
A Tour of Computer Systems

CSE 220: Systems Programming

Ethan Blanton, Carl Alphonce, & Eric Mikida

Department of Computer Science and Engineering

University at Buffalo



Introduction Review Architectural Details Details Matter The Computer Summary References

Time Management

Make progress by setting a timer.

Set a timer for 15 minutes. When it expires:

Are you still working?

If not, why not? Fix the problem!

Are you making progress?

If not, why not? Fix the problem!

Time spent is different from results achieved.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 2



Introduction Review Architectural Details Details Matter The Computer Summary References

Concept versus Implementation

The C language and POSIX are implementations of systems.

There are many possible implementations.

Certain conceptual considerations are presented by underlying

architecture.

We will look at some of those concepts.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 3



Introduction Review Architectural Details Details Matter The Computer Summary References

Understanding How Things Work

“Why do I need to know this stuff?”

Abstraction is good, but don’t forget reality!

Most CS courses emphasize abstraction

Abstract data types

Asymptotic analysis

These abstractions have limits

Sometimes you need to understand the underlying

implementation

Sometimes the abstract interfaces are not as flexible or

performant as you need

Sometimes there are bugs
©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 4



Introduction Review Architectural Details Details Matter The Computer Summary References

Lab Exam

Lab Exam 1 is next week!

You should expect:

Structurally similar to Lab 03, but smaller

GitHub Classroom, README.md

A couple of functions of a few lines of code each

Content-wise covering material like:

Required readings

PA0

Lab 03

Think arrays, characters, loops, simple I/O.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 5



Introduction Review Architectural Details Details Matter The Computer Summary References

TopHat question

Poll a TopHat question!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 6



Introduction Review Architectural Details Details Matter The Computer Summary References

Numeric Representations

ints are not integers, floats are not real numbers!

Example 1: Is x2 ≥ 0?

float: yes!

int: well …

40000 * 40000 → 1600000000

50000 * 50000 → ???

Example 2: Is (x + y) + z = x + (y + z)?

int: yes!

float:

(1e20 + -1e20)+ 3.14 → 3.14

1e20 + (-1e20 + 3.14) → ???

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 7



Introduction Review Architectural Details Details Matter The Computer Summary References

Computer Arithmetic

Computer operations do have mathematical properties.

However, you cannot assume all usual mathematical properties!

Finite representations cause various effects

Integer operations satisfy ring properties:

Commutativity, associativity, distributivity

Floating point operations satisfy ordering properties:

Monotonicity, sign values

You must understand which abstractions apply where.

These are important issues for compiler writers, systems

programmers, serious application programmers.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 8



Introduction Review Architectural Details Details Matter The Computer Summary References

TopHat question

Poll a TopHat question!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 9



Introduction Review Architectural Details Details Matter The Computer Summary References

Assembly Language

You need to know something about assembly.

You’ll see it next (and learn it!) in CSE 341!

You’ll probably never write programs in assembly.

(Compilers are better at it and much more patient than you are!)

Understanding assembly is key to understanding the machine.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 10



Introduction Review Architectural Details Details Matter The Computer Summary References

Where Will I Use Assembly?

Understanding the behavior of programs in the presence of bugs

High-level language models break down

Tuning program performance

Understand optimizations the compiler can and cannot do

Understand sources of program inefficiency

Implementing system software

Compilers target assembly

Operating systems manage hardware state

Creating and fighting malware

Most malware uses assembly!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 11



Introduction Review Architectural Details Details Matter The Computer Summary References

Memory Management and Layout

Memory matters.

Memory is not unbounded!

It must be allocated and managed

Many applications are memory-dominated

Memory referencing bugs are especially pernicious

Their effects may be distant in both time and space

Memory performance is not uniform

Cache and virtual memory effects can affect program

performance

Adapting programs to the memory system can have major

speed implications

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 12



Introduction Review Architectural Details Details Matter The Computer Summary References

Why Memory Performance Matters

void copyij(int src [2048][2048] ,

int dst [2048][2048]) {

for (int i = 0; i < 2048; i++) {

for (int j = 0; j < 2048; j++)

{

dst[i][j] = src[i][j];

}

}

}

3.8 ms

void copyji(int src [2048][2048] ,

int dst [2048][2048]) {

for (int j = 0; j < 2048; j++) {

for (int i = 0; i < 2048; i++)

{

dst[i][j] = src[i][j];

}

}

}

72.2 ms

All that changed is the order of the loops!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 13



Introduction Review Architectural Details Details Matter The Computer Summary References

Therac-25

An infamous accident in software engineering: Therac-25

https://medium.com/swlh/software-architecture-therac-25-the-killer-radiation-machine-8a05e0705d5b

People died.

