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Last Time

The C programming language
A bit about POSIX APIs

We spent a little bit of time on:
Integer types
Array types
Pointers

This lecture will dive deeper on these issues.
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Memory As Bits

Last lecture, I said “To the computer, memory is just bits.”

While this isn’t precisely true, it’s close enough to get started.

The computer doesn’t “know” about data types.
A modern processor can probably directly manipulate:

Integers (maybe only of a single bit length!)
Maybe floating point numbers
…often, that’s all!

Everything else we create in software.
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Memory as …Words?
It is probably more accurate to say memory is just words.

What is a word?

A word is the native integer size of a given platform.
For example, 64 bits on x86-64, or 32 bits on an ARM
Cortex-A32.

A word can also (confusingly) be the width of the memory bus, if
the processor’s word size and its memory bus width are
different.

We will assume they are the same, at least for a while.

What is “native integer size”? What is the “width” of a memory
bus?
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A Bit About Architecture

CPU
Main

memory

Peripherals

System
Bus

I/O (North)
Bridge

I/O (South)
Bridge

Memory
Bus

I/O
Bus
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Buses
A bus has a width, which is literally the number of wires it has.1

(This is a little less clear on a serial bus, where the width is a
protocol convention.)

Each wire transmits one bit per transfer.

Every bus transfer is of that width, though some bits may be
ignored.

Therefore, memory has a word size from the view of the CPU:
the number of wires on that bus.

1This is an over-simplification, but it remains true from the point of view of
the programmer’s model of the processor.
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CPU ↔ Memory Transfer
The CPU fetches data from memory in words the width of the
memory bus.

It places those words in registers the width of a cpu word.
This register width is the native integer size.2

These word widths may or may not be the same.
(On x86-64, they are.)

If they’re not, a transfer may require:
multiple registers, or
multiple memory transfers.

2Some CPUs (including x86-64) can manipulate more than one size of
integer in a single register.
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Imposing Structure on Memory
That said, programming languages expose things like:

Booleans
classes
strings
structures

How is that?

We impose meaning on words in memory by convention.

E.g., as we saw before, a C string is a sequence of bytes that
happen to be adjacent in memory.
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Hexadecimal

A brief aside: we will be using hexadecimal (“hex”) a lot.

Hex is the base 16 numbering system.
One hex digit ranges from 0 to 15.
Contrast this to decimal, or base 10 —
one decimal digit ranges from 0 to 9.

In computing, hex digits are represented by 0-9 and then A-F.
A = 10 D = 13
B = 11 E = 14
C = 12 F = 15
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Why Hex?
Hexadecimal is used because one hex digit is four bits.

This means that two hex digits represents one 8-bit byte.

On machines with 8-bit-divisible words, this is very convenient.
Hex Bin Hex Bin
0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 C 1100
5 0101 D 1101
6 0110 E 1110
7 0111 F 1111
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The C Struct

A struct is a compound data type consisting of one or more
primitive types.
struct IntList {

int value;
struct IntList *next;

};
This struct contains an integer and a pointer.

The integer value comes before the pointer next in memory.
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Padding and Alignment
In structures, as in most data on real systems, types are aligned.

This means that the address of a variable is evenly divisible by
the size of its type.

Thus, if an int is 32 bits, its address is divisible by 4.
(32 bits / 8 bits per byte = 4 bytes, addressed in bytes.)

Padding is used between items to bring them into alignment.

The address of a structure is typically divisible by the largest
type it contains.

Padding and alignment rules vary widely by architecture and
implementation!
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Struct Layout

struct IntList {
int value;
struct IntList *next;

};

Base (offset 0)

value

next

padding

Higher memory
addresses

4

8

16

0
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Consequences of Alignment
On many systems, unaligned accesses result in error conditions.

An unaligned access is the attempt to manipulate a piece of
data which has an address not evenly divisible by its size.

This often results in a bus error.

On other systems, unaligned accesses are merely slow.
(This is because multiple memory accesses are required, due to the
fact that memory can only fetch aligned words.)

x86-64 is the latter type of system; it will “fix up” most unaligned
accesses.
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Declaring and Using Structures

We previously saw a structure declaration. The syntax is:
struct StructureTypeName {

// Types in structure
int whatever;

} instance; // semicolon required!

An instance of the structure may be created where the structure
is declared, or using the type name later:

struct StructureTypeName instance;
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Pointers Review

Pointers are variables containing an address.

