
The Kernel and User Mode

CSE 220: Systems Programming

Ethan Blanton, Carl Alphonce, & Eric Mikida

Department of Computer Science and Engineering

University at Buffalo



Introduction Protection Domains Exceptions System Calls Summary References

The Operating System Kernel

We have talked about the operating system or the kernel.

The operating system manages the hardware.

On our systems, it also:

Supports the dedicated computer model

Provides protection against misbehaving programs

The kernel is the code of the inner core of the OS.

In some sense the OS and Kernel are just programs.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 2



Introduction Protection Domains Exceptions System Calls Summary References

User Mode Programs

Our programs run in user mode.

User mode programs appear to run on a dedicated computer.

This means that shared resources must be managed for them.

User mode programs ask the kernel for access to shared

resources.

If the user mode program has a dedicated computer … where is

the kernel?

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 3



Introduction Protection Domains Exceptions System Calls Summary References

Exceptions

Exceptions are another type of control flow.

Unlike if, for, etc., they:

Allow non-local (to another function or even program)

transfer of control

Can be asynchronous (triggered by an external event)

Exceptions may be caused by hardware or software.

The handling of exceptions requires both.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 4



Introduction Protection Domains Exceptions System Calls Summary References

System Calls

A system call is a special kind of exception.

It allows a program to:

“break out” of its dedicated computer, and

contact the kernel

System calls are synchronous but non-local transfer of control.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 5



Introduction Protection Domains Exceptions System Calls Summary References

Lecture Question

Ask a review question!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 6



Introduction Protection Domains Exceptions System Calls Summary References

The Kernel and Supervisor Mode

The kernel does not have a dedicated computer.¶

The kernel has the real computer!

It runs in a special mode (often called supervisor mode).

It can:

Access hardware directly

Manipulate virtual memory mappings

Modify process memory

…

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 7



Introduction Protection Domains Exceptions System Calls Summary References

Protection Domains

Protection domains represent the amount of privilege to access

the “real computer” allowed to a process.

Supervisor mode is a special protection domain.

User mode is a less-privileged protection domain.

Protection domains are a hardware capability.

User programs run in user mode, the kernel in supervisor mode.

The hardware enforces access restrictions on user mode.

Some hardware has more than two protection domains.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 8



Introduction Protection Domains Exceptions System Calls Summary References

Changing Protection Domains

Changing protection domains is a supervisor mode operation.

This prevents programs from breaking out of user mode.

It also means there must be a safe way to switch domains!

We will see how exceptions provide a controlled mode change.

Changing protection domains can be slow and expensive.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 9



Introduction Protection Domains Exceptions System Calls Summary References

Exception Flow

When an exception occurs, control passes to the kernel.

If control is already in the kernel, it changes location.

If control is in a user mode program, it switches contexts.

User mode Kernel

Exception at In Kernel takes over

Program resumes at In+1

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 10



Introduction Protection Domains Exceptions System Calls Summary References

Types of Exceptions

There are four major types of exceptions:

Interrupts are asynchronous notifications from hardware

Traps are synchronous exceptions caused by software

intentionally

Faults are synchronous exceptions caused by software due

to potentially recoverable errors

Aborts are synchronous exceptions caused by

unrecoverable errors outside of software control

We have only seen faults thus far (remember page faults?).

We are currently most interested in traps.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 11



Introduction Protection Domains Exceptions System Calls Summary References

Interrupts

Interrupts are a way for hardware to signal the OS.

Examples:

A network packet has arrived

A clock has “ticked”

A disk has completed a read

Interrupts are handled by the kernel.

We will not discuss them more, although they are in the text.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 12



Introduction Protection Domains Exceptions System Calls Summary References

Faults

We have already seen faults!

Segmentation fault (core dumped)

Faults are program errors that may be recoverable.

When a fault occurs, the kernel may:

try to fix it

notify the program

It may also terminate the program or shut down.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 13



Introduction Protection Domains Exceptions System Calls Summary References

Fault Recovery

Some faults are not true errors:

e.g., page faults to bring in new pages.

