
Quorum

CSE 486: Distributed Systems

Ethan Blanton

Department of Computer Science and Engineering

University at Buffalo



Introduction Mutual Exclusion Summary References

Quorum

We saw quorum for atomic commitment in Raft.

There are other uses for quorum, including:

Transaction commitment

Read-write ordering

Mutual exclusion

They’re all related in mechanism and protocol.

Different uses have different rules for quorum.

©2025 Ethan Blanton / CSE 486: Distributed Systems 2



Introduction Mutual Exclusion Summary References

Transaction Commitment

Transactions are a sequence of operations that:

Are typically related in some way

Must either all succeed or all fail

Failed operations have no effect

Quorum can be used to commit transactions.

…Raft could be used for this, but there are more efficient

protocols.

(We’ll talk more about transactions later.)

©2025 Ethan Blanton / CSE 486: Distributed Systems 3



Introduction Mutual Exclusion Summary References

Read/Write Ordering

Quorum can be used to order reads and writes such that:

Before some time t, all reads are before a given write

After time t, all reads are after a given write

This is a form of serializability.

(We’ll talk more about serializability later.)

©2025 Ethan Blanton / CSE 486: Distributed Systems 4



Introduction Mutual Exclusion Summary References

Mutual Exclusion

Quorum can be used to ensure exclusive access.

This is also essentially a commit:

The committed value is the current lock holder.

This can provide mutual exclusion in the face of failure.

©2025 Ethan Blanton / CSE 486: Distributed Systems 5



Introduction Mutual Exclusion Summary References

Maekawa’s Algorithm

Maekawa proposed an efficient algorithm for mutual

exclusion. [2]

It requires only O(
√
n) messages to be exchanged for n hosts!

It does this by carefully selecting the hosts to contact.

As n grows, this is considerably easier than Ricart and

Agrawala. [3]

©2025 Ethan Blanton / CSE 486: Distributed Systems 6



Introduction Mutual Exclusion Summary References

Permission Subsets

All processes in the algorithm are divided into subsets.

Every process pi , 1 ≤ i ≤ n, belongs primarily to some subset Si .

For every process pi and pj , 1 ≤ i, j ≤ n, Si ∩ Sj ̸= ∅.

This means that pi is also in other subsets!

A process must receive permission from its entire subset to

enter the critical section.

©2025 Ethan Blanton / CSE 486: Distributed Systems 7



Introduction Mutual Exclusion Summary References

Set Sizes

There are K members of each subset Si .

Every process pi is a member of D subsets.

If K = n and D = 1, the algorithm is Ricart and Agrawala.

©2025 Ethan Blanton / CSE 486: Distributed Systems 8



Introduction Mutual Exclusion Summary References

Choosing Subsets

Subsets are chosen carefully.

The paper describes the selection scheme:

The problem of finding a set of Si ’s that satisfies these conditions is

equivalent to finding a finite projective plane of N points.

For now, let’s assume the sets can be created.

©2025 Ethan Blanton / CSE 486: Distributed Systems 9



Introduction Mutual Exclusion Summary References

Acquiring the Lock

Lock acquisition similar to Ricart and Agrawala:

Every node keeps a timestamp

The node sends a timestamped request to all other nodes

in its subset

Eventually it receives K replies and enters its critical section

Lock release is likewise similar:

The node sends a release to all other nodes in its subset

©2025 Ethan Blanton / CSE 486: Distributed Systems 10



Introduction Mutual Exclusion Summary References

Example

Consider the subsets in four nodes:

P1 P2

P3 P4

©2025 Ethan Blanton / CSE 486: Distributed Systems 11



Introduction Mutual Exclusion Summary References

Example

Consider the subsets in four nodes:

P1 P2

P3 P4

©2025 Ethan Blanton / CSE 486: Distributed Systems 12



Introduction Mutual Exclusion Summary References

Example

Consider the subsets in four nodes:

P1 P2

P3 P4

©2025 Ethan Blanton / CSE 486: Distributed Systems 13



Introduction Mutual Exclusion Summary References

Example

Consider the subsets in four nodes:

P1 P2

P3 P4

©2025 Ethan Blanton / CSE 486: Distributed Systems 14



Introduction Mutual Exclusion Summary References

Example

Consider the subsets in four nodes:

P1 P2

P3 P4

©2025 Ethan Blanton / CSE 486: Distributed Systems 15



Introduction Mutual Exclusion Summary References

Example 2

Seven nodes gets more complicated:

P1 P2 P3

P4 P5

P6 P7

©2025 Ethan Blanton / CSE 486: Distributed Systems 16



Introduction Mutual Exclusion Summary References

Example 2

Seven nodes gets more complicated:

P1 P2 P3

P4 P5

P6 P7

©2025 Ethan Blanton / CSE 486: Distributed Systems 17



Introduction Mutual Exclusion Summary References

Example 2

Seven nodes gets more complicated:

P1 P2 P3

P4 P5

P6 P7

©2025 Ethan Blanton / CSE 486: Distributed Systems 18



Introduction Mutual Exclusion Summary References

Example 2

Seven nodes gets more complicated:

