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POSIX Signals

POSIX signals are another form of interprocess communication.

They are also a way to create concurrency in programs.

For these two reasons, they are rather complicated and subtle!

Signals provide a simple message passing mechanism.
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Signals as Messages

POSIX signals are asynchronous messages.

Asynchronous means that their reception can occur at any time.1

The message is the reception of the signal itself.

Each signal has a number, which is a small integer.

POSIX signals carry no other data.

1Almost. We’ll see how to control it later.
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Signal Types

There are two basic types of POSIX signals:
Reliable signals
Real-time signals

Real-time signals are much more complicated.

In particular, they can carry data.

We will discuss only reliable signals in this lecture.
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Asynchronous Reception

From the point of view of the application:
Signals can be blocked or ignored
Enabled signals may be received between any two
processor instructions
A received signal can run a user-defined function called a
signal handler

This means that enabled signals and program code must very
carefully manipulate shared or global data!
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Signals

POSIX defines a number of signals by name and number.

A few of those are:
SIGHUP, 1 (sent when a terminal disconnects)
SIGINT, 2 (sent when you push Ctrl-C)
SIGKILL, 9 (uncatchable, terminates the process)
SIGSEGV, 11 (sent on invalid memory access)
SIGCHLD, 17 (sent when a child process exitsx)
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Signal Handlers

A process indicates that it wishes to receive a signal by installing
a signal handler.

Each signal has a default handler that either:
Ignores the signal
Stops the process
Continues the process
Terminates the process
Terminates the process and dumps core
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Signal Handlers II

A process can install a signal handler for any signal except:
SIGKILL
SIGSTOP

A signal handler is a function.

That function is called when the signal is received.

Signal handlers are of type sighandler_t:
typedef void (* sighandler_t)(int);
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Typedef

typedef void (* sighandler_t)(int);

A typedef declares a new type.

It looks like a variable declaration.
The name of the variable becomes the type.

sighandler_t is a function pointer.

It is a function returning void and accepting one int argument.
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Installing a Handler

sighandler_t signal(int signum , sighandler_t handler);

The signal function accepts
a signal number and
a handler function

and binds the function to the signal.

Therefter, receipt of the signal will call the bound function.

It also returns the old signal handler.
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Special Handlers

There are two special signal handlers:
SIG_IGN: ignore a signal
SIG_DFL: restore default behavior

These values may be passed to signal instead of a function.

signal(SIGCHLD, SIG_DFL);
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Signal Portability

The signal() function has some portability problems:

Some systems reset the handler to SIG_DFL upon receipt
Some systems allow signals to arrive during a handler set
by signal()

For this reason, there is a POSIX function sigaction().
The behavior of sigaction() is more tightly defined.

Linux signal() semantics are appropriate for your shell project.
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Signal Reception

The kernel may deliver a signal at any time.

When receiving a signal, a process will:
Push its current program counter onto
the stack
Jump to the signal handler
Execute the signal handler
Pop the saved PC and return

Program

Handler

©2018 Ethan Blanton / CSE 410: Systems Programming



Introduction Signals Blocking Concurrency Sending Signals Summary References

Blocking Signals

A signal can be blocked by the program.

A blocked signal will be delivered when it is unblocked.

Signals may be:
implicitly blocked because a handler for that signal is
currently executing
expliticly blocked by the programmer using sigprocmask()

Signal blocking allows the program to restrict signal reception,
since it otherwise cannot predict when they will be received.
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sigprocmask()

#include <signal.h>

int sigprocmask(int how , const sigset_t *set ,
sigset_t *oldset);

int sigemptyset(sigset_t *set);
int sigaddset(sigset_t *set , int signum)

sigprocmask() blocks or unblocks signals given by a signal set.
A signal set contains zero or more signals.
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Using sigprocmask()
sigset_t mask , oldmask;

sigemptyset(mask);
sigaddmask(mask , SIGCHLD);
sigprocmask(SIG_BLOCK , &mask , &oldmask);

/* SIGCHLD is blocked here */

sigprocmask(SIG_SETMASK , &oldmask , NULL);

/* SIGCHLD restored to its state before the block */
/* If it is unblocked and pending , the handler will

run now (or shortly). */
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Shared Data

Signals introduce concurrency into programs.

Because signal handlers run at unpredictable times, accessing
shared data from signal handlers is dangerous.

If data is in an inconsistent state when a handler accesses it,
corruption or program errors might occur.
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Signal Concurrency
void prepend(struct ListNode *node) {

node ->next = list;
list = node;

}

void handler(int sig) { prepend(new_listnode ()); }

int main(int argc , char *argv []) {
signal(SIGINT , &handler);
prepend(new_listnode ());

return 0;
}
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Corruption

1 void prepend(struct ListNode *node) {
2 node ->next = list;
3 list = node;
4 }

If the signal arrives … The result is …
Before line 2 The list contains 2 items
Between 2 & 3 The list contains only the main node
After 3 The list contains both nodes

If the handler node is lost, memory is leaked.
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Sending Signals
Signals are sent to a process with the kill() function.

#include <sys/types.h>
#include <signal.h>

int kill(pid_t pid , int sig);

Note that kill may or may not actually kill the receiving process!

A process can generally only kill:
itself
other processes owned by the same user
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Summary

Signals are interprocess communication.
Each signal is a message.
Signals are handled by functions.
Signal handlers introduce concurrency.
Shared data must be manipulated carefully when signals
are in use.
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Next Time …

…
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