
CSE 410: Systems Programming
Pipes and Redirection

Ethan Blanton

Department of Computer Science and Engineering
University at Buffalo



Introduction Pipes File Descriptors dup Summary References

Interprocess Communication
UNIX pipes are a form of interprocess communication (IPC).

IPC provides a mechanism for processes to cooperate.

There are many forms of IPC on POSIX systems:
Pipes
Sockets
Shared memory
Signals
Process return values
Environment variables
…

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

UNIX Pipes

The UNIX pipe was introduced as early as 1972 [2].

Pipes provide a file-like abstraction for IPC:
Data written into one end of a pipe can be read at the other.
Reading and writing on pipes uses UNIX I/O functions.
Pipes are represented as file descriptors.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Pipes and Standard I/O

A pipe can be connected to any file descriptor.

However, pipes on the standard I/O file descriptors (0-2), are
particularly useful.

Many UNIX utilities:
read from standard input (file descriptor 0)
write to standard output (file descriptor 1)

By placing a pipe on these file descriptors, the output of one
process becomes the input of another.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Creating a Pipe

int pipefd [2];

if (pipe(pipefd) < 0) {
perror("pipe");

}

The pipe() system call creates a pipe as a pair of file
descriptors.

The first is read-only, and the second is write-only.1
(This is the same order as standard input and standard output.)

1Some systems may have bidirectional pipes.
©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Simple Usage
int pipefd [2], rval , wval = 42;

pipe(pipefd);

write(pipefd [1], &wval , sizeof(wval));
read(pipefd [0], &rval , sizeof(rval));

printf("%d\n", rval);
Output:

42

Create a pipe on the fd array.Write an integer into the pipe.Read the integer from the pipe.rval = wval

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Simple Usage
int pipefd [2], rval , wval = 42;

pipe(pipefd);

write(pipefd [1], &wval , sizeof(wval));
read(pipefd [0], &rval , sizeof(rval));

printf("%d\n", rval);
Output:

42

Create a pipe on the fd array.

Write an integer into the pipe.Read the integer from the pipe.rval = wval

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Simple Usage
int pipefd [2], rval , wval = 42;

pipe(pipefd);

write(pipefd [1], &wval , sizeof(wval));
read(pipefd [0], &rval , sizeof(rval));

printf("%d\n", rval);
Output:

42

Create a pipe on the fd array.

Write an integer into the pipe.

Read the integer from the pipe.rval = wval

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Simple Usage
int pipefd [2], rval , wval = 42;

pipe(pipefd);

write(pipefd [1], &wval , sizeof(wval));
read(pipefd [0], &rval , sizeof(rval));

printf("%d\n", rval);
Output:

42

Create a pipe on the fd array.Write an integer into the pipe.

Read the integer from the pipe.

rval = wval

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Simple Usage
int pipefd [2], rval , wval = 42;

pipe(pipefd);

write(pipefd [1], &wval , sizeof(wval));
read(pipefd [0], &rval , sizeof(rval));

printf("%d\n", rval);
Output:

42

Create a pipe on the fd array.Write an integer into the pipe.Read the integer from the pipe.

rval = wval

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Mechanism

Each pipe is a kernel buffer accessed through file descriptors.

pipe fd 0 Kernel buffer pipe fd 1

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Mechanism

Each pipe is a kernel buffer accessed through file descriptors.

pipe fd 0 Kernel buffer pipe fd 1

The read file descriptor has a read pointer.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Mechanism

Each pipe is a kernel buffer accessed through file descriptors.

pipe fd 0 Kernel buffer pipe fd 1

The write file descriptor has a write pointer.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Mechanism

Each pipe is a kernel buffer accessed through file descriptors.

pipe fd 0 Kernel buffer pipe fd 1

Writing to the write file descriptor fills the buffer:
write(pipefd[1], &wval, sizeof(wval));

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Mechanism

Each pipe is a kernel buffer accessed through file descriptors.

pipe fd 0 Kernel buffer pipe fd 1

Reading from the read file dscriptor drains the buffer:
read(pipefd[0], &rval, sizeof(rval));

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Buffer Capacity

If the buffer becomes full, writes block.

If the buffer is empty, reads block.

This makes pipe communication within a single process
susceptible to deadlock:

The process writes > buffer size bytes and blocks

No read is available to drain the buffer
…

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Buffer Capacity

If the buffer becomes full, writes block.

If the buffer is empty, reads block.

This makes pipe communication within a single process
susceptible to deadlock:

The process writes > buffer size bytes and blocks
No read is available to drain the buffer

…

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Buffer Capacity

If the buffer becomes full, writes block.

If the buffer is empty, reads block.