P1 P2 P3

P4 P5

P6 P7

©2025 Ethan Blanton / CSE 486: Distributed Systems 19



Introduction Mutual Exclusion Summary References

Example 2

Seven nodes gets more complicated:

P1 P2 P3

P4 P5

P6 P7

©2025 Ethan Blanton / CSE 486: Distributed Systems 20



Introduction Mutual Exclusion Summary References

Example 2

Seven nodes gets more complicated:

P1 P2 P3

P4 P5

P6 P7

©2025 Ethan Blanton / CSE 486: Distributed Systems 21



Introduction Mutual Exclusion Summary References

Example 2

Seven nodes gets more complicated:

P1 P2 P3

P4 P5

P6 P7

©2025 Ethan Blanton / CSE 486: Distributed Systems 22



Introduction Mutual Exclusion Summary References

Example 2

Seven nodes gets more complicated:

P1 P2 P3

P4 P5

P6 P7

©2025 Ethan Blanton / CSE 486: Distributed Systems 23



Introduction Mutual Exclusion Summary References

Deadlock

Consider three processes: p1, p2, p3.

Three subsets: (p1,p2), (p2,p3), (p3,p1).

Now consider that each process locks at the same time.

Every subset has one locking process, and is waiting on another.

This is deadlock!

©2025 Ethan Blanton / CSE 486: Distributed Systems 24



Introduction Mutual Exclusion Summary References

Relinquishment

Maekawa must modify Ricart and Agrawala to prevent deadlock.

Instead of witholding a response, processes send a FAILED

message.

Processes waiting to lock keep track of FAILED messages.

If a process becomes aware of two processes requesting its

permission to lock, it sends an INQUIRE message to the

process with the lower-priority lock.

If that process received any FAILED message, it relinquishes.

(There are more complications.)

©2025 Ethan Blanton / CSE 486: Distributed Systems 25



Introduction Mutual Exclusion Summary References

Observations

This is safe because every quorum overlaps.

If any quorum holds the lock, no other quorum can complete.

This depends on perfect subset selection.

There may be several possible solutions for any set of

processes!

Process membership and subsets are static configurations.

©2025 Ethan Blanton / CSE 486: Distributed Systems 26



Introduction Mutual Exclusion Summary References

Properties

Safety: Similar to Ricart & Agrawala

Liveness:

Deadlock for any quorum with a failed process

Special tools to prevent deadlock otherwise

Fairness: Complicated (because of relinquishment), but pretty

good

Synchronization Delay: One-way message delay

Throughput: Complicated, but faster than Ricart and Agrawala

Message Complexity: Complicated (O(
√
n))

©2025 Ethan Blanton / CSE 486: Distributed Systems 27



Introduction Mutual Exclusion Summary References

Summary

Quorum can solve many problems

Different quorums have different uses

Maekawa’s mutual exclusion uses quorum for mutexes

Mutexes can be solved with relatively few members in a

quorum

©2025 Ethan Blanton / CSE 486: Distributed Systems 28



Introduction Mutual Exclusion Summary References

References I

Required Readings

[1] Ajay D. Kshemkalyani and Mukesh Singhal. Distributed

Computing: Principles, Algorithms, and Systems. Chapter 9: 9.7,

9.8. Cambridge University Press, 2008. ISBN:

978-0-521-18984-2.

Optional Readings

[2] Mamoru Maekawa. “A
√
N Algorithm for Mutual Exclusion in

Decentralized Systems”. In: 3.2 (May 1985), pp. 145–159. DOI:

10.1145/214438.214445. URL:

https://search.lib.buffalo.edu/permalink/01SUNY_BUF/

12pkqkt/cdi_crossref_primary_10_1145_214438_214445.

©2025 Ethan Blanton / CSE 486: Distributed Systems 29

https://doi.org/10.1145/214438.214445
https://search.lib.buffalo.edu/permalink/01SUNY_BUF/12pkqkt/cdi_crossref_primary_10_1145_214438_214445
https://search.lib.buffalo.edu/permalink/01SUNY_BUF/12pkqkt/cdi_crossref_primary_10_1145_214438_214445


Introduction Mutual Exclusion Summary References

References II
[3] Glenn Ricart and Ashok Agrawala. “An optimal algorithm for

mutual exclusion in computer networks”. In: 24.1 (Jan. 1981).

Ed. by R. Stockton Gaines, pp. 9–17. DOI:

10.1145/358527.358537. URL:

https://search.lib.buffalo.edu/permalink/01SUNY_BUF/

12pkqkt/cdi_crossref_primary_10_1145_358527_358537.

©2025 Ethan Blanton / CSE 486: Distributed Systems 30

https://doi.org/10.1145/358527.358537
https://search.lib.buffalo.edu/permalink/01SUNY_BUF/12pkqkt/cdi_crossref_primary_10_1145_358527_358537
https://search.lib.buffalo.edu/permalink/01SUNY_BUF/12pkqkt/cdi_crossref_primary_10_1145_358527_358537


Introduction Mutual Exclusion Summary References

Copyright 2021, 2023–2025 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the

author is prohibited.

To retrieve a copy of this material, or related materials, see

https://www.cse.buffalo.edu/~eblanton/.

©2025 Ethan Blanton / CSE 486: Distributed Systems 31

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Mutual Exclusion
	Summary
	References

