
Process Anatomy

CSE 220: Systems Programming

Ethan Blanton, Carl Alphonce, & Eric Mikida

Department of Computer Science and Engineering

University at Buffalo



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Planning and Development I

Jean-Cristophe Benoist CC-BY-SA-3.0 (original)

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 2

https://fr.wikipedia.org/wiki/User:Jean-Christophe_BENOIST
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Dualite.jpg


Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Planning and Development II

When writing code, arrange different views of the problem:

Documentation (your handout!)

Diagrams

Pseudocode

Code

Each view will give you different insight.

Compare them against each other!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 3



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Processes

What is a process?

From the text:

[A] process is an instance of a program in execution.

If a program is a set of machine instructions, a process is:

Those instructions

The memory they use

The system resources they access

…

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 4



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Programs

Source code is compiled into an executable.

The program that a process runs is loaded from an executable.

Once loaded, the system provides an execution environment.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 5



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Unix Processes

A Unix process is protected from other processes:

It has its own memory.

It appears to execute on a dedicated CPU.

The system services it uses are dedicated to it.

Hardware assistance is required to maintain this environment.

In particular, virtual memory provides the illusion of a private,

contiguous memory space.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 6



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Basic Layout
A process’s memory is divided

into sections.

These sections represent

different types of information.

Some sections come from the

executable.

Some sections are created at

run time.

The lowest addresses are not

used — specifically so that NULL

remains invalid!

Kernel

Process Stack

Text
(program code)

Data

BSS

Heap

Unmapped

brk

0x0 (NULL)

0xffffffffffffffff

Unmapped

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 7



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Static Data
The lowest sections are known

at compile time.

The text section is the

executable code.

The data and BSS (“block

started by symbol”) sections are

global and static local variables.

Variables in the data section

have initialized values in the

source code.

Variables in the BSS do not.

Kernel

Process Stack

Text
(program code)

Data

BSS

Heap

Unmapped

brk

0x0 (NULL)

0xffffffffffffffff

Unmapped

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 8



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Dynamic Data

The middle sections are

allocated dynamically as the

program runs.

The heap is managed by the

dynamic allocator (malloc()).

The stack contains local

variables and information

necessary for function calls.

These sections begin with zero

size and grow as needed during

execution.

Kernel

Process Stack

Text
(program code)

Data

BSS

Heap

Unmapped

brk

0x0 (NULL)

0xffffffffffffffff

Unmapped

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 9



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Using Sections

Section locations can be valuable debugging information.

The precise locations of sections will vary.

You can assume their relative positions, however!

Recognizing whether a pointer is on the stack, on the heap, or in

the data section can be very valuable.

Recognizing that very small pointers are invalid is even more

valuable!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 10



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Example Layout

char *string = "hello";

int iSize;

char *f(void) {

char *p;

iSize = 8;

p = malloc(iSize);

return p;

}

Consider this function.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 11



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Example Layout

char *string = "hello";

int iSize;

char *f(void) {

char *p;

iSize = 8;

p = malloc(iSize);

return p;

}

These components are stored in the text section, created by the

compiler at compile time.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 12



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Example Layout

char *string = "hello";

int iSize;

char *f(void) {

char *p;

iSize = 8;

p = malloc(iSize);

return p;

}

This variable is stored in the data section, initialized by the com-

piler at compile time.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 13



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Example Layout

char *string = "hello";

int iSize;

char *f(void) {

char *p;

iSize = 8;

p = malloc(iSize);

return p;

}

This variable is stored in the BSS, provisioned at compile time

and set to zero at run time.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 14



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Example Layout

char *string = "hello";

int iSize;

char *f(void) {

char *p;

iSize = 8;

p = malloc(iSize);

return p;

}

This variable is stored on the stack, created by the compiled code

at run time.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 15



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Example Layout

char *string = "hello";

int iSize;

char *f(void) {

char *p;

iSize = 8;

p = malloc(iSize);

return p;

}

This memory is stored on the heap, allocated at run time and its

address assigned to a variable on the stack.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 16



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Static Allocations

The static allocations, the data and BSS sections, are created

when the program starts.

The data section is copied from the executable into memory.

The BSS is set to its final size and cleared to binary zeroes.

The sizes of both of these sections are known at compile time.

This memory is released only when the program exits!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 17



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Dynamic Allocations

The dynamic allocations, the heap and stack sections, are

resized as the program runs.

Stack frames are created and destroyed as functions are called.

Heap memory is allocated with malloc() et al. and freed with

free().

Un-freed memory is released by the OS when the program ends.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 18



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Stack Operations

31 : 0

Low Addresses

basetop

top 42
i

d

padding

2.0dtop

pos

5
3top

(An empty stack; each row is 32 bits.)