The data at that address can be manipulated through the pointer.

Pointers are:
Declared with *
Dereferenced with *, [], and ->
Created from variables with &

int *x = &someint;
char *str = "A string constant";
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Pointers to Structures
We put off discussing -> before.
This operator is used for dereferencing pointers to structures:
struct Complex {

double r;
double i;

} complex;
struct Complex *pc = &complex;

These are equivalent:
(*pc).i;

pc->i;
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Pointers and Alignment
Pointers have alignment just like other types.

There are two alignments to be aware of:
Alignment of the pointer itself
Alignment of the object pointed to

The former is typically the pointer size.
The latter is the type’s natural alignment:

Bit width for integers
Pointer width for pointers
Width of the widest item in a structure
etc.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Structures More Pointers Representation Integers Floating Point Summary References

Arrays and Alignment

Arrays depart from pointer behavior with respect to alignment.

On many platforms, the first element of an array has a minimum
alignment of a pointer word.

However, they often align wider for larger types.
(E.g., with a 4 byte pointer, a double array would still align to 8 bytes.)

On some platforms, they may align narrower for narrower types.
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Pointer Arithmetic

In addition to alignment, pointers have stride.

Stride is the distance between elements of the pointed-to type.

Pointer arithmetic operates in stride-sized chunks.
(This is why pointers can dereference like arrays!)

double *dptr = &somedouble;
If the value of dptr were 0, dptr + 1 would be eight, not one!
This is because a double is 8 bytes wide.
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Pointer Types

A pointer’s type tells the compiler what type to treat it as.
This is almost, but not entirely, different from what it actually is.

Nothing stops you from taking a valid pointer and doing invalid
arithmetic.

Similarly, nothing stops you from pointing at nonsense.
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Pointer Danger

struct Example {
char username [8];
int uid;

} example;

char *name =
&example.username;

What is username[8]?
What is name[8]?

Base (offset 0)

4

8

0 us
er

na
m

e

uid
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Pointer Safety
The compiler tries to help you make safe pointer accesses.
struct Complex {

double r;
double i;

} complex;

double *d = &complex;

This results in a compiler error:
complex.c:6:10: warning: initialization from

incompatible pointer type
[-Wincompatible -pointer -types]

double *d = &complex;
^
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Pointer Safety
Is it right, though?

struct Complex {
double r;
double i;

} complex;

double *d = &complex;

complex

8

0
r

i

d
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Pointer Safety

Probably.

This pointer happens to be valid, but if the programmer meant it,
she probably should have used:
double *d = &complex.r;

This practice:
Tells the compiler you intend for d to point to r
Tells the next programmer what you really meant
Is somewhat more robust to changes in the structure
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Pointer Daring
Sometimes you really do want to create a dissimilar pointer.

In this case, you should cast your pointer type.
struct Complex {

double r;
double i;

} complex;

char *bytes= (char *)&complex;

This forces the compiler to allow the assignment.

The special type void * can be assigned to any pointer.
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The sizeof operator

There are several operators used to help with reflection in C.

One of these is the sizeof operator.
It returns the size in bytes of its operand, which can be:

A variable
An expression that is “like” a variable
A type

(Expressions “like” a variable include, e.g., members of structures.)
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Looking at sizeof

Examples:
char str [32];
int matrix [2][3];

sizeof(int); // yields 4
sizeof(str); // yields 32
sizeof(matrix); // yields 24
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Dynamic Allocation

The next thing to learn about pointers is dyamic allocation.
(We’ll talk a lot more about this later.)

The header stdlib.h defines malloc() and free():
#include <stdlib.h>

void *malloc(size_t size);
void free(void *ptr);

Malloc will allocate memory, while free will release it.
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malloc

void *malloc(size_t size);

Malloc returns a void * pointer, which can point to anything.
To allocate an array with 10 int entries dynamically, we:

Determine the size of a single int
Tell the system we want ten of those
Assign the result to an appropriate pointer

int *array = malloc (10 * sizeof(int));

The variable array can now be used as a regular int array.
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free

void free(void *ptr);

Free accepts a void * pointer, which can point to anything.
Freed memory returns to the system to be allocated again later
via malloc().
free(array);

Note that free does not modify the value of its argument.
Thus you cannot “tell” that a pointer has been freed!
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Structure Allocation
We can allocate, use, and free a structure thus:
struct Complex {

double r;
double i;

};

struct Complex *c = malloc(sizeof(struct Complex));

c->r = 1.0;
c->i = 0.0;

free(c);

