CSE 410: Systems Programming

Recitation 2: Introduction to Make

Introduction

This exercise will help you become familiar with Make. Make is a tool for managing the build of complex soft-
ware projects, although it can be used for many other things as well. At its heart, it is a dependency solver that
creates a dependency graph with software sources at the "leaves” and processed or built components at the
nodes. Make then uses this information to determine whether the dependencies for a node in the graph have
been met, and if so, executes user-defined instructions to create that node.

Make uses filesystem timestamps to determine that portions of the software are “stale” with respect to
their sources, and then executes user-supplied commands to bring them up-to-date. In this manner a very
large application can be re-compiled after minor changes very quickly, by re-compiling only those portions of
the application that are affected by the changes.

As you will not be building particularly large applications in this course, the primary benefit that you will
receive from using Make is automation. It should also reduce errors in builds by ensuring repeatability of the
build process.

We will be using GNU Make, although most of the syntax and features that you will learn are the same as
other popular Make implementations, such as the original AT&T Make and BSD Make.

1 Getting Started

Follow the GitHub Classroom link that has been provided to you in Piazza to create the starter repository for
this assignment. Check it out following the same steps you used for the first lab of the semester. It will include
a README, Makefile, and two C source files. You should not modify the C sources for this assignment, but you
may wish to inspect them.

1.1 A Brief Introduction to Make

Your TAs will provide you with a more thorough introduction to Make. However, you may find this section
useful for reference.

Make is invoked via the make command on most UNIX systems. It will read a file called Makefile from the
current directory (unless otherwise specified), and then execute the first rule it finds in that file. Make rules
are described below, and will be covered in more detail by your TAs. You can also provide a specific rule to be
executed on the command line, by simply typing it after make on the command line; for example, make hello will
instruct Make to consult the Makefile for a rule that will build the file hello, and then execute it.

Note that the order in which rules appear in the Makefile is not important except for the first rule, which is
the rule that will be executed if no rule is specified on the command line. There is an idiomatic broad ordering
of rules that many or most developers will follow, however, with the “biggest” and most important rules toward
the top of the file, followed by more specific rules, followed by “phony” rules, or rules that don't actually build
anything. (There is an example phony rule named clean in the handout code that removes the built files. There
are additional subtleties to phony rules, and this one is incompletely specified for simplicity, but it will work.)

For this lab you will need to use Make variables, create dependency rules, and assign recipes to those rules.
The following Makefile demonstrates these things, and will be described below:

VARIABLE := value

var:
echo VARIABLE is $(VARIABLE)

chain: var
echo The var rule should have run before this.



The first line in this file sets the variable named VARIABLE to the value value. Note the := syntax used for
this assignment. Make will also accept =, although the meaning is slightly different. Once this variable is
created, it can be referenced with $(VARIABLE). You may also see ${VARIABLE} used (with curly brackets instead
of parenthesis), which has the same meaning.

The next pair of lines defines a rule for the target var, with a recipe to create it. If make is invoked with no
arguments, this rule (being the first in the file) is the rule that will be run by default.

The syntax for a rule is as follows:

TARGET: DEPENDENCIES
RECIPE

The syntax for Makefiles is picky; in particular, the whitespace before the recipe must be an ASCII Tab
character. If you use spaces, Make will (if you are lucky) emit an error like one of these:

* k%

example-Makefile:4: missing separator (did you mean TAB instead of 8 spaces?).

Stop.

*k*

example-Makefile:4: missing separator. Stop.

It may, however, emit an even more cryptic message.

This example recipe declares that building the target named TARGET requires the dependencies DEPENDENCIES,
and that producing TARGET from DEPENDENCIES is accomplished by running the UNIX commands described by
RECIPE. The dependencies specified in DEPENDENCIES may be either other Make targets or filenames, separated
by whitespace. Make targets with no associated file will always be considered out-of-date and run once each
time Make is invoked. If they are filenames, RECIPE will be run only if the file TARGET is older than each of the
files described in DEPENDENCIES. In the above example Makefile, note that neither var nor chain creates a file;
therefore, both of these rules will be run any time they are a dependency of any requested target.

Each line of RECIPE is run as a UNIX shell script. Any UNIX command or combination of commands may be
included. If any command in a recipe fails, the recipe will fail and Make will stop with an error. This will happen
if, for example, your recipe is compiling C source code and you have an error in your sources. Multi-line UNIX
scripts must be written as a single logical line by using semicolons to separate commands and escaping actual
newlines with a backslash.

The example Makefile rule for chain therefore declares that the rule var must be run before chain, and that
the target described by chain is satisfied by echoing a sentence to the terminal. Try creating a Makefile like the
example above and then running make, make var, and make chain to see how this works.

1.2 The Make Manual

The manual for GNU Make is available online, but does not use the man command that we discussed in class. Instead,
it uses GNU Info, which works somewhat differently. You can consult it by running info make at the prompt.
You can press H while in the Info viewer for a summary of usage, or see info info for more detail. Some useful
keys to know are /, which initiates a search, u, which moves to “up” to the next higher level of the document
structure, spacebar to page down, and q to quit. The arrow keys will work as expected, and the enter key will
jump to a hyperlink under the cursor.

2 Requirements

You must create a Makefile to compile the sources in the handout repository into an executable named hello,
which is one of the more complicated “Hello, World” programs ever devised. The handout repository includes
a starter Makefile, but it is missing some variable definitions and rules. You must:

« Define the variable CFLAGS.

It should hold the value -g -Wall -Werror. This variable is traditionally used to hold options passed to the
C compiler.



« Fix the rule for the target main.o.

This rule must pass the extra option -DMAIN to the C compiler.

« Create a rule to compile dohello.o from dohello.c using gcc.

This rule must include $(CFLAGS) on the command line, and must define the preprocessor symbol DOHELLO
to have the value do_hello using the option -DDOHELLO=do_hello passed to the C compiler.

Once these requirements are complete, typing make with no options must cause hello to be built, and run-
ning hello must produce the string “Hello, World!" at the terminal. You should not modify any C source to ac-
complish this!

3 Grading

Turn in the file Makefile (and only this file) to Autograder. Full credit on the Autograder tests will result in
credit for this lab. Anything less than full credit on the Autograder will result in no credit given for this lab.



	Getting Started
	A Brief Introduction to Make
	The Make Manual

	Requirements
	Grading

