Syllabus:
CSE 220: Systems Programming
University at Buffalo Department of Computer Science and Engineering

Ethan Blanton
Spring 2021

All students are expected to read and understand this syllabus. Failure to adhere to the policies in this syllabus may have consequences, including a negative impact on student grades, failure in the course, or administrative action against the student. It is your responsibility to ask questions if anything in this document is unclear to you.

This course is online real-time. Students are strongly encouraged to watch lectures live, but lecture videos will be available for students who cannot do so due to scheduling or technology reasons. Lab sections must be attended in real-time. Students will not be required to present themselves on-campus at the University at Buffalo for any part of this course.

Instructor

Ethan Blanton
eblanton@buffalo.edu

Office Hours (subject to change; consult the course web site):
Monday 10:00–11:00 Zoom (see Piazza)
Thursday 14:00–16:00 Zoom (see Piazza)

Teaching Assistants

TA names and their office hours can be found on the course Piazza instance.

Sections

<table>
<thead>
<tr>
<th>Section</th>
<th>Course ID</th>
<th>Lecture Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE 220 LLB-A</td>
<td>22080</td>
<td>MWF 09:00–09:50</td>
</tr>
</tbody>
</table>

1 Course Web Site

https://cse.buffalo.edu/~eblanton/course/cse220/

Locations, times, information regarding instructor and TA office hours, assignment deadlines, and other information can be found on the course web site.
2 Lectures and Labs

Lectures will be delivered online via YouTube Live (or another platform if circumstances require). Instructions for accessing the lectures will be provided on the course Piazza instance. Lecture recordings will be available for asynchronous viewing, but live viewing is strongly encouraged. Students are expected to keep up with lectures, and view them as close to real-time as is practical.

Labs are at various times, as specified on HUB; every student is registered for particular a lab section, and must attend their registered lab section unless prior arrangements have been made with the instructor. Lecture and lab times are not scheduled by the course instructor and may be changed by the University for various reasons. Check HUB for the most recent information.

3 Course Description

CSE 220 is a 4 credit course.

This course is an introductory course on computer systems. It introduces computer systems from a programmer’s perspective, rather than a system implementer’s perspective, which prepares students for more advanced topics that discuss the internals of a computer system (e.g., operating systems or computer architecture). As a result, the focus of the course is teaching programmable interfaces of a computer system as well as how to use them correctly and effectively when writing a program. The topics mainly include hardware/software interfaces (e.g., data representation in memory) and OS/application interfaces (e.g., syscalls). In discussing these topics, the course gives an overview of a complete computer system, the hardware, operating system, compiler, and network, in order to guide students through various components that modern programs rely on to accomplish their intended purposes.

4 Course Materials

There are two required texts for this course. Students are expected to have immediate access to both of these texts throughout the semester.

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>ISBN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Systems: A Programmer’s Perspective</td>
<td>Bryant and O’Hallaron</td>
<td>978-0-13-409266-9</td>
</tr>
<tr>
<td>(Third Edition)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The C Programming Language</td>
<td>Kernighan and Ritchie</td>
<td>978-0-13-110362-8</td>
</tr>
<tr>
<td>(Second Edition)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lecture slides will be provided electronically throughout the course of the semester. Various readings from external sources may be assigned, in which case they will be provided or available through University resources (e.g., the library or periodical subscriptions).

References to materials not required or assigned may be made, and students are encouraged to follow up on these references, but this will not be required for successful completion of the course.

5 Communication

All electronic communication from students to course staff regarding this course must occur in one of two ways:
• Messages on the course Piazza instance, or

• Email using your official UB email account.

For topics of a sensitive nature, please email the course instructor directly from your University-supplied email address. Emails from non-University addresses will be disregarded due to privacy concerns and FERPA regulation. For all other contacts, please do NOT email the course instructor directly; instead, make a private or public post to Piazza, as appropriate. Private posts of non-sensitive nature should be sent to all course staff. This will ensure the most timely possible response. For matters regarding a specific lab section, contact the lab assistants first, as they may be able to help resolve your issue without involving the rest of the course staff.

