
CSE 410: Systems Programming
The UNIX Shell

Ethan Blanton

Department of Computer Science and Engineering
University at Buffalo

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

The UNIX Shell

The UNIX shell was historically the user’s primary interface to
the system.

It provides direct but safe access to many of the system calls.

The shell was rather revolutionary when introduced [3, 2].

You don’t need to learn shell programming for this course.
Understanding something about the shell will be helpful.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

The Interactive Shell
The shell has a dual nature:

An interactive command prompt
A programming environment

Interactive sessions prompt for input and execute immediately.

Modern shells include interactive facilities for:
Command aliasing
Recall and modification of recent commands

However, the entire programming language is also available
interactively!

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

The Shell as a Programming Environment

The shell programming language contains:
Variables
Conditionals
Loops
Procedures
Exceptions

The primary feature remains execution of other programs.

Shell “programs” are usually combinations of external programs.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

Words
The shell breaks its input up into words, which are strings.
(Everything in the shell is a string!)

Words are separated by whitespace.

The first word1 in a command tells the shell what to do with it.

Words can contain whitespace if it is quoted with either:
Single quotes: '
Double quotes: "
Backslash: \

1…or sometimes two.
©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

Statements

A single statement:
Starts after the previous command
Ends with: newline, ;, &

After parsing a statement, the shell will determine if it is:
A variable assignment (possibly with a command)
A builtin command
A control statement (if, while, etc.)
An external program or programs to be run

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

Variables
Shell variables are strings.

Variables need not be declared and are global.2

You can create or assign a variable with =:
VAR=value
This will:

Create a variable named VAR if it does not exist
Assign the value “value” to VAR

Note that there must be no space around the = symbol!
2Many modern shells have an extension for local variables.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

Builtin Commands
Certain “commands” are shell builtin commands.

The shell does not execute an external program, it runs internal
code for these commands.

There are several possible reasons:
Efficiency
The shell’s internal state must be changed
The statement is a control flow construct

In particular, changing internal state cannot be done after fork.

Therefore, commands like cd must be builtin commands.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

Control Statements

The shell has control statements that affect program flow:
Conditional statements and operators (if, case, &&, ||)
Loops (for, while, until)

These statements allow the shell to implement program logic.

These statements make their decisions based on command exit
statuses.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

External Commands

Any other statements are external commands.

The shell will fork() and then exec() the external commands.
The first word on the line is the binary to execute.

The remaining words are arguments to that binary.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

Variable Interpolation
Variables are interpolated into words.

The contents of variables can create new words.

Interpolation takes one of two basic forms:
$VAR: Interpolate the simple variable named VAR
${VAR}: Interpolate the variable named VAR, which might
have a “complicated” name or perform some extra actions

Unless the word containing a variable interpolation is quoted:
Variables may create new words
The variable IFS will be used to determine how
(Don’t worry about IFS yet.)

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

Command Interpolation

The output of a command can also be inserted into a command.

The POSIX syntax $(command):
Runs the command between parenthesis
Inserts its output into the command in place of the $()

The older Bourne syntax `command` does the same, but:
Cannot be nested
Has some strange quoting rules

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

Globbing

The shell performs globbing, or pattern matching of filenames.

A glob will be expanded to a list of one or more filenames if it
matches any such filenames.

The basic glob matching tools are:
* matches any sequence of 0 or more characters
? matches any one character
[] matches any character between the braces; ranges of
characters can be represented as, e.g., [a-z], which
matches any lowercase letter

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

Pipes and Redirection

The file descriptors of the shell itself and the processes it
executes can be manipulated.

Pipes can be created (using pipe()) with |
Files can be opened on file descriptors (using dup2()) with
<, <<, >, and >>
File descriptors can be copied (using dup2) with >&

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

Shell versus Environment Variables

Every process on a POSIX system has an environment.

The environment is a set of key-value pairs.

By default, a process inherits a copy of its parent’s environment.

The shell allows shell variables to be placed in the environment.

The shell builtin command export accomplishes this.
Unless a variable is exported it is private to the shell.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

The Environment

The syntax for export is:
export VAR [VAR2 ...]
Every variable named as an argument to export will be copied
into the environment for child processes.

The env command will print its environment and exit.
The shell uses setenv() or putenv() to manipulate its
environment.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

Special Variables
The shell recognizes quite a few special variables, including:

$0: the name of the current executable
$1-$9: the first 9 arguments to the shell (or a function)
$#: The number of arguments $1-$9 that are valid
$* and $@: All of the arguments to the shell (or a function)
$?: The return value of the previous command
$!: The process ID of the previous command3

$PS1: The prompt given in interactive use
$IFS: The input field separator used to determine if an
expansion creates new words

3sometimes…
©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

IFS
The input field separator is used by the shell to determine when
any expansion (variable or other) should create new words.

If an expansion contains characters in $IFS, they split the word.
The default value of IFS is newline, tab, and space.

