
CSE 410: Systems Programming
C and POSIX

Ethan Blanton

Department of Computer Science and Engineering
University at Buffalo

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

C and POSIX

In this course, we will use:
The C programming language
POSIX APIs

C is a programming language designed for systems
programming.

POSIX is a standardized operating systems interface based on
UNIX.

The POSIX APIs are C APIs.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Why C?

There are dozens of programming languages. Why C?

C is “high level” — but not very.
C provides functions, structured programming, complex
data types, and many other powerful abstractions
…yet it also exposes many architectural details

Most operating system kernels are written in C.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Why POSIX?
POSIX is a standardization of the UNIX API.

Portable Operating System Interface …X?

In the 80s and 90s, UNIX implementations became very
fragmented.

Interoperability suffered, and a standard was developed.

POSIX is probably the most widely implemented OS API.
All UNIX systems (Linux, BSD, etc.)
macOS
Many real-time operating systems (QNX, RTEMS, eCos, …)
Microsoft Windows (sort of)

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

But really …why?

We had to choose something.

C fits the layer of abstraction we wanted to learn about.

POSIX is widely available, well-documented, and simple.1

The text specifically considers Linux on X86-64.
We will, too.

1err …ish?
©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

C Syntax

C will look familiar to you, as Java syntax is based on C.

However, there are some large semantic differences.

Syntax: how something is written
Semantics: what something means

First of all, there are no classes in C.
However, C functions and Java methods look similar.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

main()
Every C program starts with the function main().2

int main(int argc , char *argv []) {
return 0;

}

This should look pretty familiar, except for that *.
A C function takes zero or more arguments and returns a single
value.
All arguments are pass-by-value (unlike Java).

2Sort of …
©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

C flow control
C flow control looks a lot like Java.
However, iterator syntax is not supported.

if (condition) { /* true body */ } else { /* false
body */ }

while (condition) { /* body */ }

for (setup; condition; iterate) { /* body */ }

switch (integer) {
case value: /* body */ break;
default: /* body */ break;

}
©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

C Types
C is statically typed.

Every variable is declared with a type.
Every assignment to a variable must honor its type.
(However, C will perform conversions in some cases.)

Valid:
int x = 0;
long y = 0;
x = 37;
y = x;

Invalid:
int x = 0;
x = "Hello , world!";

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

C Gotchas

Some gotchas coming from Java:
C variables are not initialized when declared.
There is no garbage collector.
There are no constructors or destructors.

You must set up and clean up after yourself in C.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

POSIX Overview

POSIX defines a lot of things.
An API for interacting with the OS kernel
A command line interpreter (shell)
A set of available commands
Filesystem semantics
…

We’re mostly concerned with the first.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

POSIX API

The POSIX interface to the OS facilities forms an API:
Application Programming Interface.

This API is a set of C language functions and variables.

On a UNIX system, the functions are mostly system calls.

System calls are requests to the OS kernel.

The kernel is the privileged core of the OS.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Example POSIX functions

open(): Opens a file for reading or writing
fork(): Creates a new process
connect(): Creates a network connection
exit(): Gracefully terminates the current process
tcsetattr(): Configures a serial (or virtual) terminal
time(): Get the current time

Some POSIX functions overlap the C standard.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

The POSIX Stack

Hardware

Kernel / System Calls

System Libraries

POSIX API

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Man pages
The POSIX manual is online on most POSIX systems,
accessible via the man command.

The manual is divided into sections [2]:
1 Executable programs or shell commands
2 System calls (functions provided by the kernel)
3 Library calls (functions within program libraries)
4 Special files (usually found in /dev)
5 File formats and conventions eg /etc/passwd
6 Games
7 Miscellaneous (including macro packages and
conventions), e.g. man(7), groff(7)

8 System administration commands (usually only for root)
©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

The C Toolchain

A C program consists of one or more source files.

The C compiler driver passes the source code through several
stages to translate it into machine code.
A source file3 is sometimes called a translation unit.

Each stage may be invoked individually …more later.

3Plus some other stuff
©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

The C Toolchain

.c source

Included
Headers

CPP

Linker

C Compiler

Assembler

External
Libraries

Pre-
processed
.i source

Compiled
.s assembly

Executable
Object
.o file

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

The C Preprocessor

The preprocessor does just what it sounds like.

It performs certain source code transformations before the C is
processed by the compiler.

It doesn’t understand C, and can be used for other things!

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

The C Compiler
The compiler transforms C into machine-dependent assembly
code.

It produces an object file via the assembler.