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Structures More Pointers Representation Integers Floating Point Summary References

Exploring Representation
Let’s use pointer casting to explore some in-memory data.
#include <stdio.h>

void dump_mem(const void *mem , size_t len) {
const char *buffer = mem; // Cast to char *
size_t i;

for (i = 0; i < len; i++) {
if (i > 0 && i % 8 == 0) { printf("\n"); }

printf("%02x ", buffer[i] & 0xff);
}
if (i > 1 && i % 8 != 1) { puts(""); }

}
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dump_mem Details
What is this for?
const char *buffer = mem;

It tells the compiler “we’re going to use mem as an array of bytes”.
What about this:
if (i > 0 && i % 8 == 0){ printf("\n"); }
It prints a newline after every 8th byte excepting the first.

Finally:
buffer[i] & 0xff
This is necessary to avoid sign extension.
We’ll talk more about this later.
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A Simple Integer

First, a simple integer:

int x = 98303; // 0x17fff
dump_mem (&x, sizeof(x));

Output:
ff 7f 01 00

Let’s pull this apart.
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Byte Ordering

Why is 98303, which is 0x17fff, represented by ff 7f 01 00?

The answer is endianness.
Words are organized into bytes in memory — but in what order?

Big Endian: The “big end” comes first.
This is how we write numbers.
Little Endian: The “little end” comes first.
This is how x86 processors (and others) represent integers.

You cannot assume anything about byte order in C!
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Sign Extension

char c = 0x80;
int i = c;

dump_mem (&i, sizeof(i));

Output:
80 ff ff ff

0xffffff80? Where did all those one bits come from?!
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Positive Integers

A formal definition of a positive integer on a modern machine is:

Consider an integer of width w as a vector of bits, x⃗:

x⃗ = xw−1, xw−2, . . . , x0

This vector x⃗ has the decimal value:

x⃗ .
=

w−1∑
i=0

xi2i
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Calculating Integer Values

Consider the 8-bit binary integer 0010 1011:

00101011b = 0 · 27 + 0 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20

= 0 · 128+ 0 · 64+ 1 · 32+ 0 · 16+ 1 · 8+ 0 · 4+ 1 · 2+ 1 · 1
= 32+ 8+ 2+ 1
= 43
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Negative Integers

Previously, the variable c was sign extended into i.
As previously discussed, integers may be signed or unsigned.

Since integers are just bits, the negative numbers must have
different bits set than their positive counterparts.

There are several typical ways to represent this, the most
common being:

One’s complement
Two’s complement
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One’s Complement
One’s complement integers represent a negative by inverting
the bit pattern.

Thus, a 32-bit 1:
00000000 00000000 00000000 00000001
And a 32-bit -1:
11111111 11111111 11111111 11111110
Formally, this is like a positive integer, except:

xw−1
.
= −2w−1 + 1
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Decoding Negative One’s Complement
Therefore, 4-bit -1: 1110

1110b = 1 · (−23 + 1) + 1 · 22 + 1 · 21 + 0 · 20

= 1 · −7+ 1 · 4+ 1 · 2+ 0 · 1
= −7+ 4+ 2
= −1

This is fine, except there are two zeroes!:

0000b = 0 · (−23 + 1) + 0 · 22 + 0 · 21 + 0 · 20

1111b = 1 · −23 + 1 · 22 + 1 · 21 + 1 · 20

= −7+ 4+ 2+ 1
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Two’s Complement

Most (modern) machines use two’s complement.

Two’s complement differs slightly from one’s complement.
Its w− 1th bit is defined as:

xw−1
.
= −2w−1

(Recall that one’s complement added 1 to this!)

This means there is only one zero — all 1s is -1!
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Decoding Two’s Complement

Consider 1110 in two’s complement:

1110b = 1 · −23 + 1 · 22 + 1 · 21 + 0 · 20

= −8+ 4+ 2+ 0
= −2

w-bit Two’s complement integers run from −2w−1 to 2w−1 − 1.
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Negative Integer Bit Patterns
In general, the high-order bit of a negative integer is 1.

In our previous example:
char c = 0x80;
int i = c;
c is signed, and thus equivalent to -128.

It is then sign extended into i by duplicating the high bit to the
left.

This results in an i that also equals -128.
Why?
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Computing c and i

char c = 0x80;
Here, c is -128 plus no other bits set.
int i = c;
What is i if we sign extend?