Students are expected to monitor the course Piazza instance on a daily basis, checking it on every day the University is open, as important course announcements will be posted to Piazza. Schedule changes, lab and assignment handouts, homeworks, required readings, and other materials may be posted to Piazza, and it is the student’s responsibility to keep track of these things. Failure to read Piazza messages will not be accepted as an excuse for missed projects, labs, exams, or other course requirements.

Students will be added to the Piazza instance by the course instructor. If you are not, please contact the instructor by email to rectify this.

6 Prerequisites

• CSE 116. SEAS approved or Intended Majors, CS Minors.

Students are expected to have a firm understanding of the material from CSE 116 at the University at Buffalo and its prerequisites.

7 Course Requirements

The following items are required of every student, and failure to complete them may affect student grades as described in Section 9, Grading Policy, below.

7.1 General

Students must watch every lecture. Lecture quizzes will given to evaluate progress in watching lectures, but completing the quizzes without watching and understanding the lecture material and assigned readings will not be sufficient to ensure success on projects and exams.

Videos containing course content will be released for every lab session. Students must watch these videos and take an associated quiz. Lab section attendance is required, and students must show up live for their assigned lab section unless prior arrangements have been made. Students are expected to work on the assigned lab during their assigned lab section, and the intention is that most students will complete their lab assignments during the lab section.

It will be assumed that students are familiar with all material presented in class, and any material presented in lecture or lab may appear on any test, quiz, homework assignment, or other evaluation. Attendance and attention to lecture and lab materials are critical to success in this course.

A quiz evaluating students’ understanding of the University and Department academic integrity policies must be completed by all students, and all students must achieve 100% accuracy on this quiz.
7.2 Assignments

Several programming assignments will be required of all students. Programming assignments are intended to improve student understanding of the course material as well as demonstrate student mastery of certain core concepts.

Lab activities will be provided weekly, which may range from small programming assignments to written activities to group discussions and beyond. Students are expected to participate fully in lab and will be evaluated accordingly. Course staff will be available in labs to assist students, guide tasks, and present additional course material.

Programming assignments and lab activities, unless otherwise explicitly specified, are individual activities, and collaboration between students to complete any such assignment is a violation of the course academic integrity policy.

Written homework may be assigned, and students are expected to complete any such assignments in a timely fashion, although they will not be graded. These written assignments are intended to allow students to self-evaluate their level of preparedness and mastery of the course material, and students are encouraged to seek assistance from the instructor, teaching assistants, or each other in understanding and completing written assignments.

Readings will be assigned regularly, and students are expected to complete these readings in a timely fashion (no later than one week after they are assigned). Readings are selected to improve student understanding of the course material and/or present auxiliary material that the instructor believes is relevant and important. Material from readings may appear directly or indirectly in assignments, on quizzes, or on exams.

7.3 Tests and Quizzes

Quizzes may be introduced at any time by the instructor, covering any material previously covered in lectures, readings, or written homework assignments. These quizzes may or may not be announced in advance. (In particular, “pop quizzes” may be utilized to evaluate student attendance, engagement, and present understanding of course material.) There will be quizzes for each major lecture module and each lab activity.

There will be one midterm and one final exam. The midterm exam will cover all material presented in the course to date, including: lectures, labs, programming assignments, written homework assignments, and assigned readings. The (cumulative) final exam will cover all material covered in the course for the duration of the semester, including: lectures, labs, programming assignments, written homework assignments, and assigned readings.

7.4 Submission Policy

Programming assignments will be assigned with a deadline. All assignments are to be submitted by this deadline. In the event of any ambiguity in the deadline, times are assumed to be in the current local time zone of the University. Penalties for missing this deadline are as follows.