An object file contains:
Constant data: Data of unchanging value used by the
code in the object file
Static symbols: Locally-defined variables and functions
that are not available outside of this translation unit
Locally-defined globals: Globally visible variables and
functions that have complete definitions
Unresolved symbols: Globally visible variables and
functions that are defined in another translation unit.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

The Assembler

The assembler takes assembly code and transforms it into
machine-executable instructions.

While the assembler is a powerful tool, in a modern C compiler
toolchain it performs a more-or-less mechanical transformation.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

The Linker

The linker joins object files into an executable.

It maintains a symbol table for each object file.

Unresolved symbols in one object file may be found (and thus
resolved) in other object files.

Other unresolved symbols may be found in libraries.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

A Warning

These slides attempt to be precise, but simplify some things.

Usually this is because the details:
are unnecessarily confusing, or
require knowledge you are not expected to have.

If something here conflicts with the standard or the compiler,
the standard or compiler wins.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

C Syntax

Now for a rundown of C syntax.

We’ll talk about both preprocessor and language syntax.

We will revisit C throughout the semester.

I recommend The C Programming Language [3]

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

The C Preprocessor
The C preprocessor applies preprocessor directives and macros
to a source file, and removes comments.

Directives begin with #.
#include: (Preprocess and) insert another file
#define: Define a symbol or macro
#ifdef/#endif: Include the enclosed block only if a symbol is
defined
#if/#endif: Include only if a condition is true
…

Preprocessor directives end with the current line (not a
semicolon).

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Including headers

The #include directive is primarily used to incorporate headers.
There are two syntaxes for inclusion:

#include <file>
Include a file from the system include path (defined by the
compiler)
#include "file"
Include a file from the current directory

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Defining Symbols and Macros

The #define directive defines a symbol or macro:

#define PI 3.14159

#define PLUSONE(x) (x + 1)

PLUSONE(PI) /* Becomes (3.14159 + 1) */

Macros are expanded, not calculated!
The expansion will be given directly to the compiler.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Conditional Compilation

The various #if directives control conditional compilation.

#ifdef ARGUMENT
/* This code will be included only if ARGUMENT is

a symbol defined by the preprocessor --
regardless of its expansion */

#endif

The #ifndef directive requires ARGUMENT to be undefined.

The #if directive requires ARGUMENT to evaluate to true.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Using the Preprocessor

The preprocessor can be invoked as gcc -E.

Using the preprocessor correctly and safely is tricky.

For now, it is best to limit your use of the preprocessor.

We’ll talk more about cpp later.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Keywords
Keywords (as of C99):

auto break case char const
continue default do double else
enum extern float for goto
if inline int long register
restrict return short signed sizeof
static struct switch typedef union
unsigned void volatile while
_Bool _Complex _Imaginary

Reserved words (simplified rules):
Identifiers beginning with underscore (frequently violated)
Certain macros (you are unlikely to notice)
Standard methods and variables (you may notice)

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Integer Types
Platform-specific integer types you should know:

char: One character.
short: A short (small) integer
int: An “optimally sized” integer
long: A longer (bigger) integer
long long: An even longer integer

Their sizes are: 8 bits ≤ char ≤ short ≤ int ≤ long ≤ long long
Furthermore:
short, int ≥ 16 bits, long ≥ 32 bits, long long ≥ 64 bits

Whew!

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Integer Modifiers

Every integer type may have modifiers.

Those modifiers include signed and unsigned.
All unmodified integer types except char are signed.
char may be signed or unsigned!

The keyword int may be elided for any type except int.
These two declarations are equivalent:
long long nanoseconds;
signed long long int nanoseconds;

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Integers of Explicit Size
The confusion of sizes has led to explicitly sized integers.
They live in <stdint.h>
Exact-width types are of the form intN_t.
They are exactly N bits wide; e.g.: int32_t.
Minimum-width types are of the form int_leastN_t.
They are at least N bits wide.

There are also unsigned equivalent types, which start with u:
uint32_t, uint_least8_t
N may be: 8, 16, 32, 64.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

So Many Integers!

All of this about integers is to drive home the following:
C is a rather low-level language.

You will worry more about architecture details in C than you
have in other languages, previously.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Constants

We talked about defined constants previously.

C also has const-qualified types:
const int CALLNUMBER = 410;
A const-qualified type may be linked as a variable, but the
compiler will emit an error if it can detect a change.
The weasel-words are important there:
const in C is not as powerful as in some languages.

Still, const can keep you out of trouble!

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Arrays

Arrays in C are declared and dereferenced with [].
Declaring an array of 10 integers:
int array[10];
An array represents a contiguous block of memory that contains
its elements back-to-back.
(This will be important later!)

