
Consistency and Transactions

CSE 486: Distributed Systems

Ethan Blanton

Department of Computer Science and Engineering

University at Buffalo

Introduction Transactions Conflicts Serializability 2PL Summary References

Consistency

Many applications have consistency requirements.

Sometimes we think of these as invariants:

The number of items in inventory cannot fall below zero

The forward and reverse pointers in a doubly-linked list will

be reflexive

Sometimes they are conditional:

If a debit fails, the corresponding credit must also fail

A file transfer must be verified complete before the source

is removed

©2025 Ethan Blanton / CSE 486: Distributed Systems 2

Introduction Transactions Conflicts Serializability 2PL Summary References

Distributed Consistency

In a distributed system, consistency may require consensus.

What if inventory is spread through warehouses across the

country?

What if the debiting account and crediting account are at

different institutions?

This introduces FLP to the mix!

Failure detection and timeouts are often used.

(We won’t look at this just yet.)

©2025 Ethan Blanton / CSE 486: Distributed Systems 3

Introduction Transactions Conflicts Serializability 2PL Summary References

Transactions

Consistency may be violated during a computation.

For example, that bank transfer:

1. A quantity is debited from one account

2. The same quantity is deposited to another account

In between, the accounts are inconsistent: money is lost!

These actions together form a transaction [2].

Consistency is maintained before and after the transaction.

©2025 Ethan Blanton / CSE 486: Distributed Systems 4

Introduction Transactions Conflicts Serializability 2PL Summary References

Atomic Transactions

With concurrency, transactions require atomicity.

Recall:

If a debit fails, the corresponding credit must also fail

What happens if:

The debit succeeds but the credit fails?

The debit fails but the credit succeeds?

A transaction must:

Never expose partially-complete results

Either fully succeed or fail without effect

©2025 Ethan Blanton / CSE 486: Distributed Systems 5

Introduction Transactions Conflicts Serializability 2PL Summary References

Schedules

Each transaction is made up of individual actions.

A schedule is some sequence of those actions.

A consistent schedule is such a schedule that ensures that each

transaction sees a consistent state.

Consistent schedules trivially maintain consistency.

©2025 Ethan Blanton / CSE 486: Distributed Systems 6

Introduction Transactions Conflicts Serializability 2PL Summary References

Consistency

Transaction consistency depends on correct transactions.

We will assume that transactions are correct.

This allows us to state that:

If the system is consistent before a transaction begins, it is

consistent after the transaction completes.

It is our job to schedule transactions to preserve this.

©2025 Ethan Blanton / CSE 486: Distributed Systems 7

Introduction Transactions Conflicts Serializability 2PL Summary References

Atomicity

T1:

savings ← savings - $200

checking ← checking + $200

What if T1 fails between lines 1 and 2?

Transactions normally have three operations:

begin

commit

abort

A committed transaction is completely successful.

An aborted transaction never happens.

©2025 Ethan Blanton / CSE 486: Distributed Systems 8

Introduction Transactions Conflicts Serializability 2PL Summary References

Example Transactions

Suppose we have the consistency constraint A = B.

T1:

A ← A + 100

B ← B + 100

T2:

A ← A × 2

B ← B × 2

Is it OK to:

Run T1, then T2?

Run T2, then T1?

Run line 1 of T1, then T2, then line 2 of T1?

©2025 Ethan Blanton / CSE 486: Distributed Systems 9

Introduction Transactions Conflicts Serializability 2PL Summary References

Example Transactions

Suppose that T1 and T2 operate on accounts:

T1:

savings ← savings - $100

checking ← checking + $100

T2:

total ← savings

total ← total + checking

What if T2 runs between lines 1 and 2 of T1?

Does this represent the actual total of the accounts?

©2025 Ethan Blanton / CSE 486: Distributed Systems 10

Introduction Transactions Conflicts Serializability 2PL Summary References

Concurrency

Why have concurrency at all?