- Projects submitted before the deadline will incur no penalty.
- Projects submitted after the deadline, but within 24 hours of the deadline (excluding Saturday, Sunday, and University holidays) will incur a 20% penalty.
- Projects submitted more than 24 hours after the deadline as described above will not be accepted and will receive no credit.
Neither the instructor nor the teaching assistants will provide assistance for programming assignments after the assigned deadline.

Lab activities other than Lab 01 are due on the Tuesday following their assignment at 23:59. Lab 01 is due at 23:59 on the second Friday of classes (due to add/drop). No late submissions for lab activities will be accepted.

7.5 Programming Assignment Re-grading Policy

If you believe that a programming assignment has been graded incorrectly, you may submit it for re-grading. A request for a re-grade must be submitted within one calendar week of receiving the grade for a project, and must include:

- The original score achieved on the assignment
- A description of the specific error in grading that is being contested
- Relevant code demonstrating the submitted code’s correctness or the grading script’s incorrectness, if available

Re-grading of programming assignments is intended only to address errors in grading. No grades will be improved for any other reason, although they may be reduced; in particular, note that your grade on any part of the assignment, not just the portion being re-graded, may be reduced if re-grading discovers additional errors. This includes automated evaluations that passed because they did not trigger bugs that were discovered in manual evaluation for the re-grade, or bugs that show up only intermittently that happen to be encountered on the re-grade.

7.6 Exam and Quiz Re-grading Policy

If you believe that an exam or quiz has been graded incorrectly, you may submit it for re-grading. A request for a re-grade must be submitted within one calendar week of the exam or quiz being returned to you, must be submitted in writing (email is acceptable) to the instructor, and must include:

- The original, unmodified, exam or quiz answer
- A clear statement of the error

Re-grading of exams and quizzes is intended only to address errors in grading. No grades will be improved for any other reason, although they may be reduced if errors are found in any portion of the assignment, not just the portion being re-graded. Using re-grading as a bargaining tool to increase your score is likely to result in a lower grade, as the exam will be scrutinized in detail for errors that may have been missed the first time.

7.7 Make-up Policy

No deadline extensions or make-up work will be permitted except for approved University absences. Please see the University attendance policy for more information.

No make-up exams will be given whatsoever except for documented extreme circumstances. 24 hours of advance notice via e-mail must be provided if at all possible before missing an exam session. If advance notice is not possible, documentation supporting this must be provided. Absence from an exam session due to illness must be supported by a note from a physician specifying that the student was too ill and/or contagious to attend on the exam date.
You are responsible for remembering and attending exam sessions. Please use extra assistance to remind yourself if necessary.

8 Course Schedule

The course schedule, including exam dates and times, is provided here for convenience. Note that course staff do not schedule many of the following items, including final exam time and location. You are responsible for verifying your final exam time and location on HUB. Inclement weather, local emergencies, unsafe building and/or campus environments, or other circumstances may cause the University to change this schedule. Course progress and pedagogical concerns may cause rescheduling of lectures, exams, and activities, or changes to required readings. You will be notified via Piazza or UB Email of changes within the control of course staff. Course staff will attempt to keep you appraised of changes outside of staff control, but you are responsible for monitoring University communications to this effect.

You are responsible for monitoring any changes to this schedule, according to communications from course staff or the University. Failure to be aware of schedule changes is not sufficient reason for extended deadlines, make-up exams, or other accommodations.

