# **Gossip Protocols**

CSE 486: Distributed Systems

#### Ethan Blanton

Department of Computer Science and Engineering University at Buffalo

1946

Introduction

# Gossip

The multicast protocols we have looked at have common properties:

- Processes must know all other processes
- Message count of O(|G|) for unreliable or O(|G|²) for reliable transmission
- Messages are either unreliable or always received

#### Gossip protocols can provide:

- Processes must know a small fraction of other processes
- Typically O(|G|log|G|) messages per multicast
- Messages are probabilistically received by all correct processes



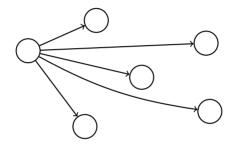
Introduction

## **Origins**

Gossip protocols have their origins in epidemiology.

An epidemiology book [1] was noticed by computer scientists [2].

It describes epidemics as proceeding in rounds of infection.


In gossip protocols, as in epidemiology, a process is either:

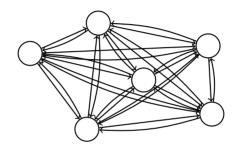
- Susceptible to infection by a new message
- Infected by a new message and capable of retransmitting it
- Removed from the set of infected processes (and now "immune" to the message)



Gossip

## Simple Multicast



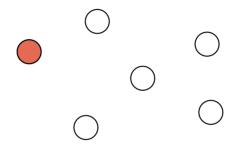

|G| processes, |G| messages.

If a message is lost or the sender fails, messages are lost.



Gossip

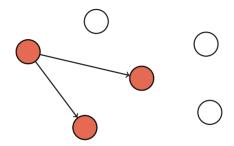
### Reliable Multicast




|G| processes,  $|G|^2$  messages.

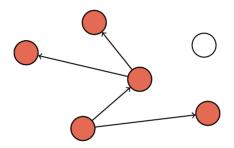
If any correct process receives the message, all correct processes receive the message.




# Simple Gossip



Gossip proceeds in rounds.


A process decides that it wants to multicast a message m.

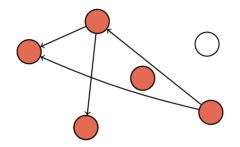
## Simple Gossip



It multicasts it to *k* randomly selected processes.

## Simple Gossip




If a process hears *m* for the first time, it re-multicasts.

Each such process chooses *k* randomly selected processes.



Gossip

# Simple Gossip



This repeats until no new process hears the message.

Some nodes may never hear the message!

The probability of this is exponentially decreasing in k [2].



## Benefits of Gossip

Far fewer than  $O(|G|^2)$  messages even with  $k \gg 1$ . (Bounded above by  $k \cdot |G|$ .)

Only one process must hear the message to start an epidemic.

Every process receives every message with high probability.

Message loss and process failure are tolerated by raising k.



# Disadvantages of Gossip

Some processes may not receive a message even without failure

Small groups require  $k \approx |G|$  anyway.

Delay between first transmission and final infection can be large.



# Lightweight Probabilistic Broadcast

Lightweight Probabilistic Broadcast [3] (*Ipbcast*) uses gossip for:

- Message distribution
- Group membership

#### This allows:

- Large groups
- Dynamic membership
- Configurable reliability
- Low message traffic



### LPBCast Actions

LPBCast uses publish-subscribe terminology.

In Ipbcast, processes can:

- Subscribe to a topic (join a group)
- Unsubscribe from a topic (leave a group)
- Send notifications (messages) to a topic (group)

All of these actions are communicated via one message type.

Unlike simple gossip, messages are sent on a heartbeat.

### **Notifications**

A notification in *lpbcast* is a message to be sent.

Every notification has an associated unique ID.

Processes keep track of two notification lists per topic:

- Recently-seen notifications in the variable events
- The identifiers of recently-seen notifications in *eventlds*

The rules for keeping track of these are different.

# Subscriptions

Processes subscribed to the *lpbcast* topic are group members.

