
Caching and Locality

CSE 220: Systems Programming

Ethan Blanton, Carl Alphonce, & Eric Mikida

Department of Computer Science and Engineering

University at Buffalo



Introduction Storage Technologies Locality Caching Implications Summary References

Memory Structure

Memory technologies form a hierarchy of storage layers.

We ordinarily number these layers as L1, L2, …

The lowest-numbered layers are fastest and closest to the CPU.

Memory accesses interact with different layers at different times.

This complexity of structure and notation is about performance.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 2



Introduction Storage Technologies Locality Caching Implications Summary References

The Memory Hierarchy

Regs

L1 cache 
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger, 
slower, 
and 
cheaper 
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files 
retrieved from disks 
on remote servers

L2 cache 
(SRAM)

L1 cache holds cache lines 
retrieved from the L2 cache.

CPU registers hold words 
retrieved from the L1 cache.

L2 cache holds cache lines
retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and 
costlier
(per byte)
storage 
devices

L3 cache 
(SRAM)

L3 cache holds cache lines
retrieved from main memory.

L6:

Main memory holds 
disk blocks retrieved 
from local disks.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 3



Introduction Storage Technologies Locality Caching Implications Summary References

Memory Latency

The CPU is up to a thousand times faster than the main memory!

Memory speed is complicated, but:

A modern processor has a clock cycle of about 0.3 ns.

Many simple operations can complete in one clock cycle.¶

Modern RAM can fetch a random location in about 10 ns.

This means a best case memory access is 30+ times longer

than a CPU operation.

In reality it’s typically several times longer than that.

This speed difference is growing larger.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 4



Introduction Storage Technologies Locality Caching Implications Summary References

Caching

Caching is temporarily storing data for faster access.

Typically this means storing it:

closer to the CPU (electronically speaking)

in a faster storage technology

A small amount of faster storage can make a big difference!

However, we must use it well.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 5



Introduction Storage Technologies Locality Caching Implications Summary References

Why Cache?

The bottom line:

Fast storage is expensive.

Large storage is slow.

Caching lets us pretend that our large, slow storage is fast.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 6



Introduction Storage Technologies Locality Caching Implications Summary References

Lecture Question

Ask a review question!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 7



Introduction Storage Technologies Locality Caching Implications Summary References

Storage Technologies

A typical computer has several types of storage.

Volatile storage is lost when the power is turned off:

CPU registers

Static RAM (SRAM)

Dynamic RAM (DRAM)

Nonvolatile storage retains its data indefinitely:¶

Flash memory

Magnetic disks

Optical disks

Each technology has potentially very different properties.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 8



Introduction Storage Technologies Locality Caching Implications Summary References

CPU Registers

CPU Registers are single words of RAM.

They are attached directly to the CPU logic.¶

This means they can be accessed within a single CPU cycle.

They are the fastest storage we will discuss.

CPU registers are typically named or numbered.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 9



Introduction Storage Technologies Locality Caching Implications Summary References

Static RAM

Static RAM is the next fastest type of memory we will discuss.

SRAM is constructed from transistor latches.

It is quite fast, but also quite expensive per bit.

The closest caches to the CPU, L1 and L2, are typically SRAM.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 10



Introduction Storage Technologies Locality Caching Implications Summary References

Dynamic RAM

Dynamic RAM is the slowest and least expensive RAM.

It is made from transistors and capacitors.¶

This is much cheaper per bit, but requires refresh.

During refresh the RAM cannot be accessed.

Setting up the circuits that read/write the RAM takes time.

Reading a bit is also destructive, requiring it to be re-written.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 11



Introduction Storage Technologies Locality Caching Implications Summary References

DRAM Refresh

Capacitors store charge.

DRAM stores charge in a capacitor to encode a 1 bit.

Capacitors also leak their charge.

Therefore, the one bits must be frequently recharged.

A DRAM controller manages this.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 12



Introduction Storage Technologies Locality Caching Implications Summary References

Non-Volatile Storage

Non-volatile storage tends to be much slower than RAM.

Some forms of SSD (Flash) are quite fast, but still not RAM fast.

FRAM is fast non-volatile RAM, but very expensive.

Bulk data is still stored on physically slow magnetic media.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 13



Introduction Storage Technologies Locality Caching Implications Summary References

Maintaining Speed

How can a CPU maintain speed with such slow RAM?

The key is locality.

There are two important types of locality:

Temporal locality:

Recently-used locations are likely to be used again soon.