Arithmetic bugs were involved.

Poorly understood copied code was involved.

(Stack Overflow kills!)
©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 14

https://medium.com/swlh/software-architecture-therac-25-the-killer-radiation-machine-8a05e0705d5b


Introduction Review Architectural Details Details Matter The Computer Summary References

Toyota Acceleration

Some Toyota vehicles experienced unintended acceleration in

the late 2000s.

Toyota was fined 1.2 billion dollars

~9 million vehicles were recalled

Expert analysis identified:

Memory corruption from software bugs

Copied code (“Stack overflow …bugs led to memory

corruption”)

From material Copyright Phil Koopman, CC-BY-4.0

https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 15

https://users.ece.cmu.edu/~koopman/pubs/koopman14_toyota_ua_slides.pdf


Introduction Review Architectural Details Details Matter The Computer Summary References

Mars Pathfinder

The Pathfinder Mars rover frequently

stopped responding.

The problem was system scheduling

Low-level debugging identified the issue

Testing could have identified the

problem on the ground
(Credit: NASA)

https://www.rapitasystems.com/blog/what-really-happened-to-the-software-on-the-mars-pathfinder-spacecraft

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 16

https://www.rapitasystems.com/blog/what-really-happened-to-the-software-on-the-mars-pathfinder-spacecraft 


Introduction Review Architectural Details Details Matter The Computer Summary References

A Bit About Architecture

CPU
Main

memory

Peripherals

System
Bus

I/O (North)
Bridge

I/O (South)
Bridge

Memory
Bus

I/O
Bus

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 17



Introduction Review Architectural Details Details Matter The Computer Summary References

Buses

A bus has a width, which is literally the number of wires it has.¶

(This is a little less clear on a serial bus, where the width is a

protocol convention.)

Each wire transmits one bit per transfer.

Every bus transfer is of that width, though some bits may be

ignored.

Therefore, memory has a word size from the view of the CPU:

the number of wires on that bus.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 18



Introduction Review Architectural Details Details Matter The Computer Summary References

A Modern CPU

CPU

I/O (North)
Bridge

Bus
Interface

L1
cache

Register

file
ALU

L2
cache

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 19



Introduction Review Architectural Details Details Matter The Computer Summary References

CPU Properties

Both internal and external busses have fixed widths.

A small number of storage locations called registers:

Have very fast access time¶

Have a fixed width

Are fixed in number

The ALU performs computation.

It may be able to access only registers

It may be able to access memory

It may have arbitrary restrictions

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 20



Introduction Review Architectural Details Details Matter The Computer Summary References

CPU ↔ Memory Transfer

The CPU fetches data from memory in words the width of the

memory bus.

It places those words in registers the width of a cpu word.

This register width is the native integer size.1

These word widths may or may not be the same.

If they’re not, a transfer may require:

multiple registers, or

multiple memory transfers.

1Some CPUs (including x86-64) can manipulate more than one size of

integer in a single register.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 21



Introduction Review Architectural Details Details Matter The Computer Summary References

Imposing Structure on Memory

That said, programming languages expose things like:

Booleans

classes

strings

structures

How is that?

We impose meaning on words in memory by convention.

E.g., as we saw before, a C string is a sequence of bytes that

happen to be adjacent in memory.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 22



Introduction Review Architectural Details Details Matter The Computer Summary References

Summary

Architectural details matter

Bus widths

Numeric properties

Performance details

C and POSIX are just one possible system

All systems have those details

Software correctness can be critically important

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 23



Introduction Review Architectural Details Details Matter The Computer Summary References

Next Time …

Memory allocation

The program heap

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 24



Introduction Review Architectural Details Details Matter The Computer Summary References

References I

Optional Readings

[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s

Perspective. Third Edition. Chapter 1: Intro, 1.1–1.7. Pearson, 2016.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 25



Introduction Review Architectural Details Details Matter The Computer Summary References

License

Copyright 2020–2024 Ethan Blanton, All Rights Reserved.

Copyright 2024–2024 Eric Mikida, All Rights Reserved.

Copyright 2022–2024 Carl Alphonce, All Rights Reserved.

Copyright 2019 Karthik Dantu, All Rights Reserved.

These slides use material from the CMU 15-213: Intro to

Computer Systems lecture notes provided to instructors using

CS:APP3e.

Reproduction of this material without written consent of the

author is prohibited.

To retrieve a copy of this material, or related materials, see

https://www.cse.buffalo.edu/~eblanton/.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 26

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Review
	Architectural Details
	Details Matter
	The Computer
	Summary
	References

