
CSE 410: Systems Programming
Functions and Automatic Variables

Ethan Blanton

Department of Computer Science and Engineering
University at Buffalo



Introduction Automatic Variables Functions Summary References

Stack Manipulations

Function calls and automatic variables use the stack.

Automatic variables are variables declared inside a function.

Usage of the stack is platform-specific, and part of the
application binary interface (ABI).

As previously discussed, stack memory is implicitly allocated.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

The Stack — Again
A reminder: the stack grows downward in memory.

The base of the stack is at some high address.

The top of the stack is at a lower address.

Stack operations:
push: Move the top of the stack down to make room for an
item, then place it at the top.
pop: Remove an item from the stack by moving the top up
above it.

The stack is last in, first out (LIFO):
Only the most recently pushed item(s) can be popped!

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

Stack Operations
31 : 0

Low Addresses

basetop

top 42 i

d

padding

2.0dtop
pos

5
3top

(An empty stack; each row is 32 bits.)

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

Stack Operations
31 : 0

Low Addresses

base

top

top 42 i

d

padding

2.0dtop
pos

5
3top

push int i = 42;

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

Stack Operations
31 : 0

Low Addresses

base

top
top

42 i

d

padding

2.0dtop

pos
5
3top

push double d = 2.0;
(Remember padding!)

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

Stack Operations
31 : 0

Low Addresses

base

top
top

42 i

d

padding

2.0d

top

pos
5
3top

push struct { int x = 3; int y = 5; } pos;

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

Stack Operations
31 : 0

Low Addresses

base

top
top

42 i

d

padding

2.0d

top

pos
5
3top

Stack items are typically referenced with respect to its top.
E.g., d is at top + 8

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

Stack Operations
31 : 0

Low Addresses

base

top

top 42 i

d

padding

2.0d

top
pos

5
3

top

pop 20 bytes to remove pos and d
Note that the unused data remains present on the stack.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

Variable Declarations

A variable declaration does two things:
Asks the compiler to reserve space on the stack for data
Names the location of that data

int array [32];

“Make space for 32 integers and call that space array.”

Every non-static local variable is an automatic variable.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

Variable Declarations

A variable declaration does two things:
Asks the compiler to reserve space on the stack for data
Names the location of that data

int array [32];

“Make space for 32 integers and call that space array.”

Every non-static local variable is an automatic variable.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

Variable Declarations

A variable declaration does two things:
Asks the compiler to reserve space on the stack for data
Names the location of that data

int array [32];

“Make space for 32 integers and call that space array.”

Every non-static local variable is an automatic variable.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

Variable Declarations

A variable declaration does two things:
Asks the compiler to reserve space on the stack for data
Names the location of that data

int array [32];

“Make space for 32 integers and call that space array.”
Every non-static local variable is an automatic variable.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

Automatic Variable Lifetime

Automatic variables are:
Guaranteed to be allocated before they are first referenced
Guaranteed to be valid until their enclosing block is done

In many cases they are created when the function is entered.

Placing automatic variables on the stack allows this.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

Automatic Variable Placement

Automatic variables may be
allocated anywhere.

The programmer cannot predict
their order or location.

They may only be in registers!

Their structure will be
preserved.

int i;
struct {

int x; int y;
} pos;

Valid
i
y
x

Valid
y
x
i

Invalid
y
i
x

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

Automatic Variable Placement

Automatic variables may be
allocated anywhere.

The programmer cannot predict
their order or location.

They may only be in registers!

Their structure will be
preserved.

int i;
struct {

int x; int y;
} pos;

Valid
i
y
x

Valid
y
x
i

Invalid
y
i
x

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

Function Call Nesting

Note that:
Function calls form a tree over the life of a program
Function calls form a stack at any point in time

This is because:
A function may call many functions consecutively
A function can call only one function at a time

These properties directly affect the program stack.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

Function Calls
At its simplest, a function call consists of:

A jump to a new program location
Execution of the function code
A jump back to the calling location

However, many function calls are more complicated. They may:
Allocate automatic variables
Call other functions
Temporarily save registers
…

In these cases, functions require a stack frame.
©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

Stack Frames

A stack frame1 holds information for a single function invocation.

While the details vary by platform, it will include:
Saved processor registers
Local variables for the current function
Arguments for any called function
The return location for any called function

We will discuss all of these except saved processor registers.
(Maybe we’ll get to those later.)

1You will sometimes see this called an activation record.
©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

Local Variables

We have previously discussed automatic variables.

Often, all local variables for a function are allocated together.

When the function is entered, it will immediately move the top of
the stack to make room for its local storage.

This portion of the stack frame is then of fixed size.

Its size is often not saved, but recorded in the program
instructions by the compiler.

The location of individual variables are likewise recorded.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

Function Arguments

The platform ABI will determine how arguments are passed.

