
Integers and Integer Representation

CSE 220: Systems Programming

Ethan Blanton, Carl Alphonce, & Eric Mikida

Department of Computer Science and Engineering

University at Buffalo



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Integers

Recall what an integer represents:

Whole numbers (positive and negative) and zero.

This is true in any numeric base.

What does 1038 mean in base 10 (decimal)?

1 · 103 + 0 · 102 + 3 · 101 + 8 · 100

Shifting left by one place multiplies by the base.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 2



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Integer Complications

It seems like integers should be simple.

However, there are complications.

Computers are finite

Different machines use different size integers

There are multiple possible representations

etc.

In this lecture, we will explore some of these issues in C.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 3



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Non-Integers

Non-integer numbers are even more complicated.

How do you represent a fraction, using a 1 or a 0?

Different bases express different rational numbers.

Real numbers are infinite, but computers are finite.

We will only touch on non-integers this semester.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 4



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Hexadecimal

A brief aside: we will be using hexadecimal (“hex”) a lot.

Hex is the base 16 numbering system.

One hex digit ranges from 0 to 15.

Contrast this to decimal, or base 10 —

one decimal digit ranges from 0 to 9.

In computing, hex digits are represented by 0-9 and then A-F.

A = 10 D = 13

B = 11 E = 14

C = 12 F = 15

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 5



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Hexadecimal

A brief aside: we will be using hexadecimal (“hex”) a lot.

Hex is the base 16 numbering system.

One hex digit ranges from 0 to 15.

Contrast this to decimal, or base 10 —

one decimal digit ranges from 0 to 9.

In computing, hex digits are represented by 0-9 and then A-F.

A = 10 D = 13

B = 11 E = 14

C = 12 F = 15

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 6



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Why Hex?

Hexadecimal is used because one hex digit is four bits.

This means that two hex digits represents one 8-bit byte.

On machines with 8-bit-divisible words, this is very convenient.

Hex Bin Hex Bin

0 0000 8 1000

1 0001 9 1001

2 0010 A 1010

3 0011 B 1011

4 0100 C 1100

5 0101 D 1101

6 0110 E 1110

7 0111 F 1111

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 7



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Integer Types

Platform-specific integer types you should know:

char: One character.

short: A short (small) integer

int: An “optimally sized” integer

long: A longer (bigger) integer

long long: An even longer integer

Their sizes are: 8 bits ≤ char ≤ short ≤ int ≤ long ≤ long long

Furthermore:

short, int ≥ 16 bits, long ≥ 32 bits, long long ≥ 64 bits

Whew!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 8



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Integer Modifiers

Every integer type may have modifiers.

Those modifiers include signed and unsigned.

All unmodified integer types except char are signed.

char may be signed or unsigned!

The keyword int may be elided for any type except int.

These two declarations are equivalent:

long long nanoseconds;

signed long long int nanoseconds;

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 9



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Integers of Explicit Size

The confusion of sizes has led to explicitly sized integers.

They live in <stdint.h>

Exact-width types are of the form intN_t.

They are exactly N bits wide; e.g.: int32_t.

Minimum-width types are of the form int_leastN_t.

They are at least N bits wide.

There are also unsigned equivalent types, which start with u:

uint32_t, uint_least8_t

N may be: 8, 16, 32, 64.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 10



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

dump_mem()

In the following slides, we will use the function dump_mem().

We will examine it in detail at some point, but for now:

dump_mem() receives a memory address and number of

bytes

It then prints the hex values of the bytes at that address

Don’t worry too much about its details for now.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 11



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

A Simple Integer

First, a simple integer:

int x = 98303; // hex 0x17fff

dump_mem (&x, sizeof(x));

Output:

ff 7f 01 00

Let’s pull this apart.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 12



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

A Simple Integer

First, a simple integer:

int x = 98303; // hex 0x17fff

dump_mem (&x, sizeof(x));

Output:

ff 7f 01 00

Let’s pull this apart.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 13



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Byte Ordering

Why is 98303, which is 0x17fff, represented by ff 7f 01 00?

The answer is endianness.

Words are organized into bytes in memory — but in what order?

Big Endian: The “big end” comes first.

This is how we write numbers.

