
CSE 410: Systems Programming
POSIX Signals

Ethan Blanton

Department of Computer Science and Engineering
University at Buffalo



Introduction Signals Blocking Concurrency Sending Signals Summary References

POSIX Signals

POSIX signals are another form of interprocess communication.

They are also a way to create concurrency in programs.

For these two reasons, they are rather complicated and subtle!

Signals provide a simple message passing mechanism.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Signals Blocking Concurrency Sending Signals Summary References

Signals as Messages

POSIX signals are asynchronous messages.

Asynchronous means that their reception can occur at any time.1

The message is the reception of the signal itself.

Each signal has a number, which is a small integer.

POSIX signals carry no other data.

1Almost. We’ll see how to control it later.
©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Signals Blocking Concurrency Sending Signals Summary References

Signal Types

There are two basic types of POSIX signals:
Reliable signals
Real-time signals

Real-time signals are much more complicated.

In particular, they can carry data.

We will discuss only reliable signals in this lecture.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Signals Blocking Concurrency Sending Signals Summary References

Asynchronous Reception

From the point of view of the application:
Signals can be blocked or ignored
Enabled signals may be received between any two
processor instructions
A received signal can run a user-defined function called a
signal handler

This means that enabled signals and program code must very
carefully manipulate shared or global data!

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Signals Blocking Concurrency Sending Signals Summary References

Signals

POSIX defines a number of signals by name and number.

A few of those are:
SIGHUP, 1 (sent when a terminal disconnects)
SIGINT, 2 (sent when you push Ctrl-C)
SIGKILL, 9 (uncatchable, terminates the process)
SIGSEGV, 11 (sent on invalid memory access)
SIGCHLD, 17 (sent when a child process exitsx)

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Signals Blocking Concurrency Sending Signals Summary References

Signal Handlers

A process indicates that it wishes to receive a signal by installing
a signal handler.

Each signal has a default handler that either:
Ignores the signal
Stops the process
Continues the process
Terminates the process
Terminates the process and dumps core

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Signals Blocking Concurrency Sending Signals Summary References

Signal Handlers II

A process can install a signal handler for any signal except:
SIGKILL
SIGSTOP

A signal handler is a function.

That function is called when the signal is received.

Signal handlers are of type sighandler_t:
typedef void (* sighandler_t)(int);

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Signals Blocking Concurrency Sending Signals Summary References

Typedef

typedef void (* sighandler_t)(int);

A typedef declares a new type.

It looks like a variable declaration.
The name of the variable becomes the type.

sighandler_t is a function pointer.

It is a function returning void and accepting one int argument.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Signals Blocking Concurrency Sending Signals Summary References

Installing a Handler

sighandler_t signal(int signum , sighandler_t handler);

The signal function accepts
a signal number and
a handler function

and binds the function to the signal.

Therefter, receipt of the signal will call the bound function.

It also returns the old signal handler.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Signals Blocking Concurrency Sending Signals Summary References

Special Handlers

There are two special signal handlers:
SIG_IGN: ignore a signal
SIG_DFL: restore default behavior

These values may be passed to signal instead of a function.

signal(SIGCHLD, SIG_DFL);

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Signals Blocking Concurrency Sending Signals Summary References

Signal Portability

The signal() function has some portability problems:

Some systems reset the handler to SIG_DFL upon receipt
Some systems allow signals to arrive during a handler set
by signal()

For this reason, there is a POSIX function sigaction().
The behavior of sigaction() is more tightly defined.

Linux signal() semantics are appropriate for your shell project.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Signals Blocking Concurrency Sending Signals Summary References

Signal Reception

The kernel may deliver a signal at any time.

When receiving a signal, a process will:
Push its current program counter onto
the stack
Jump to the signal handler
Execute the signal handler
Pop the saved PC and return

Program

Handler

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Signals Blocking Concurrency Sending Signals Summary References

Blocking Signals

A signal can be blocked by the program.

A blocked signal will be delivered when it is unblocked.

Signals may be:
implicitly blocked because a handler for that signal is
currently executing
expliticly blocked by the programmer using sigprocmask()

Signal blocking allows the program to restrict signal reception,
since it otherwise cannot predict when they will be received.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Signals Blocking Concurrency Sending Signals Summary References

sigprocmask()

#include <signal.h>

int sigprocmask(int how , const sigset_t *set ,
sigset_t *oldset);

int sigemptyset(sigset_t *set);
int sigaddset(sigset_t *set , int signum)

sigprocmask() blocks or unblocks signals given by a signal set.
A signal set contains zero or more signals.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Signals Blocking Concurrency Sending Signals Summary References

Using sigprocmask()
sigset_t mask , oldmask;

sigemptyset(mask);
sigaddmask(mask , SIGCHLD);
sigprocmask(SIG_BLOCK , &mask , &oldmask);

/* SIGCHLD is blocked here */

sigprocmask(SIG_SETMASK , &oldmask , NULL);

/* SIGCHLD restored to its state before the block */
/* If it is unblocked and pending , the handler will

run now (or shortly). */

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Signals Blocking Concurrency Sending Signals Summary References

Shared Data

Signals introduce concurrency into programs.

Because signal handlers run at unpredictable times, accessing
shared data from signal handlers is dangerous.

If data is in an inconsistent state when a handler accesses it,
corruption or program errors might occur.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Signals Blocking Concurrency Sending Signals Summary References

Signal Concurrency
void prepend(struct ListNode *node) {

node ->next = list;
list = node;

}

void handler(int sig) { prepend(new_listnode ()); }

int main(int argc , char *argv []) {
signal(SIGINT , &handler);
prepend(new_listnode ());

return 0;
}

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Signals Blocking Concurrency Sending Signals Summary References

Corruption

1 void prepend(struct ListNode *node) {
2 node ->next = list;
3 list = node;
4 }

If the signal arrives … The result is …
Before line 2 The list contains 2 items
Between 2 & 3 The list contains only the main node
After 3 The list contains both nodes

If the handler node is lost, memory is leaked.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Signals Blocking Concurrency Sending Signals Summary References

Sending Signals
Signals are sent to a process with the kill() function.

#include <sys/types.h>
#include <signal.h>

int kill(pid_t pid , int sig);

Note that kill may or may not actually kill the receiving process!

A process can generally only kill:
itself
other processes owned by the same user

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Signals Blocking Concurrency Sending Signals Summary References

Summary

Signals are interprocess communication.
Each signal is a message.
Signals are handled by functions.
Signal handlers introduce concurrency.
Shared data must be manipulated carefully when signals
are in use.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Signals Blocking Concurrency Sending Signals Summary References

Next Time …

…

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Signals Blocking Concurrency Sending Signals Summary References

References I
Required Readings
[1] Randal E. Bryant and David R. O’Hallaron. Computer Science: A Programmer’s

Perspective. Third Edition. Chapter 8: 8.5. Pearson, 2016.

Optional Readings
[2] “Overview of Signals”. In: Linux Programmer’s Manual. man 7 signal.

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Signals Blocking Concurrency Sending Signals Summary References

License

Copyright 2018 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2018 Ethan Blanton / CSE 410: Systems Programming

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Signals
	Blocking
	Concurrency
	Sending Signals
	Summary

