
CSE 410: Systems Programming
Input and Output

Ethan Blanton

Department of Computer Science and Engineering
University at Buffalo

Introduction UNIX I/O Standard I/O Buffering Summary References

I/O Kernel Services

We have seen some text I/O using the C Standard Library.
fread()
fgets()
printf()
…

However, all I/O is built on kernel system calls.

In this lecture, we’ll look at those services vs. standard I/O.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

Everything is a File
These services are particularly important on UNIX systems.

On UNIX, “everything is a file”.

Many devices and services are accessed by opening device
nodes that behave like files.

Examples:
/dev/null: Always readable, contains no data. Always
writable, discards anything written to it.
/dev/urandom: Always readable, reads a cryptographically
secure stream of random data.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

File Descriptors

All access to files is through file descriptors.

A file descriptor is a small integer representing an open file in a
particular process.

There are three “standard” file descriptors:
0: standard input
1: standard output
2: standard error

…sound familiar? (stdin, stdout, stderr)

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

File Modes
Every file on a POSIX system has an owner and group.

File permissions are handled by mode bits.1

Mode bits are of the form: rwxrwxrwx
The rwx triplets are user, group, and other permissions.

The user bits apply to the file’s owner.
The group bits apply to members of the file’s group.
The other bits apply to all other users.

r means read, w means write, x execute.

1Modern POSIX systems also have access control lists.
©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

Mode Examples
File modes are normally represented as octal numbers.
Octal numbers range from 0-7 and are three bits long.

rwxrwxrwx
Examples:

750 (111101000b): rwxr-x---
User can read, write, execute; group can read and execute;
others have no access.
664 (110110100b): rw-rw-r--
User and group can read and write, others can read.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

System Call Failures

Kernel I/O system calls (indeed, most system calls) return a
negative integer on failure.

When this happens, the global variable errno is set to a reason.

Include errno.h to define errno in your code.

The functions perror() and strerror() produce a
human-readable error from errno.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

Opening Files

There are two2 calls to open a file on a POSIX system:
#include <fcntl.h>

int open(const char *path , int flags , mode_t mode);
int creat(const char *path , mode_t mode);

The creat() system call is exactly like calling:
open(path, O_CREAT|O_WRONLY|O_TRUNC, mode);
Both functions return a filedescriptor on success.

2…OK, three.
©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

Open Flags
int open(const char *path, int flags, mode_t mode);
The flags parameter controls how open() behaves:

O_RDONLY: Open read-only
O_WRONLY: Open write-only
O_RDWR: Open for reading and writing
O_CREAT: When writing, create the file if it doesn’t exist
O_EXCL: When creating a file, fail if it already exists
O_APPEND: When writing, start at the end of the file
O_TRUC: When writing, truncate the file to 0 bytes
O_CLOEXEC: Close this file on exec()

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

O_CREAT|O_EXCL

The combination of flags O_CREAT|O_EXCL allows for exclusive
access among cooperating processes.

The kernel will create the file if and only if it doesn’t already exist.

This is an atomic action:
An atomic action appears to be indivisible from the outside.

If every process uses O_CREAT|O_EXCL for a file, the file can be
used as a lock.
(More about locking later …)

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

Reading
#include <unistd.h>

int read(int fd, void *buffer , size_t bytes);

The read() system call reads data from an open file.

It reads raw bytes with no translation!

In particular, it will (maybe) not read a NUL-terminated string.

Its return value is:
0: end of file
> 0: bytes read; EOF if < bytes
< 0: error

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

Writing

#include <unistd.h>

int write(int fd, const void *buffer , size_t bytes);
The write() sytem call writes data to an open file.

Like read(), it deals in raw binary data.

Its return value is:
≥ 0: bytes written; full disk / etc. if < bytes
< 0: error

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

Closing File Descriptors

#include <unistd.h>

int close(int fd);

An open file can be closed with the close() system call.

Using a descriptor after close is an error.

A closed descriptor may be reused by subsequent opens.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

UNIX I/O Example
#include <unistd.h>
#include <fcntl.h>

int main(int argc , char *argv []) {
char buf [1024];
int fd, bytes;

if ((fd = open(argv[1], O_RDONLY)) < 0)
{ return -1; }

while ((bytes = read(fd , buf , sizeof(buf))) > 0) {
if (write(1, buf , bytes) < 0) {

return -1;
}

}
return bytes >= 0;

}
©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

What Standard?

If UNIX I/O is part of the POSIX Standard …

Standard I/O is part of the C Standard.

Non-POSIX systems will still have standard I/O!

On UNIX systems, the standard I/O functions wrap UNIX I/O.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

Opening Streams

A standard I/O stream wraps a file descriptor.

#include <stdio.h>

FILE *fopen(const char *path , const char *mode);
FILE *fdopen(int fd, const char *mode);

fopen() opens a file, fdopen() wraps an open file descriptor.

