
Memory and Pointers

CSE 220: Systems Programming

Ethan Blanton, Carl Alphonce, & Eric Mikida

Department of Computer Science and Engineering

University at Buffalo

Introduction Memory Model Pointers Exploring Pointers Summary References

Effective Questions

Answering questions is easy.

Asking the right question is hard!

For conceptual problems, ask:

What do I have?

What do I need?

Can I figure out how to get from here to there?

What about partway there?

If you need help, tell us (in your words!) what you have and what

you need!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 2

Introduction Memory Model Pointers Exploring Pointers Summary References

Memory

Memory on POSIX systems is data storage identified by

address.

All of the data accessible to your C program has an address.¶

The CPU uses this address to retrieve data from memory.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 3

Introduction Memory Model Pointers Exploring Pointers Summary References

C/POSIX Memory Model

On a POSIX system, every process appears to have its own

memory.

This memory ranges from address zero to the maximum

allowable address.

It may be the case that not all of it is available, however!

On Unix systems, the usage of that memory is predictable.¶

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 4

Introduction Memory Model Pointers Exploring Pointers Summary References

Pointers

C pointers are variables that hold memory addresses.

This lets your program interact with memory explicitly.

Pointers are very powerful but inherently unsafe tools.

The C compiler doesn’t know which pointers are valid!

Most non-trivial data structures in C use pointers.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 5

Introduction Memory Model Pointers Exploring Pointers Summary References

Memory Addresses

On our platform, you can consider memory as a large array.

A pointer is an index into that

array.

If memory starts at address 0, a

pointer with value p is the p’th

byte of that array.

Note that any given byte may

not exist!
0x0

264 – 1

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 6

Introduction Memory Model Pointers Exploring Pointers Summary References

Pointer Concepts

A pointer:

Is an address

Allows the memory at that address to be manipulated

Associates a type with the manipulated memory

Remember, to the computer, memory is just bits.

Programmers supply the meaning.

The special pointer value NULL represents an invalid address.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 7

Introduction Memory Model Pointers Exploring Pointers Summary References

Pointer Syntax — Declaration

A pointer variable is marked with *.

char *str;

str is a variable which stores a pointer to char.

(char * is the idiomatic string type in C.)

A pointer variable may be marked const, in which case the

memory it points to is const.1

const char *str;

It is a good idea to mark pointer variables const if you don’t

intend to modify their contents.
1There is another type of constant pointer that we won’t talk about now.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 8

Introduction Memory Model Pointers Exploring Pointers Summary References

Pointer Types

What is a pointer to char anyway?

An address of a character-size integer.

char *str = "Hello";

This says:

str contains an address

The data at the object stored in str is of type char

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 9

Introduction Memory Model Pointers Exploring Pointers Summary References

Addresses

Pointer variables must store a valid address to be used.¶

There are limited opportunities to create valid addresses:

Acquire the address of a variable

Request new memory from the system

Create a string or array constant

Calculation from other addresses

Pointers created in other manners probably are not valid.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 10

Introduction Memory Model Pointers Exploring Pointers Summary References

Pointer Syntax — Taking Addresses

A pointer may be created from a variable using unary &.

This is sometimes called the address-of operator.

int x = 42;

int *px = &x;

px now stores a pointer to x.

(More on the implications of this later.)

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 11

Introduction Memory Model Pointers Exploring Pointers Summary References

Dereferencing a Pointer

Dereferencing a pointer is accessing the data it points to.

It can be dereferenced to read or modify that data.

Dereferencing an invalid pointer is undefined behavior.

This will often result in a segmentation fault, but may silently

corrupt memory!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 12

Introduction Memory Model Pointers Exploring Pointers Summary References

Pointer Syntax — Dereferencing

A pointer is dereferenced with *, ->, or [].

(More on -> when we get to structures.)

The * notation reads the value at the pointer address.
int *px = &x;

int y = *px;

The variable px is initialized with a pointer to x, an integer.

The variable y is created as an integer.

y is assigned the value of x by dereferencing px with *.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 13

Introduction Memory Model Pointers Exploring Pointers Summary References

Pointer Syntax — Dereferencing

A pointer can also be dereferenced like an array, with [].

y = px[0];

This is exactly the same as y = *px;.

y = px[1];

This treats px like an array, and retrieves the second

element.

We will explore how this works in more detail later.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 14

Introduction Memory Model Pointers Exploring Pointers Summary References

Pointers and Arrays

Arrays and pointers are closely related in C.

You can often think of an array variable as a pointer to the first

array element, and a pointer variable as an array.

However, they are not the same.

In both cases, dereferencing with [i] says

…add i times the size of the type of this variable to the base address

(first element of the array or pointer value), then treat the memory at

that location as if it is of the type of this variable.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 15

Introduction Memory Model Pointers Exploring Pointers Summary References

Pointers and Arrays

Consider:

char arr[] = "Hello World";

char *ptr = arr;

H e l l o W o r l d
N
U
L

ptr[6]

arr[2]
©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 16

Introduction Memory Model Pointers Exploring Pointers Summary References

Arrays Are Not Pointers

char arr[] = "string";

char arr2[] = arr;

“error: invalid initializer”

char arr[] = "Hello World";

char *ptr = arr;

ptr points to arr[0].

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 17

Introduction Memory Model Pointers Exploring Pointers Summary References

Exploring Pointers

We will explore pointers in a program and the debugger.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 18

Introduction Memory Model Pointers Exploring Pointers Summary References

Summary

Memory locations are identified by addresses.

Addresses are integers.

Our system’s memory is like one large array.

POSIX processes appear to have their own dedicated

memory.

Pointers hold addresses and have types.

Pointers and arrays are closely related, but not the same.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 19

Introduction Memory Model Pointers Exploring Pointers Summary References

References I

Required Readings

[1] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Second

Edition. Chapter 5: Intro, 5.1-5.4. Prentice Hall, 1988.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 20

Introduction Memory Model Pointers Exploring Pointers Summary References

License

Copyright 2019–2024 Ethan Blanton, All Rights Reserved.

Copyright 2024–2024 Eric Mikida, All Rights Reserved.

Copyright 2022–2024 Carl Alphonce, All Rights Reserved.

Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the

author is prohibited.

To retrieve a copy of this material, or related materials, see

https://www.cse.buffalo.edu/~eblanton/.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 21

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Memory Model
	Pointers
	Exploring Pointers
	Summary
	References