Spatial locality:

Newly-used locations are likely to be nearby recently-used

locations.

These properties mean that small amounts of fast storage can

make a big difference.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 14



Introduction Storage Technologies Locality Caching Implications Summary References

Locality Example

int sum = 0;

for (int i = 0; i < N; i++) {

sum += array[i];

}

Temporal locality:

sum is accessed frequently

i is accessed frequently

Spatial locality:

Sequential locations in array are accessed

The instructions for the code are sequential

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 15



Introduction Storage Technologies Locality Caching Implications Summary References

Caching and Locality

This locality principle is what makes caching effective.

Recently used and nearby data can be stored in fast storage.

Other data can remain in slower storage.

This allows the fast, expensive storage to be small …

Yet many accesses are to that small storage!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 16



Introduction Storage Technologies Locality Caching Implications Summary References

Cache Hits and Misses

Cache is organized in blocks of fixed size.

When reading data, a cache can hit or miss.

A cache hit is when a block of data is in the cache.

In this case, the read is fast!

A cache miss is when a block of data isn’t cached.

In this case, the next slower cache must be checked.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 17



Introduction Storage Technologies Locality Caching Implications Summary References

Caching the Caches

L1 stores blocks from L2, L2 stores blocks from L3, etc.

Software can also cache:

Operating systems store disk blocks in RAM.

Web browsers store network files on disk.

Some caches are transparent: you don’t know they’re there.

Some caches are explicitly managed.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 18



Introduction Storage Technologies Locality Caching Implications Summary References

Lecture Question

Ask a lecture question!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 19



Introduction Storage Technologies Locality Caching Implications Summary References

Designing for Caching

Remember this from week two? This is caching!
void copyij(int src [2048][2048] ,

int dst [2048][2048]) {

for (int i = 0; i < 2048; i++) {

for (int j = 0; j < 2048; j++)

{

dst[i][j] = src[i][j];

}

}

}

3.8 ms

void copyji(int src [2048][2048] ,

int dst [2048][2048]) {

for (int j = 0; j < 2048; j++) {

for (int i = 0; i < 2048; i++)

{

dst[i][j] = src[i][j];

}

}

}

72.2 ms

In copyji(), spatial locality is much poorer!

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 20



Introduction Storage Technologies Locality Caching Implications Summary References

Writing Cache-Friendly Code

Your code will be faster if:

You keep your working set (the items used for a particular

task) small.

You pay attention to locality.

This doesn’t mean you can’t use large data!

(But it does mean you should try to use it sequentially.)

This doesn’t mean you can’t use random access!

(But it does mean you should try to do it over small data.)

Compartmentalize the code that isn’t cache-friendly.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 21



Introduction Storage Technologies Locality Caching Implications Summary References

Honing Locality Sense

You will want to improve your sense of locality.

Does this code have good locality? Could it be better?

Algorithms matter most, but constant factors make a difference.

Always write code with the priorities:

1. Correctness

2. Understandability

3. Performance

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 22



Introduction Storage Technologies Locality Caching Implications Summary References

Summary

The CPU is much faster than memory or disks.

The difference in speeds is growing.

Programs exhibit locality:

Spatial

Temporal

Caching depends on locality to improve performance.

Writing good programs requires understanding locality.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 23



Introduction Storage Technologies Locality Caching Implications Summary References

References I

Required Readings

[2] Ian Weinand. Computer Science from the Bottom Up. Chapter 3: section 2 except 2.2.1.

URL: https://www.bottomupcs.com/index.html.

Optional Readings

[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s

Perspective. Third Edition. Chapter 6: Intro, 6.1-6.3, 6.5-6.7. Pearson, 2016.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 24

https://www.bottomupcs.com/index.html


Introduction Storage Technologies Locality Caching Implications Summary References

License

Copyright 2020–2024 Ethan Blanton, All Rights Reserved.

Copyright 2024–2024 Eric Mikida, All Rights Reserved.

Copyright 2022–2024 Carl Alphonce, All Rights Reserved.

Copyright 2019 Karthik Dantu, All Rights Reserved.

Reproduction of this material without written consent of the

author is prohibited.

To retrieve a copy of this material, or related materials, see

https://www.cse.buffalo.edu/~eblanton/.

©2024 Ethan Blanton, Carl Alphonce, & Eric Mikida / CSE 220: Systems Programming 25

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Storage Technologies
	Locality
	Caching
	Implications
	Summary
	References

