
Compiler Optimization

CSE 220: Systems Programming

Ethan Blanton
Department of Computer Science and Engineering

University at Buffalo

Introduction Optimizing Compilers Universal Optimizations Optimization Blockers Summary References

Big Wins vs. Many Wins

The biggest wins in optimization are algorithmic.

If you can:
Reduce the size of your data
Reduce the iterations of your loops
Reduce the number of traversals
…

…then you may make things asymptotically faster.1

However, constant factors matter too.
1See CSE 250.

©2021 Ethan Blanton / CSE 220: Systems Programming 2

Introduction Optimizing Compilers Universal Optimizations Optimization Blockers Summary References

Constant Factors

Small constant overheads can add up in a program.

E.g., the order in which you perform operations can matter.

In a previous lecture, we saw the order of array access make a
factor of twenty difference.

You must understand the system to avoid these traps.

©2021 Ethan Blanton / CSE 220: Systems Programming 3

Introduction Optimizing Compilers Universal Optimizations Optimization Blockers Summary References

Optimizing Compilers

Modern compilers are optimizing compilers.

They understand the machine very deeply, and:
Very effectively allocate resources such as registers
Reorder and eliminate code
Factor out common operations
…

They cannot improve your algorithms, however. ¶

They can also be fooled by certain constructions.

©2021 Ethan Blanton / CSE 220: Systems Programming 4

Introduction Optimizing Compilers Universal Optimizations Optimization Blockers Summary References

Principles of Optimization

Optimizing compilers have their own Hippocratic Oath:
First, change not semantics.2

An optimizing compiler must not change correct program
behavior.

They can also only work with static information.
That is, information that is known at compile time.

This can prevent compilers from making many optimizations.

2They don’t actually take oaths.
©2021 Ethan Blanton / CSE 220: Systems Programming 5

Introduction Optimizing Compilers Universal Optimizations Optimization Blockers Summary References

Illegal Optimizations

For example, a compiler cannot optimize when:
Code processes some data
The data has certain properties known to the programmer
Those properties ensure that a certain code path cannot run
The data is not known to the compiler

©2021 Ethan Blanton / CSE 220: Systems Programming 6

Introduction Optimizing Compilers Universal Optimizations Optimization Blockers Summary References

Optimization Practice

Historically, C compilers have only optimized within functions.

Our gcc can do inter-procedural optimization.

These are quite limited in practice, however.

This means that function calls prevent optimization.

©2021 Ethan Blanton / CSE 220: Systems Programming 7

Introduction Optimizing Compilers Universal Optimizations Optimization Blockers Summary References

Platform-independent Optimization

Some optimizations are always a good idea. ¶

They are not machine-specific and can be used widely.

These optimizations typically have to do with code semantics.

We will look at some examples:
Constant folding
Code motion
Reduction in strength

©2021 Ethan Blanton / CSE 220: Systems Programming 8

Introduction Optimizing Compilers Universal Optimizations Optimization Blockers Summary References

Constant Folding

Constant folding is computation of constants at compile time.

Consider this code:
int i = 2 + 3;

Could i be anything but 5 after this line?

Nope! Add it at compile time!

In the real world, this can be harder to find.3

3Consider: macros, named constants, etc.
©2021 Ethan Blanton / CSE 220: Systems Programming 9

Introduction Optimizing Compilers Universal Optimizations Optimization Blockers Summary References

Code Motion

The compiler can also move code to:
Reduce redundancy
Avoid costly but unnecessary operations

Common examples:
Loop calculations independent of the loop index
Early variable initializations

©2021 Ethan Blanton / CSE 220: Systems Programming 10

Introduction Optimizing Compilers Universal Optimizations Optimization Blockers Summary References

Motion Example
void set_row(double *dst , double *src ,

long row , long elements) {
for (long col = 0; j < n; j++) {

dst[elements*row + col] = src[col];
}

}

void set_row(double *dst , double *src ,
long row , long elements) {

long first = row*elements;
for (long col = 0; j < n; j++) {

dst[first + col] = src[col];
}

}

©2021 Ethan Blanton / CSE 220: Systems Programming 11

Introduction Optimizing Compilers Universal Optimizations Optimization Blockers Summary References

Motion Example 2

/* Sum neighbors of i,j in 2D array */
above = val[(i-1)*n + j]; // (i*n) - n + j
below = val[(i+1)*n + j]; // (i*n) + n + j
left = val[i*n + j-1]; // (i*n) + j - 1
right = val[i*n + j+1]; // (i*n) + j + 1
sum = above + below + left + right;

©2021 Ethan Blanton / CSE 220: Systems Programming 12

Introduction Optimizing Compilers Universal Optimizations Optimization Blockers Summary References

Motion Example 2

long inj = i*n + j;
above = val[inj - n]; // (i*n) - n + j
below = val[inj + n]; // (i*n) + n + j
left = val[inj - 1]; // (i*n) + j - 1
right = val[inj + 1]; // (i*n) + j + 1
sum = above + below + left + right;

©2021 Ethan Blanton / CSE 220: Systems Programming 13

Introduction Optimizing Compilers Universal Optimizations Optimization Blockers Summary References

Reduction in Strength

Reduction in strength is replacement of expensive operations
with cheaper operations.

