
Processes, Threads, and Concurrency

CSE 220: Systems Programming

Ethan Blanton, Carl Alphonce, & Eric Mikida

Department of Computer Science and Engineering

University at Buffalo



Introduction Concurrency Processes Threads Summary References

Logical Control Flows

Computer Systems: A Programmer’s Perspective defines a

logical control flow as:

[A] series of program counter values that [correspond] exclusively to

instructions contained in [a program’s] executable object file or in

shared objects linked to [it] dynamically at run time.

The system provides each program with the illusion that its

logical control flow runs on a dedicated computer.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 2



Introduction Concurrency Processes Threads Summary References

Concurrency

Concurrency is when more than one logical control flow is

present in the system at the same time.

Concurrent flows are logical control flows whose execution

overlap in time.

Concurrent flows can be present even with only one processor.

Multiple flows can coexist on one processor via multitasking.

Multitasking time slices between multiple logical control flows.

Each flow runs for a brief period of time, then is interrupted

A context switch changes control to another flow

The new flow runs for a brief period of time (repeat)

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 3



Introduction Concurrency Processes Threads Summary References

The Process

Our fundamental logical control flow abstraction is the process.

A process encapsulates:

A set of instructions

The memory they use

The system resources they access

…

All interactions with other processes are through the OS.

This is due to the dedicated computer model.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 4



Introduction Concurrency Processes Threads Summary References

Threads

Threads provide a conceptually similar abstraction to processes.

Threads also represent a logical control flow.

However:

One process may have multiple threads

Two threads within one process are much less isolated than

two processes, or threads in different processes

In particular, threads within a process share a memory map.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 5



Introduction Concurrency Processes Threads Summary References

Lecture Question

Ask a review question!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 6



Introduction Concurrency Processes Threads Summary References

Multitasking and Multiprocessing

Multitasking Multiprocessing

A B C X Y Z

T
im
e

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 7



Introduction Concurrency Processes Threads Summary References

Multitasking

Concurrent flows in a multitasking environment do not execute

simultaneously.

However, from the point of view of any given flow, other flows

are making progress while it executes.

Consider:

Process A is executing at PC location L

A context switch occurs, removing A from the CPU and

switching to Process B

Process B does something

A context switch occurs, switching to Process A at location L

Process A will observe progress in Process B before and after L.
©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 8



Introduction Concurrency Processes Threads Summary References

Multiprocessing

Concurrent flows in a multiprocessing environment may execute

simultaneously.

Even with multiprocessing, multitasking may also be used.

This is typical for modern systems.

The operating system provides the illusion of a dedicated

machine even to processes running simultaneously.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 9



Introduction Concurrency Processes Threads Summary References

Concurrency and Separation

Concurrent flows may be related or unrelated in:

Design

Implementation

Memory space

Resource requirements

Timing requirements

…

When concurrent flows are completely unrelated, the dedicated

computer abstraction provided by modern systems is both

mostly complete and very appropriate.

When they are more related, it gets more complicated.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 10



Introduction Concurrency Processes Threads Summary References

Motivation for Concurrency

There are many reasons to use concurrent flows:

Making computational progress while blocked on a slow

device

Achieving rapid response to a particular condition (e.g.,

human input, external event)

Utilizing multiple physical processors

…

In addition, simply taking advantage of the dedicated computer

model to simplify design and implementation.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 11



Introduction Concurrency Processes Threads Summary References

Processes

We have already seen process-level concurrency.

(Consider the chat client and server!)

Multiple processes may:

Proceed independently on unrelated tasks

Proceed independently on related tasks

Cooperate on tasks

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 12



Introduction Concurrency Processes Threads Summary References

Designing for Multiple Processes

A multi-process design can be robust and reliable.

The isolation in memory and resources provided by the system

protects processes from certain faults in their neighbors.

Communication and cooperation can be expensive, though:

Separate memory spaces protect, but also divide

Many inter-process communication (IPC) mechanisms

require interaction with the OS, which is slow

Most modern web browsers use multiple processes for this

reason!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 13



Introduction Concurrency Processes Threads Summary References

Lecture Question

Do a lecture question!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 14



Introduction Concurrency Processes Threads Summary References

Threads

Thread are like processes that share almost everything.

They:

Share memory

Share system resources (such as open files)

Run the same executable code

…

Switching between threads is often less expensive than

processes in a multitasking system.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 15



Introduction Concurrency Processes Threads Summary References

Threads vs. Processes

P1

Kernel

Heap
BSS
Data

Stack

P2

Kernel

Heap
BSS
Data

Stack

Processes
P3

Kernel

Heap
BSS
Data

T1 Stack

T2 Stack

Threads

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 16



Introduction Concurrency Processes Threads Summary References

Threading Advantages

Threads are much cheaper than processes:

They share memory maps

They share permissions and operating system resources

Context switches between two threads in the same process

are much less involved than between processes

Inter-thread communication is trivial, due to shared memory.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 17



Introduction Concurrency Processes Threads Summary References

Threading Disadvantages

Concurrent access to shared resources is very tricky.

Many established APIs are not thread-safe.

(Over the next few lectures, think about a thread-safe malloc()!1)

Breaking down the dedicated computer model makes reasoning

about process behavior harder.

1But you are not required to implement one!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 18



Introduction Concurrency Processes Threads Summary References

Threading Use Cases

Threading is often appropriate for tasks which require:

Very rapid change of control between parallel tasks

Lots of large, shared data structures

Blocking operations that do not inhibit other progress

More rapid computation than can be performed on a single

CPU

Multiple processes may also solve some of these problems.

The costs of threading must be weighed against its advantages

on a case-by-case basis.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 19



Introduction Concurrency Processes Threads Summary References

Summary

Logical control flows are execution steps through programs.

Concurrency is multiple logical control flows at one time.

Multiprocessing versus Multitasking

Processes versus Threads

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 20



Introduction Concurrency Processes Threads Summary References

Next Time …

Races and Synchronization

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 21



Introduction Concurrency Processes Threads Summary References

References I

Required Readings

[1] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operating Systems: Three

Easy Pieces. Chapter 26: Intro, 26.1. Arpaci-Dusseau Books. URL:

https://pages.cs.wisc.edu/~remzi/OSTEP/.

Optional Readings

[2] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s

Perspective. Third Edition. Chapter 8: 8.2; Chapter 12: Intro, 12.1, 12.3. Pearson, 2016.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 22

https://pages.cs.wisc.edu/~remzi/OSTEP/


Introduction Concurrency Processes Threads Summary References

License

Copyright 2019–2024 Ethan Blanton, All Rights Reserved.

Copyright 2024–2024 Eric Mikida, All Rights Reserved.

Copyright 2022–2024 Carl Alphonce, All Rights Reserved.

Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the

author is prohibited.

To retrieve a copy of this material, or related materials, see

https://www.cse.buffalo.edu/~eblanton/.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 23

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Concurrency
	Processes
	Threads
	Summary
	References

