
CSE 410: Systems Programming
Memory and Concurrency

Ethan Blanton

Department of Computer Science and Engineering
University at Buffalo



Introduction Consistency Shared Memory Summary References

Memory and Concurrency

We have discussed shared state and concurrency.

However, the issues go deeper than that!

Shared state is in shared memory.

Memory has some confusing properties when it is shared.

How does memory become shared, anyway?

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

Types of Shared Memory
There are several “types” of shared memory in concurrent
programming:

Memory used by the same thread in the same process at
different times (and maybe asynchronously)
Memory used by different threads in the same process
(maybe at the same time)
Memory used by different processes (maybe at the same
time)

The first is mostly non-problematic.

The second two require a little extra work.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

Acquiring Shared Memory

Memory shared within a process requires no special setup.

Sharing memory between processes requires kernel assistance.

There are several methods for creating shared memory:
Creating a shared mapping within a process before forking
Attaching to a named mapping with shm_open()
Attaching to a memory-mapped file

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

Consistency
Many problems with memory and concurrency are with
consistency.

Within the dedicated computer model, we have expectations:
Writing to a memory location is immediate
Writes to a memory location are durable

With concurrent flows, these expectations can break.

We have already seen how to mitigate this with synchronization.

However, synchronization must control more than timing.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

Temporal Synchronization

Up to now, we have thought of synchronization as a temporal
construction:

Operation o1 occurs before operation o2

A sequence of operations is not interrupted

However, there are also spatial concerns.
An operation is visible to another part of the system.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

Caching

Modern computers have many layers of caching.

Some of these caches are shared, some are local:
Local to a particular CPU core
Local to a subset of cores
Local to a process
…

Writes to a local cache may not be visible to concurrent flows.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

Why Cache?
Caches are used for performance reasons, in levels:
Level Type Size Access Time
L0 CPU registers O(100 B) ~0 clock cycles
L1 Level 1 cache O(10 KB) ~1-5 clock cycles
L2 Level 2 cache O(100 KB) ~10+ clock cycles
L3 Level 3 cache O(1 MB) ~30+ clock cycles
L4 Main memory O(10 GB) ~100+ clock cycles

Lower levels are much faster but much smaller.

L0-L1 are often local to a core, L2-3 to a core or subset of cores.
L4 is typically shared.1

1Architectures where it is not are called NUMA.
©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

Caching Structure
Each level of cache stores blocks from the next level.

L1: 7 3 4

L2: 2 7 3 9 4

L3:
0 1 2 3 4
5 6 7 8 9

Block location and size may vary from level to level.

Reads come from the first level with the desired data.

Writes eventually propagate to all levels.
©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

Write Propagation

The consistency problem comes from that eventually:
Writes eventually propagate to all levels.

If a cache is local to a core or set of cores, reads from other
cores will not reflect its contents.

Consider registers: only one core sees them!

As previously discussed:
Many operations (even instructions) have multiple steps
Some of those steps are performed in registers

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

Write Propagation Problem

Consider:
Core C0 executes a write for memory location m
The write is stored to C0’s L1 cache
Core C1 executes a read for memory location m
The location m is not in C1’s L1 or L2
C1 reads m from shared L3
C0’s L1 propagates m to C0’s L2
C0’s L2 propagates m to the shared L3

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

Write Propagation II
Temporal synchronization can guarantee that a register is
written to memory.

To guarantee it isn’t cached, we need memory barriers.

A memory barrier does one or more of:
Blocks the current core until a write is visible to all cores
Blocks the current core until all writes are visible
Blocks all cores from accessing a location until a write is
visible
Prevents CPU instruction reordering from affecting this
instruction
…

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

Memory Barriers

Memory barriers are sometimes called memory fences.

Memory barriers are hardware functions.

Most processors have barrier instructions.

For example:
mfence on x86-64
dmb on ARM
many atomic instructions

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

Write Propagation with Barriers

Consider:
Core C0 executes a write for memory location m
The write is stored to C0’s L1 cache
Core C1 issues a barrier for all writes to m
Core C1 executes a read for memory location m
Core C1 blocks because C0 is writing m
C0’s L1 propagates m to C0’s L2
C0’s L2 propagates m to the shared L3
C1 reads m from shared L3

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

Synchronization and Barriers
Synchronization primitives use memory barriers.

These functions, for example, all have barriers:
fork()
pthread_mutex_lock()
pthread_mutex_unlock()
pthread_create()
pthread_join()
…

Basically all of the POSIX synchronization functions.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

C and Memory Barriers

The C language makes very few guarantees regarding barriers.

C11 has some fence (barrier) operations.

C99 does not expose barriers.

In general libraries or OS functions (such as Pthreads) are
required for thread-safe operation in C.

Some C compilers may provide barriers (e.g.,
__builtin_ia32_mfence() in GCC).

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

Sharing Memory
So far, we have explored only one way to share memory:
Threads within a process share all memory.

It is often useful to share memory in a controlled way.

For example:
A typed data structure (such as a list or tree)
A buffer of raw bytes
A synchronization tool (such as a producer-consumer
queue)
…

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

Implicitly Shared Memory

Processes have a lot of implicitly shared memory:
Shared libraries
Executable images
Kernel memory
…

This memory is not obviously shared, however.

It is either read-only or hidden.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

Explicitly Sharing Memory
A process can request explicit memory sharing.

That memory may be mutable and changes may be visible
between processes.

Like all other resources, the kernel sets up shared memory.