Typically, expensive means slow and cheap means fast.

For example:
multiply and divide are expensive
shift operations are cheap
Shifts are integer multiply/divide by powers of two

©2021 Ethan Blanton / CSE 220: Systems Programming 14

Introduction Optimizing Compilers Universal Optimizations Optimization Blockers Summary References

Sequential Computations
Sometimes the compiler can identify sequential computations:

for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {

dst[n*i + j] = src[j]; // dst[i] = src[j]
}

}

Note that n*i changes by n each iteration.

Therefore you can start with zero and add by n.

©2021 Ethan Blanton / CSE 220: Systems Programming 15

Introduction Optimizing Compilers Universal Optimizations Optimization Blockers Summary References

Sequential Computations
Sometimes the compiler can identify sequential computations:

int ni = 0;
for (i = 0; i < n; i++) {

for (j = 0; j < n; j++) {
dst[ni + j] = src[j];

}
ni += n;

}

Note that n*i changes by n each iteration.

Therefore you can start with zero and add by n.

©2021 Ethan Blanton / CSE 220: Systems Programming 16

Introduction Optimizing Compilers Universal Optimizations Optimization Blockers Summary References

Optimization Blockers

As previously mentioned, some things block optimizations.

Data-dependent operations
Procedure calls (without inter-procedural optimization)
Pointer aliases (more than one pointer to an object)
…

©2021 Ethan Blanton / CSE 220: Systems Programming 17

Introduction Optimizing Compilers Universal Optimizations Optimization Blockers Summary References

Optimizing Across Procedure Calls

Why are procedure calls problematic?

They might have side effects (alter global state, do I/O).
They might not be deterministic.
They might modify pointers.

The compiler must not change semantics!

Optimizations around procedure calls are therefore weakened.

©2021 Ethan Blanton / CSE 220: Systems Programming 18

Introduction Optimizing Compilers Universal Optimizations Optimization Blockers Summary References

Forbidden Code Motion
for (size_t i = 0; i < strlen(s); i++) {

s[i] = tolower(s[i]);
}

Our gcc will compute strlen() strlen() times.

This is O(n2)!4

For a 1 MB character string, this takes minutes.
(For comparison, a 1920x1080 screen is about 8 MB.)

Why can’t it compute the strlen() once?
4See CSE 250 again.

©2021 Ethan Blanton / CSE 220: Systems Programming 19

Introduction Optimizing Compilers Universal Optimizations Optimization Blockers Summary References

What is strlen(), Anyway?

The compiler cannot assume that strlen does not alter s.

The compiler cannot assume that strlen(s) is always the same.

The compiler treats strlen() as a black box.

We can fix this ourselves: perform our own code motion.

©2021 Ethan Blanton / CSE 220: Systems Programming 20

Introduction Optimizing Compilers Universal Optimizations Optimization Blockers Summary References

Summary

Algorithmic improvements remain key.
Knowing how the compiler works help produce better code.
Optimizing compilers must not change semantics.
Compilers use static information.
We covered:

Constant folding
Code motion
Reduction in strength

Procedures are problematic.

©2021 Ethan Blanton / CSE 220: Systems Programming 21

Introduction Optimizing Compilers Universal Optimizations Optimization Blockers Summary References

References I
Required Readings

[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s
Perspective. Third Edition. Chapter 5: Intro, 5.1-5.6. Pearson, 2016.

©2021 Ethan Blanton / CSE 220: Systems Programming 22

Introduction Optimizing Compilers Universal Optimizations Optimization Blockers Summary References

License

Copyright 2019, 2020, 2021 Ethan Blanton, All Rights Reserved.
Copyright 2019 Karthik Dantu, All Rights Reserved.

These slides use material from the CMU 15-213: Intro to
Computer Systems lecture notes provided to instructors using
CS:APP3e.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2021 Ethan Blanton / CSE 220: Systems Programming 23

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Optimizing Compilers
	Universal Optimizations
	Optimization Blockers
	Summary
	References

