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Planning and Development II

When writing code, arrange different views of the problem:

Documentation (your handout!)

Diagrams

Pseudocode

Code

Each view will give you different insight.

Compare them against each other!
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Processes

What is a process?

From the text:

[A] process is an instance of a program in execution.

If a program is a set of machine instructions, a process is:

Those instructions

The memory they use

The system resources they access

…
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Programs

Source code is compiled into an executable.

The program that a process runs is loaded from an executable.

Once loaded, the system provides an execution environment.
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Unix Processes

A Unix process is protected from other processes:

It has its own memory.

It appears to execute on a dedicated CPU.

The system services it uses are dedicated to it.

Hardware assistance is required to maintain this environment.

In particular, virtual memory provides the illusion of a private,

contiguous memory space.
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Basic Layout
A process’s memory is divided

into sections.

These sections represent

different types of information.

Some sections come from the

executable.

Some sections are created at

run time.

The lowest addresses are not

used — specifically so that NULL

remains invalid!

Kernel

Process Stack

Text
(program code)

Data

BSS

Heap

Unmapped

brk

0x0 (NULL)

0xffffffffffffffff

Unmapped
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Static Data
The lowest sections are known

at compile time.

The text section is the

executable code.

The data and BSS (“block

started by symbol”) sections are

global and static local variables.

Variables in the data section

have initialized values in the

source code.

Variables in the BSS do not.

Kernel

Process Stack

Text
(program code)

Data

BSS

Heap

Unmapped

brk

0x0 (NULL)

0xffffffffffffffff

Unmapped
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Dynamic Data

The middle sections are

allocated dynamically as the

program runs.

The heap is managed by the

dynamic allocator (malloc()).

The stack contains local

variables and information

necessary for function calls.

These sections begin with zero

size and grow as needed during

execution.

Kernel

Process Stack

Text
(program code)

Data

BSS

Heap

Unmapped

brk

0x0 (NULL)

0xffffffffffffffff

Unmapped
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Using Sections

Section locations can be valuable debugging information.

The precise locations of sections will vary.

You can assume their relative positions, however!

Recognizing whether a pointer is on the stack, on the heap, or in

the data section can be very valuable.

Recognizing that very small pointers are invalid is even more

valuable!
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Example Layout

char *string = "hello";

int iSize;

char *f(void) {

char *p;

iSize = 8;

p = malloc(iSize);

return p;

}

Consider this function.
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Example Layout

char *string = "hello";

int iSize;

char *f(void) {

char *p;

iSize = 8;

p = malloc(iSize);

return p;

}

These components are stored in the text section, created by the

compiler at compile time.
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Example Layout

char *string = "hello";

int iSize;

char *f(void) {

char *p;

iSize = 8;

p = malloc(iSize);

return p;

}

This variable is stored in the data section, initialized by the com-

piler at compile time.
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Example Layout

char *string = "hello";

int iSize;

char *f(void) {

char *p;

iSize = 8;

p = malloc(iSize);

return p;

}

This variable is stored in the BSS, provisioned at compile time

and set to zero at run time.
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Example Layout

char *string = "hello";

int iSize;

char *f(void) {

char *p;

iSize = 8;

p = malloc(iSize);

return p;

}

This variable is stored on the stack, created by the compiled code

at run time.
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Example Layout

char *string = "hello";

int iSize;

char *f(void) {

char *p;

iSize = 8;

p = malloc(iSize);

return p;

}

This memory is stored on the heap, allocated at run time and its

address assigned to a variable on the stack.
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Static Allocations

The static allocations, the data and BSS sections, are created

when the program starts.

The data section is copied from the executable into memory.

The BSS is set to its final size and cleared to binary zeroes.

The sizes of both of these sections are known at compile time.

This memory is released only when the program exits!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 17



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Dynamic Allocations

The dynamic allocations, the heap and stack sections, are

resized as the program runs.

Stack frames are created and destroyed as functions are called.

Heap memory is allocated with malloc() et al. and freed with

free().