This means that the following command will have two
arguments:
$ VAR="arg1 arg2"
$./ writeargs $VAR
./ writeargs
arg1
arg2

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

Simple File Redirections

Standard input, output, and error can be redirected simply.
< file will connect standard input to the named file
> file will do the same for standard output
2> file will redirect standard error

The final syntax is general; N> and N< connect the named file to
file descriptor N using dup2().
To append to a redirected output, use >>.
These operators are placed within or after a command.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

Using Redirections

To cause wc -w to read from /usr/share/dict/words:
wc -w < /usr/share/dict/words
To send the output of cut to totals.txt:
cut -d' ' -f5 > totals.txt
To put the output of two different commands into means.txt:
stats -bmean variant-a.txt > means.txt
stats -bmean variant-b.txt >> means.txt

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

Here Documents
Standard input can be redirected from a here document.

A here document is a file embedded in a shell script.

Here documents use the syntax <<word, and the document
contains everything from the end of the command to a line with
word by itself.

cat <<EOF
For example , all of this up until the word EOF
on a line by itself will be readable by cat on
its standard input file descriptor.
EOF

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

Pipes

A pipeline may be the most powerful feature of the shell.

A pipeline is a series of commands connected by pipes.

Each command:
writes to standard output
reads from standard input

The shell uses pipe() and dup2() to connect one to the other.
The vertical bar (|), often called pipe, accomplishes this.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

Using Pipes
A pipeline is built by putting | between commands:
cmd1 | cmd1
This will:

Create a pipe with pipe()
Fork twice (once for cmd1 and once for cmd2)
Use dup2() to connect:

pipefd[1] to file descriptor 1 (standard output) of cmd1
pipefd[0] to file descriptor 0 (standard input) of cmd2

Call exec() appropriately in each child
Wait for cmd2 to exit

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

Duplicating Descriptors
The shell can duplicate descriptors without opening new files.

The operator N>&M does this, and it means: dup2(N, M)
Thus, to print an error message to standard error:
echo Could not open file 1>&2
The special syntax N>&- or <&- closes a descriptor.
This is sometimes used to detach a process from the terminal.

Redirections are processed in order:
duplicating a redirected file must occur after the redirection.
echo No output or errors > /dev/null 2>&1

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

Globbing

Unquoted words are subject to globbing.

If they contain certain characters, they will be used as patterns
that match filenames.

The single globbing word will be replaced with one word for
reach matching file.

If no files match, the glob will be passed unchanged.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

Globbing Syntax
Everyone is familiar with the bare *.
It is a glob that means:
all files with zero or more characters in their filenames.

It can be combined with other globs or characters: *.c
The character ? matches any one character: *.?
(All files with a one-character extension)

A range of characters can be matched with []:
*.[ch]: All files ending in .c or .h
variant-[a-d].pdf
Globs can appear anywhere in a path: lectures/*/*.pdf

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

Shell Control Structures

The shell control structures share behaviors:
Except for case, the condition is the exit value of a
command.
Strange ALGOL68-style syntax: if/fi, case/esac, do/done
Usable in pipelines

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

Conditions: if/then

if condition; then
commands

elsif condition; then
commands

else
commands

fi

Each of the conditions is a command.

The test command is common here!

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

Conditions: case

case word in
[g]lob?)

commands
;;

*)
commands
;;

esac

The case structure matches a word against a pattern.
The pattern uses globbing rules.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

Conditions: boolean

command1 && command2
command1 || command2

These are equivalent to:
if command1; then

command2
fi

if ! command1; then
command2

fi

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

Loops: while

while condition; do
commands

done

The command specified as a condition will be executed
repeatedly.

As long as it returns success, the body commands will be
executed.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

Loops: for

for variable in words; do
commands

done

The shell for is an iterator-style loop.
The specified variable name will be assigned to each given word
in turn, and the body commands executed.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

Summary

The shell almost directly exposes several system calls:
fork()/exec()
open()
close()
dup2()
wait()

It provides both interactive and programmatic facilities.
Your project is similar to but different from the POSIX shell.
This only scratches the surface of the POSIX shell.

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

Next Time …

…

©2018 Ethan Blanton / CSE 410: Systems Programming

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

References I

Optional Readings
[1] Bruce Blinn. Portable Shell Programming. An Extensive Collection of Bourne Shell

Examples. Prentice Hall PTR, 1996.

[2] Stephen R. Bourne. “The Unix Shell”. In: Byte Magazine 8.1 (Oct. 1983), pp. 187–204.
url: https://archive.org/stream/byte-magazine-1983-10/1983_10_BYTE_08-
10_UNIX#page/n187/mode/1up.

[3] D. M. Ritchie and K. Thompson. “The UNIX Time-Sharing System”. In: Communications
of the ACM 17.7 (July 1974), pp. 365–375. url:
https://www.bell-labs.com/usr/dmr/www/cacm.pdf.

©2018 Ethan Blanton / CSE 410: Systems Programming

https://archive.org/stream/byte-magazine-1983-10/1983_10_BYTE_08-10_UNIX#page/n187/mode/1up
https://archive.org/stream/byte-magazine-1983-10/1983_10_BYTE_08-10_UNIX#page/n187/mode/1up
https://www.bell-labs.com/usr/dmr/www/cacm.pdf

Introduction Shell Syntax Variables Redirections Globbing Control Structures Summary References

License

Copyright 2018 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2018 Ethan Blanton / CSE 410: Systems Programming

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Shell Syntax
	Variables
	Redirections
	Globbing
	Control Structures
	Summary

