
Variables, Strings, and Loops

CSE 220: Systems Programming

Ethan Blanton, Carl Alphonce, & Eric Mikida

Department of Computer Science and Engineering

University at Buffalo



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

Administrivia

Have you done your assigned reading?

Is Xpra working?

Did you compile and run Hello World?

Remember that many of you are new to the command prompt!

Check the Piazza post on this.

Read everything for all assignments and labs.

Check Piazza frequently.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 2



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

Things you already know: expressions

An expression is a part of a program that has a value.

Expressions can be simple or compound

simple compound

4 3 + 4

4.5 4.5 * 3.7

x x++

'a' 'a' + 1

"a" strlen("a")

true y = 3

Expressions may have side effects (e.g. x++ and y = 3).

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 3



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

Things you already know: statements

A statement is a part of a program that:

has a side effect

does not have a value

Statements can be simple or compound.

simple compound

y = 3; if (x<y){...} else {...}

puts("a"); while (x<y){...}

x++; for (int x=0; x<len; x++){...}

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 4



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

Things you already know: values

Every expression has a value.

Values can be simple or compound.

simple compound

3 an array

'c' a struct

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 5



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

Things you already know: types

Each value and variable is associated with a type.

The type determines:

size: the number of bytes occupied by a value ¶

representation: how a value is encoded as bits

operations: which operators are valid with a value

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 6



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

minimal

// A minimial C program

// Execution of your code starts in the 'main'

function

int main() {

return 0;

}

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 7



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

puts

#include <stdio.h>

// Hello World

int main() {

puts("Hello World"); // string literals are

delimited by double quotes

return 0;

}

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 8



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

delimiters

#include <stdio.h>

// Hello World

int main() {

puts('Hello World '); // single quotes delimit

single characters

return 0;

}

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 9



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

putchar

#include <stdio.h>

int main() {

putchar('H');

putchar('i');

putchar('\n');

putchar (72);

putchar (105);

putchar (10);

return 0;

}

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 10



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

printf

#include <stdio.h>

int main() {

printf("Hello World\n");

return 0;

}

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 11



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

printf specifiers
#include <stdio.h>

int main() {

int i = 42;

printf("The value of i: %d\n",i);

printf("The value of i: %x\n",i);

double d = 2.71828;

printf("The value of d is %f\n",d);

printf("The value of d is %d\n",d);

char letter = 'X';

printf("Hey , '%c' marks the spot.\n", letter);

char name[] = "River";

printf("%s said , \"No power in the 'verse can

stop me\"\n",name);

return 0;

}
©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 12



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

command-line argument

#include <stdio.h>

int main(int argc , char * argv []) {

printf("Hello , %s!\n", argv [1]);

return 0;

}

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 13



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

command-line arguments

#include <stdio.h>

int main(int argc , char * argv []) {

for (int i=0; i<argc; i++) {

printf("argv[%d] is \"%s\"\n", i, argv[i]);

}

return 0;

}

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 14



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

cse-strlen1

#include <stdio.h>

int cse_strlen(char str[]) {

int len = 0;

for (int i=0; str[i] != '\0'; i++) {

len = len + 1;

}

return len;

}

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 15



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

cse-strlen2

#include <stdio.h>

int cse_strlen(char str[]) {

for (int i=0; str[i] != '\0'; i++)

;

return i;

}

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 16



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

cse-strlen3

#include <stdio.h>

int cse_strlen(char str[]) {

int i;

for (i=0 ; str[i] != '\0'; i++)

;

return i;

}

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 17



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

Types

C is a typed language.

Every variable has a type, and is declared.

Every value assigned to a variable must match that type.

The compiler will automatically convert between some types.1

Valid:

int x = 5;

float y = 2.0;

x = 37.0;

y = x;

Invalid:

int x = 0;

x = "Hello , world!";

1Dennis M. Ritchie (DMR) said “C is strongly typed, but weakly enforced.”

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 18



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

Some Types

There are many types; for now, consider:

int: Integers of a convenient size for the computer (32-bit

for us)

char: Characters (typically 8-bit integers)

double: Double-precision floating-point numbers

There are also array types.

Array types are declared with square brackets: []:

char a[]: An array of char variables. Often used for C

strings.

int scores[200]: An array of exactly 200 int variables.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 19



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

Declaring Variables

Variables are declared by stating their type and name.

int x; /* x is an integer */

double d; /* d is a floating -point double */

Various modifiers can be applied to variables.

In particular, const declares the variable to be a constant. A

const variable can only be assigned a value in its declaration.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 20



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

Scope, part 1

Variables in C have scope: the part of a program where the

variable can be used.

Scope is determined by how and where the variable is declared.

The following are possible scopes in C:

global, file-local, and local.

A variable cannot be used out of scope.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 21



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

Scope, part 2

Variables declared outside of any block ({}):

are normally global: they can accessed by any code ¶must

be declared extern in other files

are file-local with the modifier static: they can be accessed

by any code in this file

Variables declared in a block:

Come into scope where declared¶

are valid until the scope’s } or end-of-file

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 22



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

Lifetime

Variables in C have lifetime: the period of time during the

execution of a program that the variable exists in memory.