We can just run transactions one at a time!

Consider: ISIS, Raft.

This is serial execution and it ensures consistency.

It is also inefficient:

Communication is orders of magnitude slower than simple

computation!

Transactions may require arbitrarily complex computation

©2025 Ethan Blanton / CSE 486: Distributed Systems 11

Introduction Transactions Conflicts Serializability 2PL Summary References

Transaction Independence

Some transactions can freely run concurrently.

For example: two transactions on disjoint state.

T1:

A ← A + 100

T2:

B ← B - 200

C ← C + 200

There is no ordering of these operations that is incorrect!

All orderings are equivalent to running T1, then T2.

©2025 Ethan Blanton / CSE 486: Distributed Systems 12

Introduction Transactions Conflicts Serializability 2PL Summary References

Transaction Conflicts

In general, two transactions can have problematic ordering if:

Both transactions use some state S

At least one transaction changes S

We divide these into three conflict types:

read-write: T1 reads changing values for some state

write-read: T1 reads a value which is not committed

write-write: T1’s write is overwritten

Note that there is no read-read conflict.

Conflicts between operations can be modeled as graphs [1].

©2025 Ethan Blanton / CSE 486: Distributed Systems 13

Introduction Transactions Conflicts Serializability 2PL Summary References

Read-Write Conflict

T1:

read A

compute

read A

write something

commit

T2:

write A

commit

It is a read-write conflict if T2 executes during “compute” in T1.

©2025 Ethan Blanton / CSE 486: Distributed Systems 14

Introduction Transactions Conflicts Serializability 2PL Summary References

Write-Read Conflict

T1:

read A

read B

write something

commit

T2:

write A

compute

write B

commit

It is a write-read conflict if T1 executes during “compute” in T2.

©2025 Ethan Blanton / CSE 486: Distributed Systems 15

Introduction Transactions Conflicts Serializability 2PL Summary References

Write-Write Conflict

T1:

read A

write A

compute

write B

commit

T2:

read B

write A

commit

It is a write-write conflict if T2 executes during “compute” in T1.

©2025 Ethan Blanton / CSE 486: Distributed Systems 16

Introduction Transactions Conflicts Serializability 2PL Summary References

Serializability

We wish to interleave transactions to maintain efficiency.

Many more transactions per unit time can be processed this

way.

To maintain consistency, we preserve serializability.

Two transactions T1 and T2 are serializable if:

to an external observer,

it appears as if one happened before the other

E.g., T1 happened before T2.

©2025 Ethan Blanton / CSE 486: Distributed Systems 17

Introduction Transactions Conflicts Serializability 2PL Summary References

Actions and Transactions

Serializability is determined from the actions in the transaction.

A schedule of actions is serializable if it is equivalent to some

serial execution of the same transactions.

Formally:

Suppose that S is a schedule, and SSE is its serial equivalent.

For every pair of conflicting actions a1, a2 in S, if a1 happens

before a2 in S then a1 happens before a2 in SSE .

©2025 Ethan Blanton / CSE 486: Distributed Systems 18

Introduction Transactions Conflicts Serializability 2PL Summary References

Example

T1:

read A

write B

commit

T2:

read B

write C

commit

read A
read B
write C
write B
commit
commit

T2 → T1

Why not T1 → T2?

©2025 Ethan Blanton / CSE 486: Distributed Systems 19

Introduction Transactions Conflicts Serializability 2PL Summary References

Aborted Transactions

If transactions can abort, then there can be cascading aborts [3].

Cascading aborts are where:

Some transaction T1 observes the output of T2

T2 aborts instead of committing

T1 must now abort to preserve serializability

Note that this cannot happen with serial execution:

T2 either already committed or already aborted before T1 began.

©2025 Ethan Blanton / CSE 486: Distributed Systems 20

Introduction Transactions Conflicts Serializability 2PL Summary References

Two-Phase Locking

Transactions maintain serializability if they run in two phases [2]:

Growing Phase: First, a transaction acquires locks

Shrinking Phase: Second, a transaction releases locks

Not all locks must be acquired/released at the same time.

