
CSE 410: Systems Programming
Midterm Review

Ethan Blanton

Department of Computer Science and Engineering
University at Buffalo



POSIX and C Summary

C is statically typed.
C exposes many architecture details.
C has no garbage collector, constructors, or destructors.
The POSIX API is based on UNIX.
POSIX provides an interface to the OS kernel.
A C string is an array of characters.
C and POSIX provide a rich text-based I/O API.
Pointers allow direct access to memory by address.
The “C compiler” is actually a chain of operations.

©2018 Ethan Blanton / CSE 410: Systems Programming



Memory Representation Summary

Machines use words for memory and register access
Hexadecimal is convenient for representing words on
modern systems
C structures are C datatypes laid out adjacent in memory
Word sizes have alignment implications on memory layout
Integer representation has complications!
Floating point representations have different complications!

©2018 Ethan Blanton / CSE 410: Systems Programming



Process Anatomy Summary

A program is code that can be executed, a process is that
code running on a system.
The linker joins multiple objects into an executable.
A loader prepares a program that has been copied into
memory for execution.
Program code (text), initalized data (data), and uninitialized
data (bss) are present in both a program and a process.
The heap and stack can both grow, the former “upward”
toward higher addresses and the latter “downward” toward
lower addresses.

©2018 Ethan Blanton / CSE 410: Systems Programming



Process Environment Summary
The kernel manages shared resources
Userspace and the kernel are in different protection
domains
Processes request services from the kernel using system
calls
UNIX processes are created with fork()
The exec() system call loads a new program
The kernel manages other state for processes, such as:

The current directory
Environment variables
Open files

©2018 Ethan Blanton / CSE 410: Systems Programming



Input and Output Summary

UNIX I/O is defined by the POSIX Standard
Standard I/O is defined by the C Standard
The kernel tracks open files with file descriptors
All file I/O goes through the kernel
The standard I/O library is buffered

©2018 Ethan Blanton / CSE 410: Systems Programming



Pipes and Redirection Summary

Pipes form a UNIX IPC mechanism.
They are a kernel communication channel that provides file
semantics.
Pipes have finite buffer space.
File descriptors are indirect pointers to open files.
Fork copies file descriptors and thus open file state.
File descriptors can be explicitly copied with dup() and
dup2().

©2018 Ethan Blanton / CSE 410: Systems Programming



Virtual Memory Summary
Virtual memory:

uses a memory management unit
allows the CPU to operate in a virtual address space that
may be different from the physical address space
the MMU translates virtual addresses to physical addresses

Paging is a common model for virtual memory.
Paged systems break both address spaces into pages.
Pages can be mapped individually between virtual and
physical addresses.
Page tables allow the MMU to translate addresses.
Page faults bring mapped but unallocated pages into
memory.

©2018 Ethan Blanton / CSE 410: Systems Programming



License

Copyright 2018 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2018 Ethan Blanton / CSE 410: Systems Programming

https://www.cse.buffalo.edu/~eblanton/