Un-freed memory is released by the OS when the program ends.
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Stack Operations

31 : 0

Low Addresses

basetop

top 42
i

d

padding

2.0dtop

pos

5
3top

(An empty stack; each row is 32 bits.)
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Stack Operations

31 : 0

Low Addresses

base

top

top 42
i

d

padding

2.0dtop

pos

5
3top

push int i = 42;
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Stack Operations

31 : 0

Low Addresses

base

top
top

42
i

d

padding

2.0dtop

pos

5
3top

push double d = 2.0;

(Remember padding!)

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 21



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Stack Operations

31 : 0

Low Addresses

base

top
top

42
i

d

padding

2.0d

top

pos

5
3top

push struct { int x; int y; } pos = { x = 3, y = 5 };
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Stack Operations

31 : 0

Low Addresses

base

top
top

42
i

d

padding

2.0d

top

pos

5
3top

Stack items are typically referenced with respect to its top.

E.g., d is at top + 8
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Stack Operations

31 : 0

Low Addresses

base

top

top 42
i

d

padding

2.0d

top

pos

5
3

top

pop 20 bytes to remove pos and d

Note that the unused data remains present on the stack.
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Variable Declarations

A variable declaration does two things:

Asks the compiler to reserve space on the stack for data

Names the location of that data

int array [32];

“Make space for 32 integers and call that space array.”

Every non-static local variable is an automatic variable.
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Variable Declarations

A variable declaration does two things:

Asks the compiler to reserve space on the stack for data

Names the location of that data

int array [32];

“Make space for 32 integers and call that space array.”

Every non-static local variable is an automatic variable.
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Variable Declarations

A variable declaration does two things:

Asks the compiler to reserve space on the stack for data

Names the location of that data

int array [32];

“Make space for 32 integers and call that space array.”

Every non-static local variable is an automatic variable.
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Variable Declarations

A variable declaration does two things:

Asks the compiler to reserve space on the stack for data

Names the location of that data

int array [32];

“Make space for 32 integers and call that space array.”

Every non-static local variable is an automatic variable.
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Automatic Variable Lifetime

Automatic variables are:

Guaranteed to be allocated before they are first referenced

Guaranteed to be valid until their enclosing block is done

In many cases they are created when the function is entered.

Placing automatic variables on the stack allows this.
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Automatic Variable Placement

Automatic variables may be

allocated anywhere.

The programmer cannot predict

their order or location.

They may only be in registers!

Their structure will be

preserved.

int i;

struct {

int x; int y;

} pos;

Valid

i
y
x

Valid

y
x
i

Invalid

y
i
x
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Automatic Variable Placement

Automatic variables may be

allocated anywhere.

The programmer cannot predict

their order or location.

They may only be in registers!

Their structure will be

preserved.

int i;

struct {

int x; int y;

} pos;

Valid

i
y
x

Valid

y
x
i

Invalid

y
i
x
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Function Call Nesting

Note that:

Function calls form a tree over the life of a program

Function calls form a stack at any point in time

This is because:

A function may call many functions consecutively

A function can call only one function at a time

These properties directly affect the program stack.
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Function Calls

At its simplest, a function call consists of:

A jump to a new program location

Execution of the function code

A jump back to the calling location

However, many function calls are more complicated. They may:

Allocate automatic variables

Call other functions

Temporarily save registers

…

In these cases, functions require a stack frame.
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Stack Frames

A stack frame1 holds information for a single function invocation.

While the details vary by platform, it will include:

Saved processor registers

Local variables for the current function

Arguments for any called function

The return location for any called function

We will discuss all of these except saved processor registers.

(Maybe we’ll get to those later.)

1You will sometimes see this called an activation record.
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Local Variables

We have previously discussed automatic variables.

Often, all local variables for a function are allocated together.

When the function is entered, it will immediately move the top of

the stack to make room for its local storage.

This portion of the stack frame is then of fixed size.

Its size is often not saved, but recorded in the program

instructions by the compiler.

The location of individual variables are likewise recorded.
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Function Arguments

The platform ABI will determine how arguments are passed.

Normally, it is a combination of registers and stack space.

On x86-64 Linux, the first six 64-bit values will be in registers.

Any additional arguments are pushed onto the stack.

Therefore, many functions have no arguments on the stack.
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Function Arguments Layout

If function arguments are pushed onto the stack, they are

normally pushed in reverse order.

That is, the first function argument is closest to the top.

