
CSE 410: Systems Programming
Concurrency

Ethan Blanton

Department of Computer Science and Engineering
University at Buffalo



Introduction Processes Threads Summary References

Logical Control Flows

The text defines a logical control flow as:

[A] series of program counter values that [correspond] exclusively to
instructions contained in [a program’s] executable object file or in

shared objects linked to [it] dynamically at run time.

The system provides each program with the illusion that its
logical control flow runs on a dedicated computer.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Processes Threads Summary References

Concurrency
Concurrency is when more than one logical control flow is
present in the system at the same time.

Concurrent flows are logical control flows whose execution
overlap in time.

Concurrent flows can be present even with only one processor.

Multiple flows can coexist on one processor via multitasking.

Multitasking time slices between multiple logical control flows.
Each flow runs for a brief period of time, then is interrupted
A context switch changes control to another flow
The new flow runs for a brief period of time (repeat)

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Processes Threads Summary References

Multitasking and Multiprocessing

Multitasking Multiprocessing
A B C X Y Z

Ti
m
e

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Processes Threads Summary References

Multitasking
Concurrent flows in a multitasking environment do not execute
simultaneously.

However, from the point of view of any given flow, other flows
are making progress while it executes.

Consider:
Process A is executing at PC location L
A context switch occurs, removing A from the CPU and
switching to Process B
Process B does something
A context switch occurs, switching to Process A at location L

Process A will observe progress in Process B before and after L.
©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Processes Threads Summary References

Concurrency and Separation
Concurrent flows may be related or unrelated in:

Design
Implementation
Memory space
Resource requirements
Timing requirements
…

When concurrent flows are completely unrelated, the dedicated
computer abstraction provided by modern systems is both
mostly complete and very appropriate.

When concurrent flows are more related, it gets more
complicated.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Processes Threads Summary References

Motivation for Concurrency

There are many reasons to use concurrent flows:
Making computational progress while blocked on a slow
device
Achieving rapid response to a particular condition (e.g.,
human input, external event)
Utilizing multiple physical processors
…

In addition, simply taking advantage of the dedicated computer
model to simplify design and implementation.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Processes Threads Summary References

Processes

We have already seen process-level concurrency.

Multiple processes may:
Proceed independently on unrelated tasks
Proceed independently on related tasks
Cooperate on tasks

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Processes Threads Summary References

Independent, Unrelated Tasks

Independent, unrelated tasks are things like:
Your windowing environment versus a terminal session
A code editor and a music player

These tasks need not be aware of each other, and fit the
dedicated computer model very nicely.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Processes Threads Summary References

Independent, Related Tasks

Independent, related tasks might be:
A shell pipeline
Make and the compiler

These are programs that may or may not have been designed
together, but are doing related work within the dedicated
computer model.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Processes Threads Summary References

Cooperating Tasks

Cooperating tasks could be:
The child of your shell before exec()
Forked processes handling individual clients or blocking
tasks

These processes work closely together and may use the
dedicated computer model for isolation, but are closely aware of
each other.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Processes Threads Summary References

Designing for Multiple Processes

A multi-process design can be robust and reliable.

The isolation in memory and resources provided by the system
protects processes from certain faults in their neighbors.

Communication and cooperation can be expensive, though:
Separate memory spaces protect, but also divide
Many IPC mechanisms require system calls

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Processes Threads Summary References

Interprocess Communication
We have seen some IPC methods:

Process exit status
Pipes
Signals
Files

Others are available:
Sockets (network communication)
Shared memory
Message queues
Semaphores
Condition variables
…

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Processes Threads Summary References

Threads

Threads provide a conceptually similar abstraction to processes.

Threads also represent a logical control flow.

However:
One process may have multiple threads
Two threads within one process are much less isolated than
two processes, or threads in different processes

In particular, threads within a process share a memory map.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Processes Threads Summary References

Threads vs. Processes

P1
Kernel

Heap
BSS
Data
Text

Stack

P2
Kernel

Heap
BSS
Data
Text

Stack

Processes
P3

Kernel

Heap
BSS
Data
Text

T1 Stack

T2 Stack

Threads

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Processes Threads Summary References

Threading Advantages

Threads are much cheaper than processes:
They share memory maps
They share permissions and kernel resources
Context switches between two threads in the same process
are much less involved than between processes

Inter-thread communication is trivial, due to shared memory.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Processes Threads Summary References

Threading Disadvantages

Concurrent access to shared resources is very tricky.

Many established APIs are not thread-safe.

Breaking down the dedicated computer model makes reasoning
about process behavior harder.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Processes Threads Summary References

Threading Use Cases
Threading is often appropriate for tasks which require:

Very rapid change of control between parallel tasks
Lots of large, shared data structures
Blocking operations that do not inhibit other progress
More rapid computation than can be performed on a single
CPU

Multiple processes may also solve some of these problems.

The costs of threading must be weighed against its advantages
on a case-by-case basis.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Processes Threads Summary References

Inter-Thread Communication
Because threads share memory, they can easily share state.

Nonetheless, there are inter-thread communication
mechanisms:

Pipes
Message queues
Signals
Semaphores

Where these overlap with IPC mechanisms, they:
Sometimes have special concerns
May require separate APIs

E.g., kill() versus pthread_kill() for inter-thread signals.
©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Processes Threads Summary References

Summary

Concurrent flows appear to run simultaneously.
Multitasking is switching between concurrent flows on one
processor.
Concurrency makes some things simpler, but has special
concerns.
Both processes and threads provide abstractions for
concurrent flows.
Threads are cheaper but less isolated than processes.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Processes Threads Summary References

References I
Required Readings
[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s

Perspective. Third Edition. Chapter 8: 8.2; Chapter 12: Intro, 12.1, 12.3-12.7. Pearson,
2016.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Processes Threads Summary References

License

Copyright 2018 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2018 Ethan Blanton / CSE 410: Systems Programming

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Processes
	Threads
	Summary