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021-02-01</td>
<td>Introduction to CSE 220 and C</td>
<td>K&R Introduction, Ch. 1</td>
</tr>
<tr>
<td>2021-02-03</td>
<td>Variables, Strings, and Loops</td>
<td>K&R Ch. 1: 1.9, 1.10; Ch. 2: Intro, 2.1–2.4</td>
</tr>
<tr>
<td>2021-02-05</td>
<td>Conditionals and Control Flow</td>
<td>K&R 3.1 - 3.7</td>
</tr>
<tr>
<td>2021-02-08</td>
<td>Memory and Pointers</td>
<td>K&R Ch. 5: Intro, 5.1–5.4</td>
</tr>
<tr>
<td>2021-02-10</td>
<td>Programming Practices</td>
<td></td>
</tr>
<tr>
<td>2021-02-12</td>
<td>A Tour of Computer Systems</td>
<td>CS:APP Ch. 1: 1.1-1.7</td>
</tr>
<tr>
<td>2021-02-12</td>
<td>Programming Assignment 0 is due 23:59</td>
<td></td>
</tr>
<tr>
<td>2021-02-15</td>
<td>Memory Allocation</td>
<td></td>
</tr>
<tr>
<td>2021-02-17</td>
<td>To Be Determined</td>
<td></td>
</tr>
<tr>
<td>2021-02-19</td>
<td>Integers and Integer Representation</td>
<td>CS:APP Ch. 2: Intro, 2.1 through 2.1.3, 2.2</td>
</tr>
<tr>
<td>2021-02-22</td>
<td>(continued)</td>
<td>(ditto)</td>
</tr>
<tr>
<td>2021-02-24</td>
<td>Alignment, Padding, and Packing</td>
<td>K&R Ch. 5: Intro, 5.1–5.7; Chapter 6: Intro, 6.1–6.7; CS:APP Ch. 3: 3.8.1, 3.8.2, 3.9.1, 3.9.3</td>
</tr>
<tr>
<td>2021-02-26</td>
<td>(continued)</td>
<td>(ditto)</td>
</tr>
<tr>
<td>2021-02-26</td>
<td>Programming Assignment 1 is due 23:59</td>
<td></td>
</tr>
<tr>
<td>2021-03-01</td>
<td>Floating Point Numbers</td>
<td>CS:APP Ch. 2: 2.4 Intro, 2.4.1–2.4, 2.4.6, 2.5</td>
</tr>
<tr>
<td>2021-03-03</td>
<td>(continued)</td>
<td>(ditto)</td>
</tr>
<tr>
<td>2021-03-05</td>
<td>Bitwise Operations</td>
<td>K&R Ch. 2: 2.9; Appendix A: A7.4.6, A7.8, A7.11-A7.13; fCS:APP Ch. 2: 2.1.6 and 2.1.7</td>
</tr>
<tr>
<td>2021-03-08</td>
<td>Process Anatomy</td>
<td>K&R Ch. 4; CS:APP Ch. 3: 3.1, 3.7</td>
</tr>
<tr>
<td>2021-03-10</td>
<td>(continued)</td>
<td>(ditto)</td>
</tr>
<tr>
<td>2021-03-12</td>
<td>To Be Determined</td>
<td></td>
</tr>
<tr>
<td>2021-03-12</td>
<td>Programming Assignment 2 is due 23:59</td>
<td></td>
</tr>
</tbody>
</table>
Grading Policy

No "I" (Incomplete) grades will be given for this course except for documented extreme circumstances or situations required by University policy. Failure to complete work on time does not constitute an extreme circumstance.

Grades will not be changed at the end of the semester for any reason other than a documented error in grading according to the policies outlined in Section 7.5 and Section 7.6. No grade negotiation will be permitted. In particular, no grades will be changed to preserve scholarships, fellowships, University positions, immigration status, internship or job offers, or any other outside factor. Grades reflect student performance and mastery of course material.

The credit breakdown for the course will be as follows:
<table>
<thead>
<tr>
<th>Course Requirement</th>
<th>Course Grade</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 100% on Academic Integrity quiz</td>
<td>F</td>
<td>N/A</td>
</tr>
<tr>
<td>Less than 100% on Lab 01</td>
<td>F</td>
<td>N/A</td>
</tr>
<tr>
<td>Programming Assignment 0</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>Programming Assignment 1</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>Programming Assignment 2</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>Programming Assignment 3</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>Programming Assignment 4</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Programming Assignment 5</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>Lab Activities</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>Quizzes (Lab, Lecture, other)</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>Final Exam</td>
<td>20%</td>
<td></td>
</tr>
</tbody>
</table>

Note that this adds to 105%. This means that students who do all of their assigned, graded work have the opportunity to receive up to 5% extra credit in the course.