The mode parameter here confusingly corresponds to open flags.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

Stream Modes
FILE *fopen(const char *path , const char *mode);
FILE *fdopen(int fd, const char *mode);

A stream can be opened for various purposes, according to
mode:

"r": reading
"w": writing, with truncation
"a": writing, without truncation (append)
"r+": reading and writing, without truncation
"w+": reading and writing, with truncation

Write modes always create the file if necessary.
©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

Binary I/O

The standard I/O functions may perform transformations.

They may assume that they operate on text files.

You can open for binary I/O using "b" after the mode character:
fopen("somefile", "rb");
On POSIX systems, the "b" is ignored.

This is a feature of the C Standard that is unused on POSIX
systems.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

Reading and Writing
#include <stdio.h>

size_t fread(void *dest , size_t size , size_t nmemb ,
FILE *fp);

size_t fwrite(const void *buf , size_t size , size_t
nmemb , FILE *fp);

These functions read and write binary data.
(This is in contrast to the string I/O functions.)

Both write in terms of items of size bytes.
The return value is:

the number of items read/written (up to nmemb)
0 on error or EOF

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

Errors and EOF

Unlike UNIX I/O, errors and EOF return the same value.

There are two functions provided to detect errors and EOF:
int feof(FILE *fp);
int ferror(FILE *fp);

These functions return non-zero if EOF or an error has occurred.

clearerr() will reset the error/EOF status of a stream:
void clearerr(FILE *fp);

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

Standard I/O Example
#include <stdio.h>

int main(int argc , char *argv []) {
char buf [1024];
FILE *fp;
int bytes;

if ((fp = fopen(argv[1], "r")) == NULL)
{ return -1; }

while (!feof(fp) &&
(bytes = fread(buf , 1, sizeof(buf), fp)) > 0) {

if (fwrite(buf , 1, bytes , stdout) == 0) {
return -1;

}
}
return ferror(fp) || ferror(stdout);

}
©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

System Call Overhead

The overhead of calling a system call is often not small.

This overhead is due to the cost of:
Changing protection domains
Validating pointers
Adjusting memory maps
…

It is better to make fewer system calls that do more work.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

Standard I/O Buffering
The standard I/O functions use buffering to reduce overhead.

For example, fread() for 1 byte might read a full disk block.

This has important implications for correctness!

For example, device I/O may require very precise read/write
sizes.

Write buffering can cause short writes.
Buffer flushing fixes this short write problem:

int fflush(FILE *fp);

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

Buffering and Performance: UNIX I/O

int fd = open("megabyte.dat", O_RDONLY);
int total;
unsigned char c;

while (read(fd, &c, 1) == 1) {
total += c;

}
Time:
Real time elapsed: 0:00.58
System time used : 0.41
User time used : 0.16

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

Buffering and Performance: Standard I/O

FILE *fp = fopen("megabyte.dat", "rb");
int total;
unsigned char c;

while (! ferror(fp) && fread (&c, 1, 1, fp) == 1) {
total += c;

}
Time:
Real time elapsed: 0:00.02
System time used : 0.00
User time used : 0.02

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

What’s the Difference?
read():
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
100.00 0.009763 0 1048578 read

0.00 0.000000 0 3 open
0.00 0.000000 0 2 close

------ ----------- ----------- --------- --------- ----------------
100.00 0.009763 1048583 total

fread():
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------

0.00 0.000000 0 258 read
0.00 0.000000 0 3 open
0.00 0.000000 0 2 close

------ ----------- ----------- --------- --------- ----------------
100.00 0.000000 263 total

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

Buffering Mechanism

When the user requests a small read, the standard library
makes a larger read.

For example, our reads of one byte turn into 4 kB reads.

The standard library buffers the remaining data in memory.

Future reads for buffered data read from memory.

Reads for data not in the buffer cause a new buffer to be fetched.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

Buffer Example

fread(&len , sizeof(len), 1, fp);
data = malloc(len);
fread(&data , 1, len , fp);

Standard I/O buffer for fp:

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

Buffer Example

fread(&len , sizeof(len), 1, fp);
data = malloc(len);
fread(&data , 1, len , fp);

Standard I/O buffer for fp:

First, fread reads a buffer of data from fp.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

Buffer Example

fread(&len , sizeof(len), 1, fp);
data = malloc(len);
fread(&data , 1, len , fp);

Standard I/O buffer for fp:

Then it returns sizeof(size_t) bytes from that buffer.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

Buffer Example

fread(&len , sizeof(len), 1, fp);
data = malloc(len);
fread(&data , 1, len , fp);

Standard I/O buffer for fp:

The next read reads only from the buffer.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

Summary

UNIX I/O is defined by the POSIX Standard
Standard I/O is defined by the C Standard
The kernel tracks open files with file descriptors
All file I/O goes through the kernel
The standard I/O library is buffered

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

Next Time …

…

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

References I
Required Readings
[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s

Perspective. Third Edition. Chapter 10: 10.1-10.4, 10.10-10.12. Pearson, 2016.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction UNIX I/O Standard I/O Buffering Summary References

License

Copyright 2018 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2018 Ethan Blanton / CSE 410: Systems Programming

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	UNIX I/O
	Standard I/O
	Buffering
	Summary