Other faults may be recoverable by the program:

Divide by zero

Segmentation fault

Bus error

…

Each of these is an error, but might not be fatal.

For example, a calculation might usefully return some concrete

value if it reaches a divide-by-zero.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 14



Introduction Protection Domains Exceptions System Calls Summary References

Aborts

Aborts are relatively uninteresting to us.

They represent some unrecoverable error that often ends in:

Rebooting the computer

Shutting down the computer

Terminating some or all processes

etc.

Aborts are handled by the kernel.

We will not discuss them more.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 15



Introduction Protection Domains Exceptions System Calls Summary References

Traps

Traps are software-generated exceptions.

(They are sometimes called software interrupts.)

They are generated by special instructions run by a program.

Their critical feature is:

Trap handlers are run by the kernel in supervisor mode.

This means that a user mode program can call into the kernel.

This provides a safe method of changing protection domains.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 16



Introduction Protection Domains Exceptions System Calls Summary References

Lecture Question

Ask a lecture question!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 17



Introduction Protection Domains Exceptions System Calls Summary References

System Calls

System calls are:

traps

used by user-mode programs

to invoke kernel functions

Many platforms have a dedicated hardware instruction for this:

ARM: svc

x86-64: syscall

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 18



Introduction Protection Domains Exceptions System Calls Summary References

System Call Handling

When the system call instruction runs, the hardware:

Switches to supervisor mode

Invokes a specific kernel routine

When the kernel receives a system call, it:

Identifies what the program wants

Verifies the program arguments

Authenticates the request

Performs the operation (or indicates failure)

This allows the kernel to decide whether a program can access

something outside its “dedicated computer”.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 19



Introduction Protection Domains Exceptions System Calls Summary References

The Implications of the Trap

User mode cannot control what code the kernel runs.

This is:

controlled by the hardware

configured by the kernel

This is how modern operating systems protect themselves from

malicious or buggy programs.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 20



Introduction Protection Domains Exceptions System Calls Summary References

Invoking a System call

We have invoked system calls!

open(), sbrk(), mmap(), etc. are system calls!

Anything outside the dedicated computer needs a system call.

We never used the syscall instruction.

The C library makes system calls look like a C function.

All functions in manual section 2 are system calls.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 21



Introduction Protection Domains Exceptions System Calls Summary References

Overhead

System calls are very slow.

They can take tens to hundreds of thousands of clock cycles.

This is due to:

Changing protection domains

Validating arguments

Adjusting memory mappings

Cache effects

…

Programs should make fewer system calls when practical.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 22



Introduction Protection Domains Exceptions System Calls Summary References

Summary

Exceptions are special control flow

Protection domains control access to hardware resources

Exception handlers run in supervisor mode in the kernel

Special trap exceptions can be used to implement system

calls

System calls allow user mode programs to request access

to the kernel

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 23



Introduction Protection Domains Exceptions System Calls Summary References

References I

Required Readings

[2] Ian Weinand. Computer Science from the Bottom Up. Chapter 4: part 1; part 2 except 2.1

and its subsections; part 3 through 3.1. URL: https://www.bottomupcs.com/index.html.

Optional Readings

[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s

Perspective. Third Edition. Chapter 8: Intro, 8.1, 8.2. Pearson, 2016.

[3] Ian Weinand. Computer Science from the Bottom Up. Chapter 4. URL:

https://www.bottomupcs.com/index.html.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 24

https://www.bottomupcs.com/index.html
https://www.bottomupcs.com/index.html


Introduction Protection Domains Exceptions System Calls Summary References

License

Copyright 2019–2024 Ethan Blanton, All Rights Reserved.

Copyright 2024–2024 Eric Mikida, All Rights Reserved.

Copyright 2022–2024 Carl Alphonce, All Rights Reserved.

Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the

author is prohibited.

To retrieve a copy of this material, or related materials, see

https://www.cse.buffalo.edu/~eblanton/.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 25

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Protection Domains
	Exceptions
	System Calls
	Summary
	References

