
CSE 410: Systems Programming
Dynamic Allocator Project

Ethan Blanton

Department of Computer Science and Engineering
University at Buffalo



Introduction Bookkeeping Two Views of the Heap Coalescing Summary References

The Standard Allocator

The standard allocator provides a convenient method to:
Allocate memory on demand
Release memory when it is no longer needed

The UNIX system calls for memory management either:
require the application to do extra bookkeeping work, or
do not reliably allow for releasing memory.

In particular, the user need not track allocation sizes when using
the standard allocator.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Bookkeeping Two Views of the Heap Coalescing Summary References

The Standard Allocator Interface
There are three allocation functions in the standard allocator:

void *malloc(size_t size);
Allocates size bytes of memory.
void *calloc(size_t nmemb, size_t size);
Allocates an array of nmemb elements of size bytes each,
then zeroes the entire array.
void *realloc(void *ptr, size_t size);
Behaves like malloc() if ptr is NULL, otherwise adjusts the
allocation of ptr to be size bytes if possible. If this is not
possible, it creates a new allocation of size bytes and
copies the contents of ptr into the new allocation.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Bookkeeping Two Views of the Heap Coalescing Summary References

Freeing Memory from the Standard Allocator

Any allocation made by the standard allocator can be freed with
free().
void free(void *ptr);
This will return the freed memory to the heap.

Freed memory may be used again for future allocations.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Bookkeeping Two Views of the Heap Coalescing Summary References

Allocation Sizes
Note that free() and realloc() must both know allocation sizes.

free() must return memory to the heap
realloc() might return memory to the heap, might copy
memory, or might adjust an existing allocation size

Note also that the allocator-returned pointers:
Allow the user to use memory starting immediately at the
pointer
Don’t return any other user-visible metadata

This dictates that object size is stored somewhere else.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Bookkeeping Two Views of the Heap Coalescing Summary References

Space Between Allocations
The space between allocations can be used for metadata.

In particular, the space immediately before an allocation:
Is unlikely to be accidentally accessed
Is at a fixed offset from the allocation pointer

Contrast to the space after an allocation:
Likely to be corrupted by array overruns
At a variable offset from the allocation pointer

By making allocations somewhat larger and using the extra
space to store metadata, an allocator can provide easy, simple
interfaces.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Bookkeeping Two Views of the Heap Coalescing Summary References

Accessing Metadata Before the Allocation
Pointer math can be used to access allocation metadata.

For example, if the allocation size is the pointer word before an
allocation:
#include <stdint.h>

void free(int *ptr) {
uintptr_t *sizeptr = ptr - sizeof(uintptr_t);
uintptr_t size = *sizeptr;
...

(Normally, of course, you wouldn’t do that in two steps…)

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Bookkeeping Two Views of the Heap Coalescing Summary References

Project Heap Structure

In your project, blocks (whether allocated or free) have a header
and a footer.

Both are 8 bytes (one pointer word) in size.

Blocks are side-by-side in address space on the heap.

Each free block is tracked by the allocator.
Allocated blocks are the responsibility of the application.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Bookkeeping Two Views of the Heap Coalescing Summary References

The Heap as an Array

Allocated Free

0x080c0000

0x80c2000

256B256B 512B 1024B

2048B

2048B

2048B

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Bookkeeping Two Views of the Heap Coalescing Summary References

An Allocated Block

Allocated
32B

Application Memory
16B

Allocated
32B

Returned pointer

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Bookkeeping Two Views of the Heap Coalescing Summary References

A Free Block

Free
32B

next
NULL

Free
32B

Free list pointer

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Bookkeeping Two Views of the Heap Coalescing Summary References

Free Lists

1024

0
1
2
3
4
5

7
6

8
9
10
11

32
64
128
256
512

2048

U
n
u
se
d

32/f 32/f 32/f

256/f

1024/f 1024/f

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Bookkeeping Two Views of the Heap Coalescing Summary References

Threaded Heap

0x080c0000

0x80c2000

256B256B

256B

512B 1024B

2048B

NULL

2048B

NULL

1024B

NULL

512B 256B

256B

NULL

256B

[8] [9] [10] [11]

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Bookkeeping Two Views of the Heap Coalescing Summary References

Threaded Heap

0x080c0000

0x80c2000

256B

256B

256B 512B 1024B

2048B

NULL

2048B

NULL

1024B

NULL

512B

256B

256B

NULL

256B

[8] [9] [10] [11]

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Bookkeeping Two Views of the Heap Coalescing Summary References

Threaded Heap

0x080c0000

0x80c2000

256B

256B

256B 512B 1024B

2048B

NULL

2048B

NULL

1024B

NULL

512B

256B

256B

NULL

256B

[8] [9] [10] [11]

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Bookkeeping Two Views of the Heap Coalescing Summary References

Threaded Heap

0x080c0000

0x80c2000

256B

256B

256B 512B 1024B

2048B

NULL

2048B

NULL

1024B

NULL

512B

256B

256B

NULL

256B

[8] [9] [10] [11]