Once any lock is released, no lock can be acquired.

We call this two-phase locking (2PL).

©2025 Ethan Blanton / CSE 486: Distributed Systems 21

Introduction Transactions Conflicts Serializability 2PL Summary References

Serializability of 2PL

This preserves serializability because:

While T1 locks a datum, T2 cannot observe it

Once T1 unlocks any datum, it will not modify any

observable datum

Therefore, for each datum, either:

T1 occurs before T2, or

T2 occurs before T1

Non-serializability would imply deadlock. (We know how to

avoid that!)

©2025 Ethan Blanton / CSE 486: Distributed Systems 22

Introduction Transactions Conflicts Serializability 2PL Summary References

Intuition

There is a point in each transaction where:

It has acquired all of its locks

It has not yet released any lock

We call this the lock point.

Effectively, if T1’s lock point is before T2’s lock point:

T1 released every shared datum before T2 locked it

T1 is serializable before T2

©2025 Ethan Blanton / CSE 486: Distributed Systems 23

Introduction Transactions Conflicts Serializability 2PL Summary References

2PL and Aborts

Two-phase locking does not prevent cascading aborts!

However, there is a modification that does: Strict 2PL.

In strict two-phase locking, all locks are released at once.

In this way, no transaction output is visible until it commits.

If no other transaction views its changes, no aborts can cascade.

©2025 Ethan Blanton / CSE 486: Distributed Systems 24

Introduction Transactions Conflicts Serializability 2PL Summary References

Summary

Transactions are multiple actions grouped together into an

atomic entity.

The actions in transactions can be interleaved.

Some interleavings are inconsistent.

Consistent interleavings are serializable.

Two-phase locking preserves serializability.

©2025 Ethan Blanton / CSE 486: Distributed Systems 25

Introduction Transactions Conflicts Serializability 2PL Summary References

References I

Optional Readings

[1] Philip A. Bernstein, David W. Shipman, and Wing S. Wong.

“Formal Aspects of Serializability in Database Concurrency

Control”. In: IEEE Transactions on Software Engineering SE-5.3

(May 1979), pp. 203–216. DOI: 10.1109/TSE.1979.234182. URL:

https://search.lib.buffalo.edu/permalink/01SUNY_BUF/

12pkqkt/cdi_ieee_primary_1702620.

©2025 Ethan Blanton / CSE 486: Distributed Systems 26

https://doi.org/10.1109/TSE.1979.234182
https://search.lib.buffalo.edu/permalink/01SUNY_BUF/12pkqkt/cdi_ieee_primary_1702620
https://search.lib.buffalo.edu/permalink/01SUNY_BUF/12pkqkt/cdi_ieee_primary_1702620

Introduction Transactions Conflicts Serializability 2PL Summary References

References II
[2] Kapali. P. Eswaran et al. “The Notions of Consistency and

Predicate Locks in a Database System”. In: Communications of

the ACM 19.11 (Nov. 1976). Ed. by Howard L. Morgan,

pp. 624–633. DOI: 10.1145/360363.360369. URL:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

386.9726&rep=rep1&type=pdf.

[3] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed

Database Systems. Fourth Edition. Springer, 2020. ISBN:

978-3-030-26252-5.

©2025 Ethan Blanton / CSE 486: Distributed Systems 27

https://doi.org/10.1145/360363.360369
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.386.9726&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.386.9726&rep=rep1&type=pdf

Introduction Transactions Conflicts Serializability 2PL Summary References

Copyright 2021, 2023–2025 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the

author is prohibited.

To retrieve a copy of this material, or related materials, see

https://www.cse.buffalo.edu/~eblanton/.

©2025 Ethan Blanton / CSE 486: Distributed Systems 28

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Transactions
	Conflicts
	Serializability
	2PL
	Summary
	References

