
Distributed Hash Tables

CSE 486: Distributed Systems

Ethan Blanton

Department of Computer Science and Engineering

University at Buffalo



Introduction DHT Overview Kademlia Summary References

Content Addressing

Globally unique names can eliminate naming authorities.

If all names are globally unique, names cannot collide.

This means we must be able to choose globally unique names.

Content addressing is a solution for this!

In content addressing, an object’s name is a cryptographic hash

of its contents.

©2024 Ethan Blanton / CSE 486: Distributed Systems 2



Introduction DHT Overview Kademlia Summary References

Cryptographic Hash Functions

Cryptographic hash functions compute a hash from an object.

This hash is of small, fixed size no matter the object size.

We will not cover hash functions carefully.

However, they have two properties that we care about:

Pre-image Resistance: It is infeasible to create an object

that maps to a hash, given the hash.

Collision Resistance: It is extremely unlikely that two

objects will hash to the same value.

These allow us to use hashes as globally unique names.

©2024 Ethan Blanton / CSE 486: Distributed Systems 3



Introduction DHT Overview Kademlia Summary References

Distributed Hash Tables

Distributed Hash Tables (DHTs) are just what they sound like:

hash tables (key-indexed key-value stores)

distributed among multiple processes

Every key in a DHT is stored at one or more processes.

A value is stored alongside each key.

©2024 Ethan Blanton / CSE 486: Distributed Systems 4



Introduction DHT Overview Kademlia Summary References

A History of DHTs

The DHT as a general data structure was introduced in 2001.1

Three DHT designs came about at about the same time:

CAN [3]

Chord [6]

Pastry [4]

They use different techniques, but have similar properties.

1There had been some previous related work on content-addressed

storage going back decades!

©2024 Ethan Blanton / CSE 486: Distributed Systems 5



Introduction DHT Overview Kademlia Summary References

DHT Properties

All of those first-gen DHTs shared some properties:

The set of participating nodes (processes) is dynamic

Finding a key requires an expected number of messages

logarithmic in the key space

Some robustness to bad actors

Each node must know only a small portion of the key space

They differ moderately to significantly on how they achieve this.

©2024 Ethan Blanton / CSE 486: Distributed Systems 6



Introduction DHT Overview Kademlia Summary References

Key Space

Nodes are somehow distributed throughout the key space.

Values are stored (typically) at the closest node to their key.

Closest can be defined in many ways:

CAN: Cartesian distance on a plane

Chord: Distance around the circumference of a ring

Pastry: Similar to Chord

©2024 Ethan Blanton / CSE 486: Distributed Systems 7



Introduction DHT Overview Kademlia Summary References

Value Storage

Hypothetically, DHTs can store any value.

In practice, they tend to store small identifiers.

For example, a URL at which a file can be retrieved.

Some DHTs can store multiple values for robustness.

Storing large values is problematic:

The value is stored by someone else!

©2024 Ethan Blanton / CSE 486: Distributed Systems 8



Introduction DHT Overview Kademlia Summary References

Routing

Nodes are distributed through the same key space as values.

Every node keeps contact information for a small number of

neighbor nodes distributed carefully through the key space.

Retrieving the value for a key involves iteratively:

1. Identify the closest node I know to the key

2. Ask that node for the closest node it knows to the key

3. Add that node to my set of known nodes

4. Repeat

Neighbor distribution ensures that every step makes progress.

©2024 Ethan Blanton / CSE 486: Distributed Systems 9



Introduction DHT Overview Kademlia Summary References

Uses

DHTs are used in many distributed applications:

BitTorrent

Ethereum

IPFS: The InterPlanetary File System

Amazon Dynamo (sort of)

©2024 Ethan Blanton / CSE 486: Distributed Systems 10



Introduction DHT Overview Kademlia Summary References

Kademlia

Kademlia [2] is a slightly newer (2002) DHT.

It builds on the early DHTs to provide some additional features:

Nodes automatically learn about new nodes via queries

It prefers long-lived nodes in routing, protecting it from

churn2 and certain types of attacks

An extension, S/Kademlia, makes it more robust to attacks [1]

Kademlia is used in some high-profile projects (like BitTorrent

and Ethereum).

2Nodes joining and leaving the network

©2024 Ethan Blanton / CSE 486: Distributed Systems 11



Introduction DHT Overview Kademlia Summary References

Operations

Kademlia offers four operations:

Ping: Checks a node address to see if it is online

Store: Stores a value at a node

Find-Node: Returns the k nodes known to the request recipient

closest to an address.

Find-Value: The same as Find-Node except the node sends

only the value if it knows it

©2024 Ethan Blanton / CSE 486: Distributed Systems 12



Introduction DHT Overview Kademlia Summary References

Key Space

Kademlia uses a 160-bit key space based on SHA-1 [5].

