
CSE 410: Systems Programming
The Process Environment

Ethan Blanton

Department of Computer Science and Engineering
University at Buffalo



Introduction System Calls Process Lifecycle More Environment Summary References

Last Time

Programs vs. processes
ELF
Process segments (text, data, BSS)
Heap and stack

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

The Process Environment
In addition to its memory, a process has a complex environment.

Kernel services:
System calls
Filesystem
Signals

Its lifecycle:
Creation
Execution of a new program
Destruction

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

Kernel Services
The kernel performs services on behalf of processes.

Recall that POSIX systems provide:
Memory isolation
The illusion of a dedicated CPU

To enforce this, hardware assistance is required.

Only the kernel can configure those hardware features!

Therefore, processes must request access to shared resources
from the kernel.

This is accomplished via system calls.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

Process Lifecycle

Process memory spaces must be created by the kernel.

Therefore, the process must be created by the kernel.

Once created, the process must execute some program.

When finished, the process’s resources must be cleaned up:
Memory
Files
Other shared resources

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

Kernel/Userspace Separation
The kernel manages all shared resources in a POSIX system.

Memory
Files
Hardware devices (mouse, keyboard, display)
…

The kernel runs in supervisor mode1 to give it access to these.

Processes run in user mode in an environment created by the
kernel that we call userspace.

1This term varies from architecture to architecture. On x86_64, we often
say “ring 0”.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

Protection Domains

Supervisor mode and user mode are protection domains.

Moving between protection domains requires hardware
assistance.

Therefore, system calls cannot be simple functions.

On our x86_64 Linux system, system calls are accessed via a
software interrupt.

This is a hardware-supported feature.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

Invoking a Function
A normal function call involves:

Placing function arguments in particular registers or on the
stack in known positions
Placing the current program counter on the stack
Changing the program counter to the first instruction of the
called function

When the function completes, it:
Places its return value in a particular register
Retrieves the previous program counter from the stack
Changes the program counter to the calling location

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

Invoking a System Call
A system call has a special invocation:

The system call number is placed in a particular register
The system call arguments are placed in other registers
The the syscall processor instruction is invoked

Then the CPU hardware:
Changes protection domains
Jumps to a well-known location

The system call executes, and then:
Places its return value in a particular register
Invokes the sysret processor instruction

The CPU hardware:
Changes back to user mode
Jumps to the calling function

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

System Calls on Other Platforms

Note that system calls used specific processor instructions.

Different processors, and different models of compatible
processors, may use different instructions.

For example, x86 32-bit uses int 0x80 or sysenter.

In addition, different operating systems may be different!

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

Crossing Protection Domains

The kernel memory map differs from a process memory map.

If a system call (e.g., read()) passes a pointer to the kernel, the
kernel must do extra work to use it.

It must check that the pointer is mapped in the process
It must ensure that the entire buffer is valid
It may have to check that the process can write at that
address

This prevents system crashes and security exploits.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

System Call Functions
If system calls are so complicated, how can a process call a
system call like write() directly?

The C library provides wrapper functions for system calls.

These wrappers:
Set up the appropriate registers
Call the necessary processor instructions
Retrieve the return value
Return normally

This is purely for convenience.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

System Call Functions
If system calls are so complicated, how can a process call a
system call like write() directly?
The C library provides wrapper functions for system calls.

These wrappers:
Set up the appropriate registers
Call the necessary processor instructions
Retrieve the return value
Return normally

This is purely for convenience.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

Process Creation
UNIX historically had only one way to create a new process:
the fork() system call.

fork() duplicates the calling process by (among other things):
Creating a new process ID (PID) and kernel structures
Creating a new memory space for the new process
Copying the entire contents of the current process into the
new memory space
Returning execution from the fork() call in both processes

In the original process, fork() returns the new PID.

In the new process, fork() returns zero.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

Process Families

Every POSIX process2 has a parent process.

A process may have child processes if it has called fork() or
posix_spawn().
If a process’s parent process terminates, it becomes an orphan.
An orphaned process will be adopted by init.
The family of all processes forms a tree.