This makes pipe communication within a single process
susceptible to deadlock:

The process writes > buffer size bytes and blocks
No read is available to drain the buffer
…

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Fork and pipe
Reading between processes does not have this problem.

pipe(pipefd);
if ((pid = fork()) == 0) {

write(pipefd [1], "Hello", 6);
} else {

read(pipefd [0], &buf , 6);
puts(buf);

}

Hello

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Fork and Pipe in Action
pipe(pipefd);
if ((pid = fork()) == 0) {

write(pipefd [1], "Hello", 6);
} else {

read(pipefd [0], &buf , 6);
puts(buf);

}

Kernel buffer:

H e l l o 0H e l l o 0

Child process begins write, parent process blocks on read.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Fork and Pipe in Action
pipe(pipefd);
if ((pid = fork()) == 0) {

write(pipefd [1], "Hello", 6);
} else {

read(pipefd [0], &buf , 6);
puts(buf);

}

Kernel buffer: H e l l o 0

H e l l o 0

Child process writes "Hello".
©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Fork and Pipe in Action
pipe(pipefd);
if ((pid = fork()) == 0) {

write(pipefd [1], "Hello", 6);
} else {

read(pipefd [0], &buf , 6);
puts(buf);

}

Kernel buffer:

H e l l o 0

H e l l o 0

Parent process read continues.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Fork and Pipe in Action
pipe(pipefd);
if ((pid = fork()) == 0) {

write(pipefd [1], "Hello", 6);
} else {

read(pipefd [0], &buf , 6);
puts(buf);

}

Kernel buffer:

H e l l o 0H e l l o 0

Parent process puts buffer.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

More on File Descriptors

Recall that a file descriptor is a small integer.

It is an index into a kernel table of open files for the process.

Every process has its own file descriptor table.

The entries in this table point to a global table of open files.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Open File Table

The global open file table maintains metadata for open files:
The current position in the file for read/write
The filesystem and disk location (or device status) of the file
The permissions and mode of the open file (read, write, etc.)

The metadata in this table allows access to open files with
minimal overhead.
(E.g., no permission checks, no disk indexing, …)

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

File Descriptor Indirection

File descriptors therefore provide indirect access to open files.

FD Table
0
1
2
3

Open File Table
/dev/pts/1

/home/elb/errorlog
/home/elb/grades.csv

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Fork and File Descriptors

As discussed, fork() duplicates the file descriptor table.

Since the descriptors point into global open files, the file
metadata is the same in the new table.

This means that some things affect both descriptors:
Changes to the file position
Changes to other open file properties

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Pipe File Descriptor Gotcha

The read end of a pipe returns EOF when the write end is
closed.

Pipe file descriptors are cloned on fork.

A file table entry stays open if any file descriptor is open.

A pipe read end will never return EOF if any write end file
descriptor remains open.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Safe Pipe and Fork
int pipefd [2], pid;
char buf [6];

pipe(pipefd);
if ((pid = fork()) == 0) {

close(pipefd [0]);
write(pipefd [1], "Hello", 6);

} else {
close(pipefd [1]);
read(pipefd [0], &buf , 6);

}
The child process closes the pipe output, and
the parent process closes the pipe input.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Safe Pipe and Fork
int pipefd [2], pid;
char buf [6];

pipe(pipefd);
if ((pid = fork()) == 0) {

close(pipefd [0]);
write(pipefd [1], "Hello", 6);

} else {
close(pipefd [1]);
read(pipefd [0], &buf , 6);

}
The parent read will then reliably signal EOF.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Copying File Descriptors

File descriptors can be explicitly copied.

This creates two file descriptors pointing to the same open file
table entry.

This is how standard input and output are redirected.

By placing a chosen file on a chosen file descriptor.
(E.g., 0, 1, or 2.)

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Copying a Descriptor

#include <unistd.h>

int dup(int fd);
int dup2(int oldfd , int newfd);
The dup() system call copies a file descriptor.

It accepts an open descriptor and returns a copy on a new
descriptor.

The dup2() system call does the same —
except it allows the destination fd to be specified.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Redirecting Standard Output

int fd;

fd = open("output.txt", O_WRONLY|O_CREAT , 0666);

dup2(fd , 1);
close(fd);

puts("Redirected output!");

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Summary

Pipes form a UNIX IPC mechanism.
They are a kernel communication channel that provides file
semantics.
Pipes have finite buffer space.
File descriptors are indirect pointers to open files.
Fork copies file descriptors and thus open file state.
File descriptors can be explicitly copied with dup() and
dup2().

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

Next Time …

…

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Pipes File Descriptors dup Summary References

References I
Required Readings
[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s

Perspective. Third Edition. Chapter 10: 10.8, 10.9. Pearson, 2016.

Optional Readings
[2] Dennis M. Ritchie. “The Evolution of the Unix Time-Sharing System”. In: Proceedings of

the Symposium on Language Design and Programming Methodology.
https://link.springer.com/content/pdf/10.1007%2F3-540-09745-7_2.pdf. Sept. 1979,
pp. 25–35.

©2018 Ethan Blanton / CSE 410: Systems Programming

https://link.springer.com/content/pdf/10.1007%2F3-540-09745-7_2.pdf


Introduction Pipes File Descriptors dup Summary References

License

Copyright 2018 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2018 Ethan Blanton / CSE 410: Systems Programming

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Pipes
	File Descriptors
	dup
	Summary