POSIX systems offer two fundamental system calls (and three
methods) for explicitly sharing memory:

mmap() maps a file into memory, and changes to the file can
be shared between processes
mmap() can also be used to create an anonymous shared
mapping shared between parent and child processes
shm_open() opens a named shared memory region

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

mmap()
The mmap() system call is a Swiss-army knife of memory
mapping tools.

It asks the kernel to manipulate the process virtual memory map.

Its analogue is munmap().
It is quite complicated to use properly.

The original use of mmap() was to map a file into memory.

Memory mapped with mmap is preserved on fork().

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

Using mmap()

#include <sys/mman.h>

void *mmap(void *addr , size_t len , int prot ,
int flags , int fd, off_t offset);

The only required (nonzero) arguments are flags and fd.
The arguments passed to mmap depend on what you do with it.

You don’t need to remember these details, but do learn the
concepts!

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

Using mmap()
void *mmap(void *addr , size_t len , int prot ,

int flags , int fd, off_t offset);

The flags argument determines what kind of mapping is created.

It must include either MAP_PRIVATE or MAP_SHARED.
It may include many other options.

MAP_ANONYMOUS, in particular, means do not map a file.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

Using mmap()
void *mmap(void *addr , size_t len , int prot ,

int flags , int fd, off_t offset);

The addr argument is the location in the virtual memory map
where you would like the mapping to be placed.

It is often specified as zero, which lets the kernel decide.

Unless MAP_FIXED is passed to prot, this address is advisory.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

Using mmap()
void *mmap(void *addr , size_t len , int prot ,

int flags , int fd, off_t offset);

The fd argument must be either:
An open file descriptor
-1

The open file descriptor specifies which file is to be mapped.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

Using mmap()
void *mmap(void *addr , size_t len , int prot ,

int flags , int fd, off_t offset);

The prot argument determines the permissions of the mapping.
It must be either PROT_NONE or a bitwise-or of:

PROT_READ: the mapping is readable
PROT_WRITE: the mapping is writeable
PROT_EXEC: the mapping is executable

The selected protection must match the open fd mode.
(E.g., an O_RDONLY file cannot be mapped PROT_WRITE.)

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

Using mmap()
void *mmap(void *addr , size_t len , int prot ,

int flags , int fd, off_t offset);

len determines how many bytes of the file are mapped.

If a file is being mapped, offset determines the first byte of the
file that is mapped.

It is common that offset must be a multiple of the system page
size.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

Example of mmap()
From your malloc project:
void *mapping = mmap(NULL , size ,

PROT_READ | PROT_WRITE ,
MAP_PRIVATE | MAP_ANONYMOUS ,
-1, 0);

NULL addr because we don’t care
readable, writeable mapping
MAP_PRIVATE so the map is not shared, and MAP_ANONYMOUS
because there’s no file
fd is -1 because there’s no file
The size is as requested, with no offset

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

Shared Mapping with mmap()

void *mapping = mmap(NULL , size ,
PROT_READ | PROT_WRITE ,
MAP_SHARED | MAP_ANONYMOUS ,
-1, 0);

This mapping will be preserved across fork().
The memory will be at the same address in both processes.

POSIX semaphores created in the shared memory, or created in
other memory, with pshared = 1, will synchronize processes.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

Mapping a File
int fd = open("somefile", O_RDWR);
void *mapping = mmap(NULL , 4096,

PROT_READ | PROT_WRITE ,
MAP_SHARED , fd, 0);

close(fd);

This maps the first 4 KB of somefile to the address mapping.
This mapping will be shared by all children of this process.

This mapping will be with shared with all processes mapping the
same location in the same file.

Note that the file can be deleted after it is mapped.
©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

Executable Loading with mmap()
Recall that executables on disk are mapped into memory.

This is accomplished using mmap().
The various ELF sections are mapped appropriately:

.text with PROT_READ | PROT_EXEC

.rodata with PROT_READ

.data with PROT_READ | PROT_WRITE

The text and read-only data can be MAP_SHARED to save RAM.

The BSS is an anonymous mapping using MAP_ANONYMOUS and
PROT_READ | PROT_WRITE.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

Shared Memory Without a File

Mapping a file to share memory can be convenient:
It persists when no process is using it
It persists between reboots
It can be easily analyzed with standard utilities

Mappings can also be created without a file.

The shm_open() system call creates a file descriptor referencing
a kernel memory buffer.

The filedescriptor returned by shm_open() is usable with mmap().

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

shm_open()
#include <sys/mman.h>
#include <fcntl.h>

int shm_open(const char *name , int flags , int mode);

The flags and mode arguments are the same as open().
The memory allocated by shm_open() lasts until either:

It is removed with shm_unlink() and all processes have
unmapped it
The machine is rebooted

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

Example of shm_open()

int fd = shm_open("/shm_example", O_RDWR , 0600);
ftruncate(fd, 4096);
void *mapping = mmap(NULL , 4096,

PROT_READ | PROT_WRITE ,
MAP_SHARED , fd, 0);

Any process attaching to "/shm_example" can share this memory.

Note the use of ftruncate() to set the size of the mapping.

In this case, only the creating user can open the memory.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

Summary

Caching and CPU architecture require more than just
temporal synchronization
Memory barriers force data visibility across cores
Memory barriers are a hardware feature
Caches are much faster than main RAM
POSIX synchronization primitives use memory barriers
Shared memory requires kernel assistance
Files can be mapped into memory

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

References I
Required Readings
[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s

Perspective. Third Edition. Chapter 6: Intro, 6.3; Chapter 9: 9.8. Pearson, 2016.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Consistency Shared Memory Summary References

License

Copyright 2018 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2018 Ethan Blanton / CSE 410: Systems Programming

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Consistency
	Shared Memory
	Summary