Processes keep track of three subscriber lists per topic:

- Recently subscribed processes in subs
- Recently unsubscribed processes in *unSubs*
- Exactly / processes believed to be subscribed in view

## Messages in *lpbcast*

Each *lpbcast* process sends a message to *F* processes every  $T \, \mathrm{ms}$ 

#### Every *lpbcast* message contains:

- A list of all new notifications since the last message.
- A list of event IDs for some recent notifications.
- A list of some recent subscriptions
- A list of some recent unsubscriptions

The total number of messages sent per T ms is exactly  $F \cdot |G|$ .

Note that *F* is like the *k* from our previous gossip example!



# Receiving Messages

Upon receiving a message, a *lpbcast* process will:

- 1. Update subscriptions:
  - Update view and unSubs from the recent unsubscriptions
  - Update view and subs from the recent subscriptions
  - Prune subs and unSubs until they reach a configurable size
  - Prune view until |view| < I</p>
- 2. Deliver any new notifications
- 3. Update event information:
  - Update events and eventIds with the new notifications
  - Remember event IDs for unknown events from the message
  - Prune events and eventIds until they reach a configurable size



# Probability and Reliability

Items are pruned uniformly at random from each set: events, eventIds, subs, unSubs, view

The set sizes are configured taking into account:

- The expected number of subscribers
- The probability of process failures
- The probability of message loss

#### Note that:

- notifications are sent only once
- eventIds is pruned randomly



## Subscriptions

To subscribe to the topic, a process must send a request to any subscribed process.

If it does not start receiving notifications, it tries again.

A subscribed process periodically gossips its subscription.

To unsubscribe from a topic, it gossips its unsubscription.

Failed processes are eventually forgotten.



### **Partitions**

The group may become partitioned.

This is a condition where:

- $\blacksquare \exists G. G'. G'' : G' \subset G. G'' \subset G$
- $G' \cap G'' = \emptyset$

Once this happens, G' and G'' will remain disjoint.

I is selected such that the probability of this is extremely low.

Some privileged processes can be kept by all processes to prevent partition.

## Benefits of *lpbcast*

LPBCast adds membership management to simple gossip.

It also adds reliability through events and eventlds.

It uses a relatively constant bandwidth due to T and F.

Each process only has to know I hosts regardless of IGI.

Reliability (1, other set sizes), latency (T), and cost (F) are configurable.



## Uses of Gossip

The first use of gossip was in distributed database updates.

It was later used for maintaining group membership.

Then, for general multicast as in *lpbcast*.

It can be used for failure detection

It has been used in sensor networks ("IoT").



# Choosing Gossip

#### Gossip is appropriate when:

- The occasional lost message can be tolerated
- Simple multicast is not reliable enough
- Reliable multicast is too expensive
- Group membership is unstable

Tuning gossip for the application is critical!

What is |G|? What should k (I for lpbcast) be?



# Gossip for Failure Detection

How might we use gossip for failure detection?

- Is it complete?
- Is it accurate?

What parameters are configurable?



# Summary

- Gossip protocols provide probabilistic delivery
- Cost is usually about  $c \cdot |G| \log |G|$  per message
- Lightweight Probabilistic Broadcast solves:
  - Changing group membership
    - Process membership knowledge overhead for very large |G|



### References I

#### **Optional Readings**

- Norman T. J. Bailey. The Mathematical Theory of Infections [1] Diseases, Second. Hafner Press, 1975, ISBN: 9780852642313.
- Alan Demers et al. "Epidemic Algorithms for Replicated Database [2] Maintenance". In: Proceedings of the ACM Symposium on Principles of Distributed Computing, ACM, Dec. 1987, pp. 1–12. DOI: 10.1145/41840.41841. URL: https://citeseerx.ist.psu. edu/viewdoc/download?doi=10.1.1.449.8317&rep=rep1&type=pdf

### References II

[3] Patrick T. Eugster et al. "Lightweight Probabilistic Broadcast". In: Proceedings of the IEEE International Conference on Dependable Systems and Networks. IEEE, July 2001. pp. 443-452. DOI: 10.1109/dsn.2001.941428. URL: http://se.inf.ethz.ch/people/eugster/papers/lpbcast.pdf.



Copyright 2021, 2023–2025 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the author is prohibited.

To retrieve a copy of this material, or related materials, see https://www.cse.buffalo.edu/~eblanton/.