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 19



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Stack Operations

31 : 0

Low Addresses

base

top

top 42
i

d

padding

2.0dtop

pos

5
3top

push int i = 42;

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 20



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Stack Operations

31 : 0

Low Addresses

base

top
top

42
i

d

padding

2.0dtop

pos

5
3top

push double d = 2.0;

(Remember padding!)

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 21



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Stack Operations

31 : 0

Low Addresses

base

top
top

42
i

d

padding

2.0d

top

pos

5
3top

push struct { int x; int y; } pos = { x = 3, y = 5 };

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 22



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Stack Operations

31 : 0

Low Addresses

base

top
top

42
i

d

padding

2.0d

top

pos

5
3top

Stack items are typically referenced with respect to its top.

E.g., d is at top + 8

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 23



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Stack Operations

31 : 0

Low Addresses

base

top

top 42
i

d

padding

2.0d

top

pos

5
3

top

pop 20 bytes to remove pos and d

Note that the unused data remains present on the stack.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 24



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Variable Declarations

A variable declaration does two things:

Asks the compiler to reserve space on the stack for data

Names the location of that data

int array [32];

“Make space for 32 integers and call that space array.”

Every non-static local variable is an automatic variable.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 25



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Variable Declarations

A variable declaration does two things:

Asks the compiler to reserve space on the stack for data

Names the location of that data

int array [32];

“Make space for 32 integers and call that space array.”

Every non-static local variable is an automatic variable.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 26



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Variable Declarations

A variable declaration does two things:

Asks the compiler to reserve space on the stack for data

Names the location of that data

int array [32];

“Make space for 32 integers and call that space array.”

Every non-static local variable is an automatic variable.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 27



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Variable Declarations

A variable declaration does two things:

Asks the compiler to reserve space on the stack for data

Names the location of that data

int array [32];

“Make space for 32 integers and call that space array.”

Every non-static local variable is an automatic variable.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 28



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Automatic Variable Lifetime

Automatic variables are:

Guaranteed to be allocated before they are first referenced

Guaranteed to be valid until their enclosing block is done

In many cases they are created when the function is entered.

Placing automatic variables on the stack allows this.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 29



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Automatic Variable Placement

Automatic variables may be

allocated anywhere.

The programmer cannot predict

their order or location.

They may only be in registers!

Their structure will be

preserved.

int i;

struct {

int x; int y;

} pos;

Valid

i
y
x

Valid

y
x
i

Invalid

y
i
x

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 30



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Automatic Variable Placement

Automatic variables may be

allocated anywhere.

The programmer cannot predict

their order or location.

They may only be in registers!

Their structure will be

preserved.

int i;

struct {

int x; int y;

} pos;

Valid

i
y
x

Valid

y
x
i

Invalid

y
i
x

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 31



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Function Call Nesting

Note that:

Function calls form a tree over the life of a program

Function calls form a stack at any point in time

This is because:

A function may call many functions consecutively

A function can call only one function at a time

These properties directly affect the program stack.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 32



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Function Calls

At its simplest, a function call consists of:

A jump to a new program location

Execution of the function code

A jump back to the calling location

However, many function calls are more complicated. They may:

Allocate automatic variables

Call other functions

Temporarily save registers

…

In these cases, functions require a stack frame.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 33



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Stack Frames

A stack frame1 holds information for a single function invocation.

While the details vary by platform, it will include:

Saved processor registers

Local variables for the current function

Arguments for any called function

The return location for any called function

We will discuss all of these except saved processor registers.

(Maybe we’ll get to those later.)

1You will sometimes see this called an activation record.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 34



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Local Variables

We have previously discussed automatic variables.

Often, all local variables for a function are allocated together.

When the function is entered, it will immediately move the top of

the stack to make room for its local storage.

This portion of the stack frame is then of fixed size.

Its size is often not saved, but recorded in the program

instructions by the compiler.

The location of individual variables are likewise recorded.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 35



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Function Arguments

The platform ABI will determine how arguments are passed.

Normally, it is a combination of registers and stack space.

On x86-64 Linux, the first six 64-bit values will be in registers.

Any additional arguments are pushed onto the stack.

Therefore, many functions have no arguments on the stack.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 36



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Function Arguments Layout

If function arguments are pushed onto the stack, they are

normally pushed in reverse order.

That is, the first function argument is closest to the top.

Among other reasons, this allows for a variable number of

arguments.

Consider printf: it takes 1 or more arguments.

The first format argument tells it how many.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 37



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

The Program Counter

The other major item that must be tracked for the function call

stack is the program counter.

The program counter is the address of the machine instruction

the processor is currently executing.