Array declarations are statically sized.
This means the compiler must know exactly how many elements
there are.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Array Sizing

Illegal:
const int x = 47;
int array[x];

Recall that const has weasel words.
The compiler cannot guarantee that x is 47!
Legal:
#define X 47
int array[X];

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Implicit Array Sizes and Array Constants

An array constant uses curly brackets.

If the compiler can figure out how big an array should be, it
doesn’t need an explicit size.
int array[] = { 1, 2, 3 };

This creates an array of size 3.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Array Dereferencing

Array dereferencing works (for now) just like you’d expect:
int val = array[7];
The type of an array dereference is the type of the array.
(This will be important later.)

Array indices for dereference need not be constant:
int x = 47;
int y = array[x];

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

C Strings
A “C string” is an array of chars, with the last byte being 0.

The C compiler will generate such a string when you use "".
String variables are usually a pointer to char.
(We’ll talk a lot more about pointers later!)

They can also be a constant array.
char str[] = "CSE 410";
This statement will create an array of length 8, containing:

The individual characters 'C', 'S', …
A byte of value 0

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

C String Termination

The zero byte at the end of a string is called a NUL terminator.
(No, NUL is not a typo! That’s the ASCII name for a zero byte!)

To iterate a C string, you use the NUL to find the end:
char str[] = "C is awesome!";
for (int i = 0; str[i] != 0; i++) {

if (str[i] == '!') {
printf("An exclamation !\n");

}
}

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

C String Escapes
C strings can contain escapes starting with \.
These escapes will be converted to specific ASCII characters.

Some escapes you should know:
Escape Expansion
\\ Literal backslash
\r Carriage return
\n Platform-dependent end of line
\t ASCII Tab
\" Literal double quote
\0 ASCII NUL (string terminator)
\000 (Any 3 octal digits); byte value given
\x00 (x and any 2 hex digits); byte value given

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Pointers

The last major data type we’ll discuss today is the pointer.

Pointers do not appear in Java, Python, etc..
They are most similar to object references in these languages.

A C pointer contains the address of a memory location.

It will also have an associated type for what is at that location.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Pointer Concepts

A pointer:
Contains an address
Allows the memory at that address to be manipulated
Associates a type with the manipulated memory

To the computer, memory is just bits.
Programmers supply the meaning.
(Memory representations will be our next major topic.)

The special pointer value NULL represents an invalid address.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Pointer Syntax — Declaration

A pointer variable is marked with *.
char *str;
This is a pointer to char.
(char * is the idiomatic string type in C.)

A pointer may be marked const, in which case the memory it
points to is const.4

const char *str;

4There is another type of constant pointer that we won’t talk about now.
©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Pointer Syntax — Taking Addresses

A pointer may be created from a variable using &.
This is sometimes called the address-of operator.

int x = 42;
int *px = &x;

px is now a pointer to x.
(More on the implications of this later.)

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Pointer Syntax — Dereferencing
A pointer is dereferenced with *, ->, or [].
(More on -> when we get to structures.)

int *px = &x;
int y = *px;

The variable px is created as a pointer to x, an integer.
The variable y is created as an integer.
y is assigned the value of x by dereferencing px with *.

A pointer can also be dereferenced like an array.
y = px[0];

This is exactly the same as y = *px;.
©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Pointers and Arrays
Arrays and pointers are closely related in C.

You can often think of an array variable as a pointer to the first
array element, and a pointer variable as an array.

However, they are not the same.

In both cases, dereferencing with [i] says

…add i times the size of the type of this variable to the base address
(first element of the array or pointer value), then treat the memory at

that location as if it is of the type of this variable.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Pointers and Arrays
Consider:
char arr[] = "Hello World";
char *ptr = arr;

H e l l o W o r l d
N
U
L

ptr[6]

arr[2]
©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Arrays Are Not Pointers

char arr[] = "string";
char arr2[] = arr;
“error: invalid initializer”

char arr[] = "Hello World";
char *ptr = arr;
ptr points to arr[0].

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

C/POSIX Text I/O

C and POSIX provide a wide variety of I/O facilities.

Among those are some convenient functions for reading and
writing text.

There are also functions for binary data, and there is overlap.
(We’ll discuss binary data later.)

This API is defined in the header stdio.h:
#include <stdio.h>
But first, a diversion for the standard I/O streams.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Standard I/O
POSIX I/O streams have the type FILE *.
These are both specific “files” that are open in every program,
and facilities to manipulate those and other files.

