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Logical Control Flows

Computer Systems: A Programmer’s Perspective defines a

logical control flow as:

[A] series of program counter values that [correspond] exclusively to

instructions contained in [a program’s] executable object file or in

shared objects linked to [it] dynamically at run time.

The system provides each program with the illusion that its

logical control flow runs on a dedicated computer.
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Concurrency

Concurrency is when more than one logical control flow is

present in the system at the same time.

Concurrent flows are logical control flows whose execution

overlap in time.

Concurrent flows can be present even with only one processor.

Multiple flows can coexist on one processor via multitasking.

Multitasking time slices between multiple logical control flows.

Each flow runs for a brief period of time, then is interrupted

A context switch changes control to another flow

The new flow runs for a brief period of time (repeat)

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 3



Introduction Concurrency Processes Threads Summary References

The Process

Our fundamental logical control flow abstraction is the process.

A process encapsulates:

A set of instructions

The memory they use

The system resources they access

…

All interactions with other processes are through the OS.

This is due to the dedicated computer model.
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Threads

Threads provide a conceptually similar abstraction to processes.

Threads also represent a logical control flow.

However:

One process may have multiple threads

Two threads within one process are much less isolated than

two processes, or threads in different processes

In particular, threads within a process share a memory map.
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Lecture Question

Ask a review question!
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Multitasking and Multiprocessing

Multitasking Multiprocessing
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Multitasking

Concurrent flows in a multitasking environment do not execute

simultaneously.

However, from the point of view of any given flow, other flows

are making progress while it executes.

Consider:

Process A is executing at PC location L

A context switch occurs, removing A from the CPU and

switching to Process B

Process B does something

A context switch occurs, switching to Process A at location L

Process A will observe progress in Process B before and after L.
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Multiprocessing

Concurrent flows in a multiprocessing environment may execute

simultaneously.

Even with multiprocessing, multitasking may also be used.

This is typical for modern systems.

The operating system provides the illusion of a dedicated

machine even to processes running simultaneously.
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Concurrency and Separation

Concurrent flows may be related or unrelated in:

Design

Implementation

Memory space

Resource requirements

Timing requirements

…

When concurrent flows are completely unrelated, the dedicated

computer abstraction provided by modern systems is both

mostly complete and very appropriate.

When they are more related, it gets more complicated.
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Motivation for Concurrency

There are many reasons to use concurrent flows:

Making computational progress while blocked on a slow

device

Achieving rapid response to a particular condition (e.g.,

human input, external event)

Utilizing multiple physical processors

…

In addition, simply taking advantage of the dedicated computer

model to simplify design and implementation.
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Processes

We have already seen process-level concurrency.

(Consider the chat client and server!)

Multiple processes may:

Proceed independently on unrelated tasks

Proceed independently on related tasks

Cooperate on tasks
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Designing for Multiple Processes

A multi-process design can be robust and reliable.

The isolation in memory and resources provided by the system

protects processes from certain faults in their neighbors.

Communication and cooperation can be expensive, though:

Separate memory spaces protect, but also divide

Many inter-process communication (IPC) mechanisms

require interaction with the OS, which is slow

Most modern web browsers use multiple processes for this

reason!
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Lecture Question

Do a lecture question!
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Threads

Thread are like processes that share almost everything.

They:

Share memory

Share system resources (such as open files)

Run the same executable code

…

Switching between threads is often less expensive than

processes in a multitasking system.
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Threads vs. Processes
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Threading Advantages

Threads are much cheaper than processes:

They share memory maps

They share permissions and operating system resources

Context switches between two threads in the same process

are much less involved than between processes

Inter-thread communication is trivial, due to shared memory.
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Threading Disadvantages

Concurrent access to shared resources is very tricky.

Many established APIs are not thread-safe.

(Over the next few lectures, think about a thread-safe malloc()!1)

Breaking down the dedicated computer model makes reasoning

about process behavior harder.

1But you are not required to implement one!
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Threading Use Cases

Threading is often appropriate for tasks which require:

Very rapid change of control between parallel tasks

Lots of large, shared data structures

Blocking operations that do not inhibit other progress

More rapid computation than can be performed on a single

CPU

Multiple processes may also solve some of these problems.

The costs of threading must be weighed against its advantages

on a case-by-case basis.
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Summary

Logical control flows are execution steps through programs.

Concurrency is multiple logical control flows at one time.

Multiprocessing versus Multitasking

Processes versus Threads
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Next Time …

Races and Synchronization
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