Normally, it is a combination of registers and stack space.

On x86-64 Linux, the first six 64 bit values are passed in
registers.
Any additional arguments are pushed onto the stack.

Therefore, many functions have no arguments on the stack.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

Function Arguments Layout

If function arguments are pushed onto the stack, they are
normally pushed in reverse order.

That is, the first function argument is closest to the top.

Among other reasons, this allows for a variable number of
arguments.

Consider printf: it takes 1 or more arguments.
The first format argument tells it how many.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

The Program Counter
The other major item that must be tracked for the function call
stack is the program counter.

The program counter is the address of the machine instruction
the processor is currently executing.

For a function call:
the current program counter is pushed before jumping to
the called function
the called function pops the program counter in order to
return

On some architectures there is a dedicated instruction for this.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

A Stack Frame
Stack Frame
arguments
return addr

From previous frame

saved regs

local vars

arguments

return addr

Current frame

For this frame

For next frame

(Exactly which elements are part of which frame is negotiable.)
©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

A Call Stack
void foo() {

int i = 3;

bar(i);
/* ... */

}

void bar(int i) {
int j = 2;

i = 5 + j;
}

Stacktop

top calling pc
top

calling pc
foo:i3

top bar:i3
top foo() pc
top bar:j

foo() pc
2
7top

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

A Call Stack
void foo() {

int i = 3;

bar(i);
/* ... */

}

void bar(int i) {
int j = 2;

i = 5 + j;
}

Stack

top

top calling pc

top
calling pc

foo:i3
top bar:i3
top foo() pc
top bar:j

foo() pc
2
7top

call foo()

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

A Call Stack
void foo() {

int i = 3;

bar(i);
/* ... */

}

void bar(int i) {
int j = 2;

i = 5 + j;
}

Stack

top
top

calling pc
top

calling pc
foo:i

3
top bar:i3
top foo() pc
top bar:j

foo() pc
2
7top

Reserve space for foo()’s locals

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

A Call Stack
void foo() {

int i = 3;

bar(i);
/* ... */

}

void bar(int i) {
int j = 2;

i = 5 + j;
}

Stack

top
top

calling pc
top

calling pc
foo:i3

top bar:i3
top foo() pc
top bar:j

foo() pc
2
7top

Execute foo()

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

A Call Stack
void foo() {

int i = 3;

bar(i);
/* ... */

}

void bar(int i) {
int j = 2;

i = 5 + j;
}

Stack

top
top

calling pc

top

calling pc
foo:i3

top bar:i3

top foo() pc
top bar:j

foo() pc
2
7top

Execute foo();
prepare to call bar()

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

A Call Stack
void foo() {

int i = 3;

bar(i);
/* ... */

}

void bar(int i) {
int j = 2;

i = 5 + j;
}

Stack

top
top

calling pc

top

calling pc
foo:i3

top

bar:i3
top foo() pc

top bar:j
foo() pc

2
7top

Push PC; call bar()

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

A Call Stack
void foo() {

int i = 3;

bar(i);
/* ... */

}

void bar(int i) {
int j = 2;

i = 5 + j;
}

Stack

top
top

calling pc

top

calling pc
foo:i3

top

bar:i3

top

foo() pc
top bar:j

foo() pc

2
7top

Reserve space for bar()’s locals

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

A Call Stack
void foo() {

int i = 3;

bar(i);
/* ... */

}

void bar(int i) {
int j = 2;

i = 5 + j;
}

Stack

top
top

calling pc

top

calling pc
foo:i3

top

bar:i3

top

foo() pc
top bar:j

foo() pc
2

7top

Execute bar()

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

A Call Stack
void foo() {

int i = 3;

bar(i);
/* ... */

}

void bar(int i) {
int j = 2;

i = 5 + j;
}

Stack

top
top

calling pc

top

calling pc
foo:i3

top

bar:i

3
top

foo() pc
top bar:j

foo() pc
2
7

top

Execute bar()

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

A Call Stack
void foo() {

int i = 3;

bar(i);
/* ... */

}

void bar(int i) {
int j = 2;

i = 5 + j;
}

Stack

top
top

calling pc

top

calling pc
foo:i3

top bar:i3
top

foo() pc

top bar:j

foo() pc
2
7top

Return from bar();
Pop bar()’s stack frame;
Execute foo()

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

Summary

Automatic variables are allocated on the stack.
Stack frames track function calls.
The stack grows downward.
Items removed from the stack are not cleared.
Stack-allocated arguments are why C is call-by-value.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

Next Time …

…

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

References I
Required Readings
[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s

Perspective. Third Edition. Chapter 3: 3.7 Intro, 3.7.1. Pearson, 2016.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Automatic Variables Functions Summary References

License

Copyright 2018 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2018 Ethan Blanton / CSE 410: Systems Programming

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Automatic Variables
	Functions
	Summary