Every POSIX process has three files that are always present:
stdin
stdout
stderr

They may be closed, but they are defined.

Each stream has an underlying file descriptor, which we will
discuss later.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

stdin, stdout, stderr
stdin: The process’s standard input.
This is the default location for reads. It is often the terminal,
but may be any file or device on the system.
stdout: The process’s standard output.
This is the default destination for non-error writes from the
process. It is also often the terminal.
stderr: The process’s standard error.
This is the default destination for error messages from the
process. It is often the same destination as stdout, but
need not be.
The rules for stderr are slightly different. (More later.)

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Basic Text I/O
There are several functions provided for basic textual I/O:

puts(str): prints a string to stdout with a trailing newline
fputs(str, stream): prints a string to a specified stream
printf(format, ...): prints a string to stdout, providing
sophisticated formatting capabilities
fprintf(stream, format, ...): prints a string to stream,
providing sophisticated formatting capabilities
gets(): this function is dangerous, do not use it.
fgets(str, size, stream): Read a single line of text from
the specified stream, but no more than size - 1 bytes.
fscanf(stream, format, ...): Read complex formatted
data from the specified stream

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

puts

#include <stdio.h>

int puts(const char *s);
int fputs(const char *s, FILE *fp);

The puts() functions write a simple string to a stream.
(puts() writes to stdout, fputs() is specified.)

The puts() version also automatically writes a trailing newline.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

printf
#include <stdio.h>

int printf(const char *format , ...);
int fprintf(FILE *fp, const char *format , ...);
The printf() family5 is the workhorse of C textual output.

Like puts(), the unqualified version writes to stdout.
printf() accepts a specially formatted string that describes its
output, plus a variable number of arguments.
The ... token declares a function with a variable number of
arguments. (Don’t worry about the details for now.)

5And there are a ton of them!
©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Format Strings
Format strings can contain conversion specifiers starting with %.
(The special sequence %% represents a literal percent sign.)
Any other character (mostly) will print as itself.

%d Integer
%hd Short integer
%ld Long integer
%f Double
%s String
%c Character
%x Hexadecimal Integer
%p Pointer
… Many others

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Conversion Specifiers
Conversion specifiers can be very specific.

Their full form is: %jf sw.plt
j Justification; use - for right-justified
f Fill; use 0 to zero-fill, or space to space-fill
s Sign; use + to display sign for all integers
w Width; characters to reserve for a numeric
.p Precision; digits after the decimal to print
l Length; size of an integer word (h, l, ll)
t Type

Example: "%+02.2f"
Print a double with two digits after the decimal, and if there are fewer
than two digits before the decimal, print leading zeroes.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Some Conversions
printf("Pi is %.3f\n", 3.141592654d);

Pi is 3.142

printf("printf: %p\n", &printf);

printf: 0x7f0c43536190

char *name = "Ethan";
printf("My name is %s\n", name);

My name is Ethan

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Some Conversions
printf("Pi is %.3f\n", 3.141592654d);

Pi is 3.142

printf("printf: %p\n", &printf);

printf: 0x7f0c43536190

char *name = "Ethan";
printf("My name is %s\n", name);

My name is Ethan

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Some Conversions
printf("Pi is %.3f\n", 3.141592654d);

Pi is 3.142

printf("printf: %p\n", &printf);

printf: 0x7f0c43536190

char *name = "Ethan";
printf("My name is %s\n", name);

My name is Ethan
©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

fgets

#include <stdio.h>

char *fgets(char *s, int size , FILE *fp);
Reads up to size - 1 bytes from fp, or until it reads a newline.

This is a convenient way to read lines of data, although if the
buffer is not large enough, more than one read may be required.

fgets() returns NULL for errors or end of file.
Otherwise it returns s, which is non-NULL.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

fscanf
#include <stdio.h>

int scanf(const char *format , ...);
int fscanf(FILE *stream , const char *format , ...);
Reads complex input according to the specified format string.

Conversions in the format string are similar to printf().
Destination arguments are pointers and incoming text is
type-converted.

The integer return value is the number of successful
conversions.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Formatted I/O Example
#include <stdio.h>

int main(int argc , char *argv []) {
double d;
int conversions;

printf("Input a floating -point number: ");
conversions = scanf("%lf", &d);

printf("There were %d successful
conversions\n", conversions);

printf("You entered: %f\n", d);
return 0;

}
©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

More on Text I/O

See the man pages!

The formatted I/O functions, in particular, have lots of options.

Recommended man pages:
man stdio
man printf
man scanf
Don’t try to use these functions for binary data!