(It actually doesn’t care where the keys come from.)

Choosing node keys can be complicated; S/Kademlia suggests

a scheme not dissimilar to Bitcoin Proof-of-Work.

The Kademlia key space is linear.

Each node divides the space into a tree of k-buckets.

XOR is used to compute distance in key space.

©2024 Ethan Blanton / CSE 486: Distributed Systems 13



Introduction DHT Overview Kademlia Summary References

k-Buckets

Suppose a node n’s address (key) begins with the bits 0011… .

Space of 160−bit numbers

0

0

0

0

0

00

00

0

0

0

00

0

1

1

1

1 1

1

1

1 1

1

1

1 1

1

111

00...0011...11

0

0

F
ro
m

M
a
y
m
o
u
n
k
o
v
a
n
d
M
a
z
iè
re
s
[2
]

© 2024 Ethan Blanton / CSE 486: Distributed Systems 14



Introduction DHT Overview Kademlia Summary References

Key Lookup

0

0

0

0

0

0

0

00

00

0

0

0

00

0

1

1

1

1 1

1

1

1 1

1

1

1 1

1

111

00...0011...11

F
ro
m

M
a
y
m
o
u
n
k
o
v
a
n
d
M
a
z
iè
re
s
[2
]

1

11

2

22

3

33

4

4

©2024 Ethan Blanton / CSE 486: Distributed Systems 15



Introduction DHT Overview Kademlia Summary References

Key Lookup

0

0

0

0

0

0

0

00

00

0

0

0

00

0

1

1

1

1 1

1

1

1 1

1

1

1 1

1

111

00...0011...11

F
ro
m

M
a
y
m
o
u
n
k
o
v
a
n
d
M
a
z
iè
re
s
[2
]

1

1

1

2

22

3

33

4

4

©2024 Ethan Blanton / CSE 486: Distributed Systems 16



Introduction DHT Overview Kademlia Summary References

Key Lookup

0

0

0

0

0

0

0

00

00

0

0

0

00

0

1

1

1

1 1

1

1

1 1

1

1

1 1

1

111

00...0011...11

F
ro
m

M
a
y
m
o
u
n
k
o
v
a
n
d
M
a
z
iè
re
s
[2
]

1

1

1

2

2

2

3

33

4

4

©2024 Ethan Blanton / CSE 486: Distributed Systems 17



Introduction DHT Overview Kademlia Summary References

Key Lookup

0

0

0

0

0

0

0

00

00

0

0

0

00

0

1

1

1

1 1

1

1

1 1

1

1

1 1

1

111

00...0011...11

F
ro
m

M
a
y
m
o
u
n
k
o
v
a
n
d
M
a
z
iè
re
s
[2
]

1

1

1

2

2

2

3

3

3

4

4

©2024 Ethan Blanton / CSE 486: Distributed Systems 18



Introduction DHT Overview Kademlia Summary References

Key Lookup

0

0

0

0

0

0

0

00

00

0

0

0

00

0

1

1

1

1 1

1

1

1 1

1

1

1 1

1

111

00...0011...11

F
ro
m

M
a
y
m
o
u
n
k
o
v
a
n
d
M
a
z
iè
re
s
[2
]

1

1

1

2

2

2

3

3

3

4

4

©2024 Ethan Blanton / CSE 486: Distributed Systems 19



Introduction DHT Overview Kademlia Summary References

Joining the DHT

A node joins the DHT by:

1. Selecting its node address n

2. Contacting any node in the DHT to look up n

3. Inserting the nodes it finds into its k-buckets

4. Optionally selecting another node address and repeating

Note that the first lookup will find its closest neighbor!

Nearby nodes store keys that belong to n as they discover n.

©2024 Ethan Blanton / CSE 486: Distributed Systems 20



Introduction DHT Overview Kademlia Summary References

Reliability

Two parameters, k and α, configure Kademlia reliability.

Roughly speaking:

k controls how resilient it is to churn

α controls how robust it is to adverserial nodes [1]

We’ll look at these two tunables.

©2024 Ethan Blanton / CSE 486: Distributed Systems 21



Introduction DHT Overview Kademlia Summary References

Understanding k

Every key, value pair is stored at the k closest nodes to the key.

This means that k nodes can fail before a key is lost.

Every node stores k neighbors in the k-bucket at each fork of

the routing tree.

This means that k nodes can fail before a branch is lost.

Therefore, increasing k means:

Data storage is more robust

More nodes can fail before routing slows down

Storage costs go up

Routing tables increase in size

©2024 Ethan Blanton / CSE 486: Distributed Systems 22



Introduction DHT Overview Kademlia Summary References

Understanding α

Find-Node or Find-Value is sent to α nodes at each iteration.