Little Endian: The “little end” comes first.

This is how x86 processors (and others) represent integers.

You cannot assume anything about byte order in C!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 14



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Byte Ordering

Why is 98303, which is 0x17fff, represented by ff 7f 01 00?

The answer is endianness.

Words are organized into bytes in memory — but in what order?

Big Endian: The “big end” comes first.

This is how we write numbers.

Little Endian: The “little end” comes first.

This is how x86 processors (and others) represent integers.

You cannot assume anything about byte order in C!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 15



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Sign Extension

char c = 0x80;

int i = c;

dump_mem (&i, sizeof(i));

Output:

80 ff ff ff

0xffffff80? Where did all those one bits come from?!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 16



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Sign Extension

char c = 0x80;

int i = c;

dump_mem (&i, sizeof(i));

Output:

80 ff ff ff

0xffffff80? Where did all those one bits come from?!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 17



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Positive Integers

A formal definition of a positive integer on a modern machine is:

Consider an integer of width w as a vector of bits, x⃗:

x⃗ = xw–1, xw–2, . . . , x0

This vector x⃗ has the decimal value:

x⃗
.
=

w–1∑︂
i=0

xi2
i

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 18



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Calculating Integer Values

Consider the 8-bit binary integer 0010 1011:

0010 1011b = 0 · 27 + 0 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20

= 0 · 128 + 0 · 64 + 1 · 32 + 0 · 16 + 1 · 8 + 0 · 4 + 1 · 2 + 1 · 1
= 32 + 8 + 2 + 1

= 43

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 19



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Negative Integers

Previously, the variable c was sign extended into i.

As previously discussed, integers may be signed or unsigned.

Since integers are just bits, the negative numbers must have

different bits set than their positive counterparts.

There are several typical ways to represent this, the most

common being:

Ones’ complement

Two’s complement

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 20



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Ones’ Complement

Ones’ complement integers represent a negative by inverting

the bit pattern.

Thus, a 32-bit 1:

00000000 00000000 00000000 00000001

And a 32-bit -1:

11111111 11111111 11111111 11111110

Formally, this is like a positive integer, except:

xw–1
.
= –2w–1 + 1

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 21



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Decoding Negative Ones’ Complement

Therefore, 4-bit -1: 1110

1110b = 1 · (–23 + 1) + 1 · 22 + 1 · 21 + 0 · 20

= 1 · –7 + 1 · 4 + 1 · 2 + 0 · 1
= –7 + 4 + 2

= –1

This is fine, except there are two zeroes!:

0000b = 0 · (–23 + 1) + 0 · 22 + 0 · 21 + 0 · 20

1111b = 1 · –23 + 1 · 22 + 1 · 21 + 1 · 20

= –7 + 4 + 2 + 1

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 22



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Decoding Negative Ones’ Complement

Therefore, 4-bit -1: 1110

1110b = 1 · (–23 + 1) + 1 · 22 + 1 · 21 + 0 · 20

= 1 · –7 + 1 · 4 + 1 · 2 + 0 · 1
= –7 + 4 + 2

= –1

This is fine, except there are two zeroes!:

0000b = 0 · (–23 + 1) + 0 · 22 + 0 · 21 + 0 · 20

1111b = 1 · –23 + 1 · 22 + 1 · 21 + 1 · 20

= –7 + 4 + 2 + 1

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 23



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Two’s Complement

Most (modern) machines use two’s complement.

Two’s complement differs slightly from ones’ complement.

Its w – 1th bit is defined as:

xw–1
.
= –2w–1

(Recall that ones’ complement added 1 to this!)

This means there is only one zero — all 1s is -1!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 24



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

4-bit Wide Two’s Complement

01004

0011
3

0010
2

0001

1

0000

0
1111

-1
1110

-2

1101
-3

1100 -4

1011
-5

1010
-6

1001

-7

1000

-8
0111

7
0110

6

0101
5

non-negative

negative

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 25



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Decoding Two’s Complement

Consider 1110 in two’s complement:

1110b = 1 · –23 + 1 · 22 + 1 · 21 + 0 · 20

= –8 + 4 + 2 + 0

= –2

w-bit Two’s complement integers run from –2w–1 to 2w–1 – 1.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 26



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Decoding Two’s Complement

Consider 1110 in two’s complement:

1110b = 1 · –23 + 1 · 22 + 1 · 21 + 0 · 20

= –8 + 4 + 2 + 0

= –2

w-bit Two’s complement integers run from –2w–1 to 2w–1 – 1.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 27



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Negative Integer Bit Patterns

In general, the high-order bit of a negative integer is 1.