Failure to submit the Academic Integrity quiz with complete correctness (100% credit) or failure to submit Lab 01 with complete correctness (100% credit) will result in failure of the course. You may submit both of these assignments as many times as required to achieve complete correctness.

Final grades will be assigned from the above percentages as follows, although individual component scores may be adjusted or a curve of the instructor’s choice may be applied if the instructor deems it warranted. Lower percentages are inclusive, upper percentages (excluding 100%) are not; that is, a 90.0% would be an A-, not a B+.

- A 95-+ %
- A- 90-95%
- B+ 87-90%
- B 83-87%
- B- 80-83%
- C+ 77-80%
- C 73-77%
- C- 70-73%
- D+ 67-70%
- D 63-67%
- F 0-63%

10 Classroom Expectations

Students are expected to behave in a way that is respectful to their fellow students and the course staff. The University at Buffalo has a list of behavioral expectations that includes:

- Attending lectures and paying attention. Students should not ask an instructor in class to go over material they missed by skipping a class or not concentrating. If lectures are watched asynchronously, students should watch them on the day they are given or as close as reasonably possible.

- Showing respect and concern for others by not monopolizing class discussion. Students must allow others time to give their input and ask questions. Students should not stray from the topic of class discussion.

- Focusing on class material during class time. Sleeping, talking to others, doing work for another class, reading the newspaper, checking email, watching videos, and exploring the Internet are discouraged. Even though you are not in the physical classroom, your class deserves your attention.
11 Academic Integrity

Students will abide by the CSE Academic Integrity Policy, the University Academic Integrity Policy, and the Undergraduate or Graduate amendments thereof, as appropriate.

The Academic Integrity policy for this course, and my other courses, can be found on my web site, under Policies. You should read it for additional information and clarifications not found here.

All resources used in completing assignments for this class must be given appropriate attribution, and the only resources allowed for the completion of programming assignments, quizzes, or exams without specific permission are as follows.

- The required course textbook The C Programming Language, by Kernighan and Ritchie
- Lecture material from this course
- Required or recommended readings from lecture material
- Man and info pages from the course virtual machine

In particular, Stack Exchange, code from other students in the course or students who have completed this course or related courses at other universities in previous semesters, GitHub repositories, code or algorithms from other web sites or books, and other resources are not allowed without explicit permission from the instructor.

If there is any question about whether a resource is acceptable for use in completing a course assignment, students are encouraged to ask the instructor or a TA before making use of it. Asking about a resource is not a violation of academic integrity, even if the resource is not allowed for the course.

Quizzes and exams may have further restrictions on allowable resources; for example, a student’s own work from previous assignments may not be an allowable resource on an exam.

Violation of these policies will result in a failing grade for the course and referral upward for additional sanctions according to University policy.

Sharing of course materials after completing this course is also a violation of the academic integrity policy for this course.

11.1 Sharing CSE 220 Materials After Completion

Materials used in CSE 220, including project handouts and your own project implementation remain a part of this course after you complete it. Sharing those materials after completing CSE 220 may still constitute an academic integrity violation. Academic integrity proceedings may be started even after you have passed this course.

In particular, be aware that if you post your CSE 220 project material in a public place after completing CSE 220, you may be subject to academic integrity proceedings. This can result in a retroactive failure in this course, which will render you ineligible for enrollment in any courses that require CSE 220 or for graduation until you retake CSE 220.