For many variables, their lifetime is as long as their scope exists.

So far:

Global variables have a lifetime of “forever”

Local variables have a lifetime of “while in scope”

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 23



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

Arrays

C arrays are a series of contiguous memory locations.

(This will become important later.)

Arrays are declared with []. The size is between [].

Every array has a fixed size, however array declarations can

have three “sizes”, depending on what’s in the []:

Unknown size: Nothing is specified

Constant size: A constant expression is specified

Variable size: A run-time computed expression is specified

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 24



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

Array Sizes

Array sizes specify how many elements are in the array.

int x[32];

int matrix [32][16];

C does not remember the array’s size.¶

This means that illegal accesses aren’t caught.2

int x[4];

x[10234] = 0; /* Whoops. */

2If you’re lucky, you might get a warning about uninitialized access.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 25



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

Static Initializers

An array can be initialized all at once at declaration.

int array [10] = { 0, 3, 5, 0, 0,

1, 0, 0, 2, 0 };

This is called a static initializer.

Static initializers can be used only at declaration.

int array [3];

array = { 1, 3, 5 }; /* syntax error */

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 26



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

C Strings

C strings are just arrays.

Strings, as they are arrays, are not associated with a length.

(You have to count the characters to know how long they are.)¶

A C string consists of:

the characters in the string, followed by

a zero byte (the ASCII NUL character) (NUL terminator).

The zero byte is idiomatically written '\0'.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 27



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

ASCII

ASCII3 is a mapping of numbers to characters.

C strings can be in many encodings, but C code is in ASCII.¶

ASCII contains Latin characters, numbers, and punctuation.

The Unix manual page at man 7 ascii describes the mapping.

3American Standard Code for Information Interchange

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 28



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

Quoted Strings

Quoted strings automatically build such arrays.

char str[] = "Hello";

char str[] = { 'H', 'e', 'l', 'l', 'o', '\0' };

A quoted string may be assigned to an array only at declaration.

After declaration, quoted strings must be copied into arrays:

char str [32];

strncpy(str , 32, "Hello"); /* See man 3 strncpy */

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 29



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

String Functions

There are many string functions in the C library.

Most of them are defined in <string.h>.

Some useful examples:

strlen(): Compute the length of a string by counting bytes

strncpy(): Copy a string until its NUL character

strncat(): Concatenate one string to another

strstr(): Search for one string inside another

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 30



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

Strings as Pointers

The idiomatic string type is char *.

Arrays and pointers are closely related, we’ll discuss this later.

char *str = "Hello , CSE 220";

char array[] = "Another string";

char *otherstr = array;

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 31



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

Character Constants

An ASCII character can be interpreted as an integer with ''.
char c = 'A'; /* 65 */

int i = 'B'; /* 66 */

Each byte of a string can be assigned in this fashion.
char str[] = "emacs";

/* Give it the respect it deserves */

str[0] = 'E';

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 32



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

The for Loop

The C for loop is its most versatile loop.

It allows looping over almost anything.

for (initialization; condition; increment) {

body;

}

It translates to a more traditional while loop (with caveats):

initialization;

while (condition) {

body;

increment;

}

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 33



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

Looping over Arrays

A common use of the for loop is looping over arrays:

int array[ARRAYSZ ];

for (int i = 0; i < ARRAYSZ; i++) {

/* Use array[i] */

}

Remember that you must somehow know the size of the array.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 34



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

Looping over Strings

It is idiomatic to loop over strings:

for (int i = 0; str[i] != '\0'; i++) {

/* use str[i] */

}

Note that the string length is never directly computed!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 35



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

Strings, Arrays, and Loop Example

We will develop strlen() together.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 36



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

Summary

C is a typed language

Every variable has a type

Variable values must match the type

Variables have scope, and cannot be used outside that

scope

Arrays are contiguous memory locations

Array syntax uses []

C strings are arrays of characters

Every C string is terminated with a zero byte

For loop syntax

For loops are very flexible

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 37



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

Next Time …

Boolean values

Conditional statements

Control flow

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 38



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

References I

Required Readings

[1] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Second

Edition. Chapter 1: 1.9, 1.10; Chapter 2: Intro, 2.1–2.4. Prentice Hall, 1988.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 39



Administrivia Introduction Live Coding Variables Arrays Strings Looping Summary References

License

Copyright 2019–2024 Ethan Blanton, All Rights Reserved.

Copyright 2024–2024 Eric Mikida, All Rights Reserved.

Copyright 2022–2024 Carl Alphonce, All Rights Reserved.

Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the

author is prohibited.

To retrieve a copy of this material, or related materials, see

https://www.cse.buffalo.edu/~eblanton/.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 40

https://www.cse.buffalo.edu/~eblanton/

	Administrivia
	Introduction
	Live Coding
	Variables
	Arrays
	Strings
	Looping
	Summary
	References