In our previous example:

char c = 0x80;

int i = c;

c is signed, and thus equivalent to -128.

It is then sign extended into i by duplicating the high bit to the

left.

This results in an i that also equals -128.

Why?

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 28



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Negative Integer Bit Patterns

In general, the high-order bit of a negative integer is 1.

In our previous example:

char c = 0x80;

int i = c;

c is signed, and thus equivalent to -128.

It is then sign extended into i by duplicating the high bit to the

left.

This results in an i that also equals -128.

Why?

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 29



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Computing c and i

char c = 0x80;

Here, c is -128 plus no other bits set.

int i = c;

What is i if we sign extend?

11111111 11111111 11111111 10000000

What is the value of that two’s complement integer?

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 30



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Computing c and i

char c = 0x80;

Here, c is -128 plus no other bits set.

int i = c;

What is i if we sign extend?

11111111 11111111 11111111 10000000

What is the value of that two’s complement integer?

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 31



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Computing Sign Extension

11111111 11111111 11111111 10000000

Remember that the high 1 bit indicates –2w–1, or –231, here.

We then add in each of the other bits as positive values.

Every bit from 27 through 230 is set, and 20 through 26 are unset:

–231 + 230 + 229 + . . . + 28 + 27

…this sums to -128!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 32



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Computing Sign Extension

11111111 11111111 11111111 10000000

Remember that the high 1 bit indicates –2w–1, or –231, here.

We then add in each of the other bits as positive values.

Every bit from 27 through 230 is set, and 20 through 26 are unset:

–231 + 230 + 229 + . . . + 28 + 27

…this sums to -128!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 33



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Computing Sign Extension

11111111 11111111 11111111 10000000

Remember that the high 1 bit indicates –2w–1, or –231, here.

We then add in each of the other bits as positive values.

Every bit from 27 through 230 is set, and 20 through 26 are unset:

–231 + 230 + 229 + . . . + 28 + 27

…this sums to -128!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 34



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Representing Fractional Values

What if we want to represent non-integers?

We can assign certain bits to 2–1, 2–2, etc.

This is called fixed point.

Fixed point assigns a specific number of bits to:

fractions

whole numbers

This works well for numbers of moderate size and precision.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 35



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Floating Point

What if you want more range?

You can move the (binary) point, like scientific notation:

x × 2y

... but how do you encode the point?

There is no . in 0 or 1!

We use special patterns of bits called floating point.1

You’ll learn more in CSE 341.

1Remember that there’s also no -.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 36



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Summary

The CPU and memory deal only in words

Buses and registers have native word widths

Integers have different:

Bit widths

Endianness

Sign representation

Ones’ and two’s complement representation

Bits also have to represent fractional values.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 37



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

Next Time …

Scalar vs. aggregate types

C structures

Memory alignment

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 38



Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

References I

Required Readings

[2] Ian Weinand. Computer Science from the Bottom Up. Chapter 2, part 1 through 1.1.3,

part 1 1.2, part 2 except 2.3.2. URL: https://www.bottomupcs.com/index.html.

Optional Readings

[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s

Perspective. Third Edition. Chapter 2: Intro, 2.1 through 2.1.3, 2.2. Pearson, 2016.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 39

https://www.bottomupcs.com/index.html


Introduction Hexadecimal Integer Types Examining Memory Integers Non-Integers Summary References

License

Copyright 2019–2024 Ethan Blanton, All Rights Reserved.

Copyright 2024–2024 Eric Mikida, All Rights Reserved.

Copyright 2022–2024 Carl Alphonce, All Rights Reserved.

Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the

author is prohibited.

To retrieve a copy of this material, or related materials, see

https://www.cse.buffalo.edu/~eblanton/.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 40

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Hexadecimal
	Integer Types
	Examining Memory
	Integers
	Non-Integers
	Summary
	References