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Bookkeeping Two Views of the Heap Coalescing Summary References

Threaded Heap

0x080c0000

0x80c2000

256B

256B

256B 512B 1024B

2048B

NULL

2048B

NULL

1024B

NULL

512B

256B

256B

NULL

256B

[8] [9] [10] [11]

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Bookkeeping Two Views of the Heap Coalescing Summary References

Threaded Heap

0x080c0000

0x80c2000

256B

256B

256B 512B 1024B

2048B

NULL 2048B

NULL

1024B

NULL

512B

256B

256B

NULL

256B

[8] [9] [10] [11]

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Bookkeeping Two Views of the Heap Coalescing Summary References

Threaded Heap

0x080c0000

0x80c2000

256B

256B

256B 512B 1024B

2048B

NULL 2048B

NULL

1024B

NULL

512B

256B

256B

NULL

256B

[8] [9] [10] [11]

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Bookkeeping Two Views of the Heap Coalescing Summary References

Joining Buddy Blocks

In order to efficiently use space, you must coalesce free blocks.

This means adjacent blocks of the same size should be joined

The text description joins all adjacent blocks.

However, this is not alloawable in our buddy allocator!

Adjacent blocks can be coalesced if:
they are the same size
they are smaller than the max block size

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Bookkeeping Two Views of the Heap Coalescing Summary References

Coalescing

Free
32B

64B

Free
32B

Free
32B

Free list
pointer

(some node / NULL)

Free
32B

Free
32B

Free
32B

64B

Free list
pointer

(some node / NULL)

Unused

Two adjacent free nodes
(May or may not be list-adjacent!)

Remove both blocks from the free list.
You may find a doubly linked list helpful for this.
Join the two blocksPut the new block on the appropriate free list

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Bookkeeping Two Views of the Heap Coalescing Summary References

Coalescing

Free
32B

64B

Free
32B

Free
32BFree list

pointer
(some node / NULL)

Free
32B

Free
32B

Free
32B

64BFree list
pointer

(some node / NULL)

Unused

Two adjacent free nodes
(May or may not be list-adjacent!)

Remove both blocks from the free list.
You may find a doubly linked list helpful for this.

Join the two blocksPut the new block on the appropriate free list

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Bookkeeping Two Views of the Heap Coalescing Summary References

Coalescing

Free

32B

64B

Free
32B

Free
32B

Free list
pointer

(some node / NULL)

Free
32B

Free
32B

Free

32B

64B

Free list
pointer

(some node / NULL)

Unused

Two adjacent free nodes
(May or may not be list-adjacent!)
Remove both blocks from the free list.
You may find a doubly linked list helpful for this.

Join the two blocks

Put the new block on the appropriate free list

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Bookkeeping Two Views of the Heap Coalescing Summary References

Coalescing

Free

32B

64B

Free
32B

Free
32BFree list

pointer
(some node / NULL)

Free
32B

Free
32B

Free

32B

64B

Free list
pointer

(some node / NULL)

Unused

Two adjacent free nodes
(May or may not be list-adjacent!)
Remove both blocks from the free list.
You may find a doubly linked list helpful for this.
Join the two blocks

Put the new block on the appropriate free list

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Bookkeeping Two Views of the Heap Coalescing Summary References

Finding Blocks to Coalesce

How do you find out if a block’s neighbors are free?

Pointer math again!

The footer of the previous block
…is the pointer word before the header of this block.

The header of the next block
…is the pointer word after the footer of this block.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Bookkeeping Two Views of the Heap Coalescing Summary References

Finding Blocks to Coalesce

How do you find out if a block’s neighbors are free?

Pointer math again!

The footer of the previous block
…is the pointer word before the header of this block.

The header of the next block
…is the pointer word after the footer of this block.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Bookkeeping Two Views of the Heap Coalescing Summary References

Sentinels
The first block and the last block on the heap are a problem.

…they don’t have neighbor words of predictable content!

We can fix this with sentinels.

A sentinel is data placed in memory to delineate a boundary.

An artifically “allocated” block can be used as a sentinel.

Note that an extra sentinel is required for each gap in the heap.
(E.g., due to some other code using sbrk().)

The final sentinel from one call to sbrk() may be freeable after
the next call to sbrk().

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Bookkeeping Two Views of the Heap Coalescing Summary References

Summary

The standard allocator must keep track of information in the
heap.
We’re keeping metadata between user-allocated objects.
A header and a footer make object freeing and coalescing
fast and precise.
The heap data structure has a dual nature:

a continuous stream of objects in address space
multiple lists threading through the free objects

Sentinels mark the boundaries of heap-managed space.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Bookkeeping Two Views of the Heap Coalescing Summary References

References I

Optional Readings
[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s

Perspective. Third Edition. Chapter 9: 9.9. Pearson, 2016.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Bookkeeping Two Views of the Heap Coalescing Summary References

License

Copyright 2018 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2018 Ethan Blanton / CSE 410: Systems Programming

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Bookkeeping
	Two Views of the Heap
	Coalescing
	Summary