For a function call:

the current program counter is pushed before jumping to

the called function

the called function pops the program counter in order to

return

On some architectures there is a dedicated instruction for this.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 38



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

A Stack Frame
Stack Frame

arguments
return addr

From previous frame

saved regs

local vars

arguments

return addr

Current frame

For this frame

For next frame

(Exactly which elements are part of which frame is debatable.)

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 39



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

A Call Stack

void foo() {

int i = 3;

bar(i);

/* ... */

}

void bar(int i) {

int j = 2;

i = 5 + j;

}

Stack
top

top calling pc

top

calling pc

foo:i
3

top bar:i
3

top foo() pc

top bar:j

foo() pc
2

7
top

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 40



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

A Call Stack

void foo() {

int i = 3;

bar(i);

/* ... */

}

void bar(int i) {

int j = 2;

i = 5 + j;

}

Stack

top

top calling pc

top

calling pc

foo:i
3

top bar:i
3

top foo() pc

top bar:j

foo() pc
2

7
top

call foo()

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 41



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

A Call Stack

void foo() {

int i = 3;

bar(i);

/* ... */

}

void bar(int i) {

int j = 2;

i = 5 + j;

}

Stack

top
top

calling pc

top

calling pc

foo:i

3

top bar:i
3

top foo() pc

top bar:j

foo() pc
2

7
top

Reserve space for foo()’s locals

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 42



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

A Call Stack

void foo() {

int i = 3;

bar(i);

/* ... */

}

void bar(int i) {

int j = 2;

i = 5 + j;

}

Stack

top
top

calling pc

top

calling pc

foo:i
3

top bar:i
3

top foo() pc

top bar:j

foo() pc
2

7
top

Execute foo()

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 43



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

A Call Stack

void foo() {

int i = 3;

bar(i);

/* ... */

}

void bar(int i) {

int j = 2;

i = 5 + j;

}

Stack

top
top

calling pc

top

calling pc

foo:i
3

top bar:i
3

top foo() pc

top bar:j

foo() pc
2

7
top

Execute foo();

prepare to call bar()

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 44



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

A Call Stack

void foo() {

int i = 3;

bar(i);

/* ... */

}

void bar(int i) {

int j = 2;

i = 5 + j;

}

Stack

top
top

calling pc

top

calling pc

foo:i
3

top

bar:i
3

top foo() pc

top bar:j

foo() pc
2

7
top

Push PC; call bar()

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 45



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

A Call Stack

void foo() {

int i = 3;

bar(i);

/* ... */

}

void bar(int i) {

int j = 2;

i = 5 + j;

}

Stack

top
top

calling pc

top

calling pc

foo:i
3

top

bar:i
3

top

foo() pc

top bar:j

foo() pc

2

7
top

Reserve space for bar()’s locals

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 46



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

A Call Stack

void foo() {

int i = 3;

bar(i);

/* ... */

}

void bar(int i) {

int j = 2;

i = 5 + j;

}

Stack

top
top

calling pc

top

calling pc

foo:i
3

top

bar:i
3

top

foo() pc

top bar:j

foo() pc
2

7
top

Execute bar()

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 47



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

A Call Stack

void foo() {

int i = 3;

bar(i);

/* ... */

}

void bar(int i) {

int j = 2;

i = 5 + j;

}

Stack

top
top

calling pc

top

calling pc

foo:i
3

top

bar:i

3

top

foo() pc

top bar:j

foo() pc
2

7

top

Execute bar()

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 48



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

A Call Stack

void foo() {

int i = 3;

bar(i);

/* ... */

}

void bar(int i) {

int j = 2;

i = 5 + j;

}

Stack

top
top

calling pc

top

calling pc

foo:i
3

top bar:i
3

top

foo() pc

top bar:j

foo() pc
2

7
top

Return from bar();

Pop bar()’s stack frame;

Execute foo()

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 49



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

Summary

POSIX programs are laid out in sections

The stack grows downward

Automatic variables are allocated on the stack

Stack frames track function calls

Items removed from the stack are not cleared

Stack-allocated arguments are how C is call-by-value

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 50



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

References I

Required Readings

[2] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Second

Edition. Chapter 4. Prentice Hall, 1988.

Optional Readings

[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s

Perspective. Third Edition. Chapter 3: 3.7 Intro, 3.7.1. Pearson, 2016.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 51



Introduction Memory Layout Memory Management Stack Operations Automatic Variables Functions Summary References

License

Copyright 2018–2024 Ethan Blanton, All Rights Reserved.

Copyright 2024–2024 Eric Mikida, All Rights Reserved.

Copyright 2022–2024 Carl Alphonce, All Rights Reserved.

Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the

author is prohibited.

To retrieve a copy of this material, or related materials, see

https://www.cse.buffalo.edu/~eblanton/.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 52

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Memory Layout
	Memory Management
	Stack Operations
	Automatic Variables
	Functions
	Summary
	References