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

The C Compiler Driver
First, we will ignore most stages of compilation.

The C compiler driver can take a .c source file and produce an
executable directly.

We’ll look at that with Hello World:
#include <stdio.h>

int main(int argc , char *argv []) {
printf("Hello , world !\n");
return 0;

}

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Compiling Hello World
We compile Hello World as follows:
gcc -Wall -Werror -O2 -g -std=c99 -o helloworld helloworld.c

This command says:
-Wall: Turn on all warnings
-Werror: Treat all warnings as errors
-O2: Turn on moderate optimization
-g: Include debugging information
-std=c99: Use the 1999 ISO C Standard
-o helloworld: Call the output helloworld
helloworld.c: Compile the file helloworld.c

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Compiling Hello World II
The C compiler driver ran all of the steps necessary to build an
executable for us.

The C preprocessor handled including a header
The compiler produced assembly
The assembler produced object code
The linker produced helloworld

[elb@westruun]~/.../posix$./helloworld
Hello, world!

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Compiling in Steps

The compiler driver can be used to invoke each step of the
compilation individually.

It can also be used to invoke up to a step.

The starting step is determined by the input filename.

The ending step is determined by compiler options.

Recall that -E invoked the preprocessor.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Compiling to Assembly

Let’s compile to assembly using -S:

$ gcc -Wall -Werror O2 -std=c99 -S helloworld.c

On the next slides, we’ll examine the output from helloworld.s.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

helloworld.s I
.file "helloworld.c"
.section .rodata.str1.1,"aMS",@progbits,1

.LC0:
.string "Hello, world!"
.section .text.startup,"ax",@progbits
.p2align 4,,15
.globl main
.type main, @function

We’ll get to the details later, but for now notice:
.LC0: is a local label
.string declares a string constant (no newline!)
The .globl and .type directives declare that we’re defining
a global function named main

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

helloworld.s II
main:
.LFB11:

.cfi_startproc
leaq .LC0(%rip), %rdi
subq $8, %rsp
.cfi_def_cfa_offset 16
call puts@PLT
xorl %eax, %eax
addq $8, %rsp
.cfi_def_cfa_offset 8
ret
.cfi_endproc

We’ll skip the postamble, for now.
©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

The Generated Code
First of all, you aren’t expected to understand the code (yet).

leaq .LC0(%rip), %rdi
This code loads the string constant’s address (from .LC0).

Then, later:
call puts@PLT
…it calls puts() to output the string.

Note that the C compiler:
Noticed we were outputting a static string
Noticed it ended in a newline
Replaced the (complicated) printf() with the (simpler)
puts() and a modified string

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Compiling to an Object File

You may wish to compile to an object file.

This is used when multiple source files will be linked.

In this case, use -c:

$ gcc -Wall -Werror -O2 -std=c99 -c helloworld.c

This will produce helloworld.o.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Linking
Compiling any input files without an explicit output stage will
invoke the linker.

gcc -Wall -Werror -O2 -std=c99 -o helloworld helloworld.o

This command will link helloworld.o with the system libraries to
produce helloworld.
You can view the linkage with ldd:
[elb@westruun]~/.../posix$ ldd helloworld

linux-vdso.so.1 (0x00007ffe34d1a000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f24dacbb000)
/lib64/ld-linux-x86-64.so.2 (0x00007f24db25c000)

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Summary

C is statically typed.
C exposes many architecture details.
C has no garbage collector, constructors, or destructors.
The POSIX API is based on UNIX.
POSIX provides an interface to the OS kernel.
A C string is an array of characters.
C and POSIX provide a rich text-based I/O API.
Pointers allow direct access to memory by address.
The “C compiler” is actually a chain of operations.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

Next Time ...

In-memory data representations
C structures
More on pointers

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

References I
Required Readings
[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s

Perspective. Third Edition. Chapter 1: Intro, 1.1-1.3, Chapter 3: Intro, 3.2, Chapter 10:
10.10. Pearson, 2016.

Optional Readings
[2] John W. Eaton et al. man — an interface to the on-line reference manuals. man(1).

[3] Brian W. Kernighan and Dennis Ritchie. The C Programming Language. Second Edition.
Prentice Hall, 1988.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Basic C Basic POSIX The C Toolchain More C Pointers Text I/O Compiling Summary Coming Up References

License

Copyright 2018 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2018 Ethan Blanton / CSE 410: Systems Programming

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Basic C
	Basic POSIX
	The C Toolchain
	More C
	Pointers
	Text I/O
	Compiling
	Summary
	Coming Up