11.2 Academic Integrity Amnesty

A student who has committed a violation of this academic integrity policy may receive limited amnesty for the violation by notifying me, in writing, of the violation before I have begun to assess the violating assignment. This notification must include the student’s name, person number, UBITname, and
state the assignment in question and the nature of the violation. Upon submitting such a statement, the student will receive no credit for the violating assignment, but no further sanctions will be taken, and the violation will not be reported. Once I have begun assessing the assignment in question, no such statements will be permitted. Since it may not be obvious to students when assessment begins, such statements should be submitted as soon as possible after the violation occurs. While assessment may begin at any time, in general I will not look at student submissions until a project deadline has passed. See my online Academic Integrity Policy for an example scenario and more information.

12 Program Outcomes and Competencies

This course is required in both the BS Computer Engineering program, accredited by the Engineering Accreditation Commission (EAC) of ABET, and the BS Computer Science program, accredited by the Computing Accreditation Commission (CAC) of ABET.

The course introduces students to the following CAC student outcomes, for which graduating students must demonstrate:

(CAC-1) Analyze a complex computing problem and apply principles of computing and other relevant disciplines to identify solutions.

(CAC-2) Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline.

(CAC-6) Apply computer science theory and software development fundamentals to produce computing-based solutions.

The course introduces students to the following EAC student outcomes, for which graduating students must demonstrate:

(EAC-1) an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics

(EAC-7) an ability to acquire and apply new knowledge as needed, using appropriate learning strategies

Student outcomes will be evaluated as follows.

<table>
<thead>
<tr>
<th>CAC</th>
<th>CAC 2</th>
<th>CAC 6</th>
<th>EAC 1</th>
<th>EAC 7</th>
<th>Assessment Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Programming Assignments</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Lab Activities</td>
</tr>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exams</td>
</tr>
</tbody>
</table>

13 Accessibility Resources

From the UB Reasonable Accomodation Policy:

The University at Buffalo is committed to providing equal access to individuals with disabilities, including physical access to programs and reasonable accommodations for members of the university community.

The UB Accessibility Resources Office provides assistance for students who require reasonable accommodations due to disability. They may be found at 60 Capen Hall or contacted by phone at 716-645-2608. Students must register with their office to receive accommodations for physical or learning disabilities.
14 Critical Campus Resources

Sexual Violence UB is committed to providing a safe learning environment free of all forms of discrimination and sexual harassment, including sexual assault, domestic and dating violence and stalking. If you have experienced gender-based violence (intimate partner violence, attempted or completed sexual assault, harassment, coercion, stalking, etc.), UB has resources to help. This includes academic accommodations, health and counseling services, housing accommodations, helping with legal protective orders, and assistance with reporting the incident to police or other UB officials if you so choose. Please contact UB’s Title IX Coordinator at 716-645-2266 for more information. For confidential assistance, you may also contact a Crisis Services Campus Advocate at 716-796-4399.

Mental Health As a student you may experience a range of issues that can cause barriers to learning or reduce your ability to participate in daily activities. These might include strained relationships, anxiety, high levels of stress, alcohol/drug problems, feeling down, health concerns, or unwanted sexual experiences. Counseling, Health Services, and Health Promotion are here to help with these or other issues you may experience. You can learn more about these programs and services by contacting:

- Counseling Services:
 - 120 Richmond Quad (North Campus), 716-645-2720
 - 202 Michael Hall (South Campus), 716-829-5800

- Health Services:
 - Michael Hall (South Campus), 716-829-3316

- Health Promotion:
 - 114 Student Union (North Campus), 716-645-2837

Acknowledgments

Some language in this syllabus is drawn from University policies (as noted), the UB Course Syllabi Requirements document, department guidelines, and other University resources. Some language and structure in this syllabus is drawn from Steve Ko’s CSE 486/586 syllabus from Spring 2017 and from Matthew Hertz’s CSE 115/503 syllabus from Spring 2019. Many improvements to this syllabus were made by Karthik Dantu in Fall 2019.