This means that:

α – 1 adverserial nodes can give incorrect answers and a

key can still be found3.

The fastest out of α responses can be used to start the next

iteration of lookup.

Therefore, increasing α means:

More adverserial nodes can be present in the network

Communication costs go up

Lookup latency goes down
3This is a change in S/Kademlia [1]

©2024 Ethan Blanton / CSE 486: Distributed Systems 23



Introduction DHT Overview Kademlia Summary References

Summary

Distributed hash tables use globally unique names to avoid

naming authorities

Names are often cryptographically secure hash values

DHTs provide key-value lookups in O(logn) messages,

where n is the size of the key space

Kademlia is a DHT with desirable properties:

Robust to adverserial nodes

Deals well with churn

Self-maintaining structure

Kademlia is used in large distributed systems

©2024 Ethan Blanton / CSE 486: Distributed Systems 24



Introduction DHT Overview Kademlia Summary References

References I

Required Readings

[2] Petar Maymounkov and David Mazières. “Kademlia: A

Peer-to-peer Information System based on the XOR Metric”. In:

Proceedings of the International Workshop on Peer-to-Peer

Systems. Mar. 2002, pp. 53–65. URL:

https://pdos.csail.mit.edu/~petar/papers/maymounkov-

kademlia-lncs.pdf.

Recommended Readings

©2024 Ethan Blanton / CSE 486: Distributed Systems 25

https://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf
https://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf


Introduction DHT Overview Kademlia Summary References

References II
[6] Ion Stoica et al. “Chord: A Scalable Peer-to-Peer Lookup Service

for Internet Applications”. In: Proceedings of the ACM Special

Interest Group on Data Communications. Aug. 2001,

pp. 149–160. URL:

http://conferences.sigcomm.org/sigcomm/2001/p12-stoica.pdf.

Optional Readings

[1] Ingmar Baumgart and Sebastien Mies. “S/Kademlia: A

Practicable Approach towards Secure Key-Based Routing”. In:

International Conference on Parallel and Distributed Systems.

Dec. 2007, pp. 1–8. DOI: 10.1109/ICPADS.2007.4447808. URL:

https://search.lib.buffalo.edu/permalink/01SUNY_BUF/

12pkqkt/cdi_ieee_primary_4447808.

©2024 Ethan Blanton / CSE 486: Distributed Systems 26

http://conferences.sigcomm.org/sigcomm/2001/p12-stoica.pdf
https://doi.org/10.1109/ICPADS.2007.4447808
https://search.lib.buffalo.edu/permalink/01SUNY_BUF/12pkqkt/cdi_ieee_primary_4447808
https://search.lib.buffalo.edu/permalink/01SUNY_BUF/12pkqkt/cdi_ieee_primary_4447808


Introduction DHT Overview Kademlia Summary References

References III
[3] Sylvia Ratnasamy et al. “A Scalable Content-Addressable

Network”. In: Proceedings of the ACM Special Interest Group on

Data Communications. Aug. 2001, pp. 161–172. URL: http:

//conferences.sigcomm.org/sigcomm/2001/p13-ratnasamy.pdf.

[4] Antony Rowstron and Peter Druschel. “Pastry: Scalable,

Decentralized Object Location, and Routing for Large-Scale

Peer-to-Peer Systems”. In: Lecture Notes in Computer Science

(Nov. 2001), pp. 329–350. URL:

https://search.lib.buffalo.edu/permalink/01SUNY_BUF/

12pkqkt/cdi_pascalfrancis_primary_14045913.

©2024 Ethan Blanton / CSE 486: Distributed Systems 27

http://conferences.sigcomm.org/sigcomm/2001/p13-ratnasamy.pdf
http://conferences.sigcomm.org/sigcomm/2001/p13-ratnasamy.pdf
https://search.lib.buffalo.edu/permalink/01SUNY_BUF/12pkqkt/cdi_pascalfrancis_primary_14045913
https://search.lib.buffalo.edu/permalink/01SUNY_BUF/12pkqkt/cdi_pascalfrancis_primary_14045913


Introduction DHT Overview Kademlia Summary References

References IV
[5] Secure Hash Standard (SHS). Tech. rep. FIPS PUB 180-4.

National Institute of Standards and Technology, Aug. 2015. URL:

http://dx.doi.org/10.6028/NIST.FIPS.180-4.

©2024 Ethan Blanton / CSE 486: Distributed Systems 28

http://dx.doi.org/10.6028/NIST.FIPS.180-4


Introduction DHT Overview Kademlia Summary References

Copyright 2019–2024 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the

author is prohibited.

To retrieve a copy of this material, or related materials, see

https://www.cse.buffalo.edu/~eblanton/.

©2024 Ethan Blanton / CSE 486: Distributed Systems 29

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	DHT Overview
	Kademlia
	Summary
	References