Among other reasons, this allows for a variable number of

arguments.

Consider printf: it takes 1 or more arguments.

The first format argument tells it how many.
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The Program Counter

The other major item that must be tracked for the function call

stack is the program counter.

The program counter is the address of the machine instruction

the processor is currently executing.

For a function call:

the current program counter is pushed before jumping to

the called function

the called function pops the program counter in order to

return

On some architectures there is a dedicated instruction for this.
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A Stack Frame
Stack Frame

arguments
return addr

From previous frame

saved regs

local vars

arguments

return addr

Current frame

For this frame

For next frame

(Exactly which elements are part of which frame is debatable.)
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A Call Stack

void foo() {

int i = 3;

bar(i);

/* ... */

}

void bar(int i) {

int j = 2;

i = 5 + j;

}

Stack
top

top calling pc

top

calling pc

foo:i
3

top bar:i
3

top foo() pc

top bar:j

foo() pc
2

7
top
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A Call Stack

void foo() {

int i = 3;

bar(i);

/* ... */

}

void bar(int i) {

int j = 2;

i = 5 + j;

}

Stack

top

top calling pc

top

calling pc

foo:i
3

top bar:i
3

top foo() pc

top bar:j

foo() pc
2

7
top

call foo()
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A Call Stack

void foo() {

int i = 3;

bar(i);

/* ... */

}

void bar(int i) {

int j = 2;

i = 5 + j;

}

Stack

top
top

calling pc

top

calling pc

foo:i

3

top bar:i
3

top foo() pc

top bar:j

foo() pc
2

7
top

Reserve space for foo()’s locals
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A Call Stack

void foo() {

int i = 3;

bar(i);

/* ... */

}

void bar(int i) {

int j = 2;

i = 5 + j;

}

Stack

top
top

calling pc

top

calling pc

foo:i
3

top bar:i
3

top foo() pc

top bar:j

foo() pc
2

7
top

Execute foo()
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A Call Stack

void foo() {

int i = 3;

bar(i);

/* ... */

}

void bar(int i) {

int j = 2;

i = 5 + j;

}

Stack

top
top

calling pc

top

calling pc

foo:i
3

top bar:i
3

top foo() pc

top bar:j

foo() pc
2

7
top

Execute foo();

prepare to call bar()
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A Call Stack

void foo() {

int i = 3;

bar(i);

/* ... */

}

void bar(int i) {

int j = 2;

i = 5 + j;

}

Stack

top
top

calling pc

top

calling pc

foo:i
3

top

bar:i
3

top foo() pc

top bar:j

foo() pc
2

7
top

Push PC; call bar()
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A Call Stack

void foo() {

int i = 3;

bar(i);

/* ... */

}

void bar(int i) {

int j = 2;

i = 5 + j;

}

Stack

top
top

calling pc

top

calling pc

foo:i
3

top

bar:i
3

top

foo() pc

top bar:j

foo() pc

2

7
top

Reserve space for bar()’s locals
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A Call Stack

void foo() {

int i = 3;

bar(i);

/* ... */

}

void bar(int i) {

int j = 2;

i = 5 + j;

}

Stack

top
top

calling pc

top

calling pc

foo:i
3

top

bar:i
3

top

foo() pc

top bar:j

foo() pc
2

7
top

Execute bar()
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A Call Stack

void foo() {

int i = 3;

bar(i);

/* ... */

}

void bar(int i) {

int j = 2;

i = 5 + j;

}

Stack

top
top

calling pc

top

calling pc

foo:i
3

top

bar:i

3

top

foo() pc

top bar:j

foo() pc
2

7

top

Execute bar()
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A Call Stack

void foo() {

int i = 3;

bar(i);

/* ... */

}

void bar(int i) {

int j = 2;

i = 5 + j;

}

Stack

top
top

calling pc

top

calling pc

foo:i
3

top bar:i
3

top

foo() pc

top bar:j

foo() pc
2

7
top

Return from bar();

Pop bar()’s stack frame;

Execute foo()
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Summary

POSIX programs are laid out in sections

The stack grows downward

Automatic variables are allocated on the stack

Stack frames track function calls

Items removed from the stack are not cleared

Stack-allocated arguments are how C is call-by-value
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