2Except the special process init, which always has PID 1.
©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

The fork()/exec() Model
Note that a forked process must run the same program as its
creator!

POSIX also provides a system call to execute a program: exec()
exec() replaces the current process image with a new program.

The fork()/exec() model has advantages and disadvantages.

Many systems provide a single call to:
Create a new process
Execute a new program in that process

Modern POSIX systems provide posix_spawn() for this purpose.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

exec()
The exec() system call is actually a whole family of calls that
load a named executable file.

execl("/bin/ls", "ls", "-F", "/", NULL);
Output:
afs/
bin/
boot/
dev/
etc/
...

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

Fork in Action

pid_t pid = fork();

if (pid == 0) {
puts("In child");

} else {
printf("In parent , child PID = %d\n", pid);

}

Output:
In parent , child PID = 9095
In child

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

Fork in Action

pid_t pid = fork();

if (pid == 0) {
puts("In child");

} else {
printf("In parent , child PID = %d\n", pid);

}

Output:
In parent , child PID = 9095
In child

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

Fork in Action

In parent , child PID = 9095
In child

Note that it appears that both branches of the if were taken.

In fact, both branches were taken.

…but only one of them in each of two processes.

Note that the order here is not predictable.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

Fork in Action

In parent , child PID = 9095
In child

Note that it appears that both branches of the if were taken.

In fact, both branches were taken.

…but only one of them in each of two processes.

Note that the order here is not predictable.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

Process Termination
A process terminates when:

It calls the system call exit()
It returns from main()
It recieves and and fails to catch certain signals
(e.g., SIGSEGV; more on signals later!)

In the first two cases, it returns a chosen value:
The integer argument to exit()
The integer return value of main()

In the third case, it returns a special value indicating that it was
killed by a signal (and which signal).

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

Detecting Process Termination

The wait() family of system calls allows a program to detect
process termination.

A process can wait() for any of its child processes.
This is called reaping.
If a process terminates and is not reaped, it becomes a
zombie.
Zombie processes consume (minimal) system resources.
Orphan processes will be reaped by init.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

Wait in Action
pid_t pid = fork();
if (pid == 0) {

puts("In child");
exit (42);

} else {
int status;
waitpid(pid , &status , 0);
printf("Child exited with status %d\n",

WEXITSTATUS(status));
}

Output:
In child
Child exited with status 42

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

Wait in Action

In child
Child exited with status 42

This order is deterministic.

The call to waitpid() will not return until the child terminates.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

Other Environmental Features

A process’s environment also includes:
A current working directory
Environment variables
Open files

These are maintained in cooperation with the kernel.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

Current Working Directory

Every process has a current working directory.

All relative file paths are with respect to this directory.

This directory can be:
set with the system call chdir()
retrieved with getcwd().

There is also a function getwd(), but it is dangerous and should
not be used.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

Environment Variables

Every process has environment variables.
They are stored in a global array called environ
A single variable can be retrieved by getenv()
A variable can be set with setenv()

environ is duplicated by the kernel on fork()

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

Environment Variables in Action

char *homedir = getenv("HOME");
puts(homedir);

Output:
/home/elb

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

Open Files

The kernel maintains open files for every process.

Each open file is identified by an integer file descriptor.

The position of the most recent read or write is maintained for
each file descriptor.

File descriptors are duplicated on fork.
(This is how both the child and parent wrote in the fork() example!)
These duplicated descriptors share their position information.

A file descriptor can be optionally closed on exec().

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

Summary
The kernel manages shared resources
Userspace and the kernel are in different protection
domains
Processes request services from the kernel using system
calls
UNIX processes are created with fork()
The exec() system call loads a new program
The kernel manages other state for processes, such as:

The current directory
Environment variables
Open files

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

Next Time …

Dynamic Allocator Project

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

References I
Required Readings
[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s

Perspective. Third Edition. Chapter 8: 8.2, 8.4. Pearson, 2016.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction System Calls Process Lifecycle More Environment Summary References

License

Copyright 2018 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2018 Ethan Blanton / CSE 410: Systems Programming

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	System Calls
	Process Lifecycle
	More Environment
	Summary

