – Delete signal number from set

‘-

41

Temporarily Blocking Signals

sigset_t mask, prev_mask;

Sigemptyset(&mask);
Sigaddset(&mask, SIGINT);

/* Block SIGINT and save previous blocked set */
Sigprocmask(SIG_BLOCK, &mask, &prev_mask);

/* Code region that will not be interrupted by SIGINT */

/* Restore previous blocked set, unblocking SIGINT */
Sigprocmask(SIG_SETMASK, &prev_mask, NULL);

…

‘-

42

Summary

• Signals provide process-level exception handling
• Can generate from user programs
• Can define effect by declaring signal handler
• Be very careful when writing signal handlers

• Nonlocal jumps provide exceptional control flow
within process

• Within constraints of stack discipline