11111111 11111111 11111111 10000000
What is the value of that two’s complement integer?
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Computing Sign Extension

11111111 11111111 11111111 10000000
Remember that the high 1 bit indicates −2w−1, or −231, here.

We then add in each of the other bits as positive values.

Every bit from 27 through 230 is set, and 20 through 26 are unset:

−231 + 230 + 229 + . . . + 28 + 27

…this sums to -128!
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What is “Floating Point”?
A floating point number, such as a float or double, is a number
with a variable number of digits before or after the decimal point

(On computers, a variable number of bits before or after the
binary point!)

Examples:
3.14159
6.022× 1023
6.626× 10−34

It would take nearly 200 bits to represent all three of these
numbers precisely.
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What is “Floating Point”?

In order to represent numbers of very small or very large
magnitude, floating point allows the point to move.

The number of digits of precision is fixed.

Some (loose) terms:
Significand: The meaningful digits of a number
Exponent: The “distance” of those digits from zero in
powers of the arithmetic base
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Floating Point Representation

In base 10, a floating point number is of the form x× 10y.
If we consider Avogadro’s Number (6.022× 1023):

The significand x is 6.022
The exponent y is 23.

This requires six digits to store, versus 24 digits for
602200000000000000000000.

In base 2, a floating point number is x× 2y.
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IEEE 754 Floating Point
IEEE Standard 754 defines a particular floating point format.

If a floating point number is x× 2y, in IEEE 754:
A single precision number (float) has a 23-bit x and 8-bit y
A double precision number (double) is 52-bit x and 11-bit y

Each has a one-bit sign.

float
double

sign significand exponent
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Storing IEEE 754 Components

However, x and y are not stored directly!

x (the significand) is stored:
Normalized to a value right of the binary point
With an assumed leading 1 preceding the binary point

This means that a stored significand of 0 is x = 1.0

y (the exponent) is stored as y + 127.
This means that an exponent of 0 is stored as 127.
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Examining Floats

float f1 = 2.0f;
float f2 = 0.2f;

dump_mem (&f1, sizeof(f1));
dump_mem (&f2, sizeof(f2));

Output:
00 00 00 40
cd cc 4c 3e
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Deconstructing 2.0

Why is 2.0f 0x40000000?
0 10000000 000000000000000 00000000

Remembering our significand and exponent storage rules, this
means:
x = 1.0
y = 1
Thus: 1.0× 21 = 2.0

(We didn’t use 1.0 because it’s kind of a special case.)
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Deconstructing 0.2

This became 0x3e4ccccd, or:
0 01111100 10011001100110011001101

Is this surprising?

What just happened?

The significand isn’t decimal!
It’s after the binary point.

Fractions cleanly represented in decimal, like 1/5, may not be
clean in binary — sort of like 1/3 in decimal.
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The Binary Point

Suppose we have a b-bit binary number with bits both before
and after the binary point, such that:

There are w whole-number bits before the binary point
There are f fractional bits after the binary point
The largest bit before the point is bw−1

The smallest bit before the point is b0
The largest bit after the point is b−1

The smallest bit after the point is b−f
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A w.b-bit Binary Number
The w whole-number bits are defined as in integers:

bi, i ≥ 0 .
= bi · 2i

The f fractional-number bits are defined as follows:

bi, i < 0 .
= bi · 2−bi

Thus, its total value is:

w−1∑
i=0

bi · 2i +
f∑

j=1

bi · 2−j
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An Example Binary-Point Computation

Consider 11.101b:

11.101b = 1 · −22 + 1 · 21 + 1 · 2−1 + 0 · 2−2 + 1 · 2−3

= 2+ 1+ 1/2+ 0+ 1/8

= 3 5/8

= 3.625
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More Floating Point
IEEE 754 is more complicated than we covered here.
(You’ll read more about it in the text.)

We have covered the big ideas, however.

Some important implications to consider:
Very large (either positive or negative) floating point
numbers become imprecise because of that ×2y factor.
Very small (close to zero) floating point numbers become
imprecise for the same reason.
Double precision numbers can still be quite large and
precise!
The possible floating point values are unevenly spaced.3

3See “Denormalized Values” in your text for a caveat.
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Summary

Machines use words for memory and register access
Hexadecimal is convenient for representing words on
modern systems
C structures are C datatypes laid out adjacent in memory
Word sizes have alignment implications on memory layout
Integer representation has complications!
Floating point representations have different complications!
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