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Last Time

e Synchronous and asynchronous systems

e Failure detection
- Properties: completeness and accuracy
- Perfect accuracy impossible in asynchronous systems
- Simple protocols: heartbeating and ping-ack

- Falilure detection for large groups
« Centralized heartbeat
* Ring heartbeat
 All-to-all heartbeat

- Metrics: bandwidth, detection time, scalability, accuracy
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The Next Two Lectures

* Time
One of the two fundamental challenges in DS:

— Failure, Ordering

Recall that we even used time for failure detection!
* In an ideal world:

— We know exactly when something happens

— Everyone agrees on that time

* How do we agree on time?
* Why is it hard?
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Today

* Servers in the cloud need to timestamp events

* Servers A and B have different clock values
— You buy an airline ticket online
— It's the last airline ticket available on that flight
— Server A timestamps your purchase at 9h:15m:32.45s

— What if someone else also bought the last ticket (via server B) at
9h:20m:22.76s?

— What if Server Awas > 10 minutes ahead of server B? Behind?
— How would you know what the difference in clocks was?
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Physical Clocks & Synchronization

* Some definitions: Clock Skew versus Drift
* Clock Skew: Relative difference in clock values of two processes

* Clock Drift: Relative difference in clock frequencies of two
processes

* Clock drift will cause skew to continuously increase.

* Real-life examples

— Ever seen “make: warning: Clock skew detected. Your build may
be incomplete.”?

— It's reported that in the worst case, there’s 1 sec/day drift in
modern HW.

— Almost all physical clocks experience this.
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Time Standards

Time is a big deal in a lot of disciplines.

Consequently, there are many physical solutions:
- Frequency standards: Rb, Cs, OCXO, ...
- Time services: WWV/WWVB, GPS, ...

It turns out agreeing on physical time is quite difficult

- Propagation delays (speed of light!)
- Relativistic effects

Absolute time has broadly settled on Coordinated Universal
Time (UTC)
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Synchronizing Physical Clocks

* C,(t): the reading of the software clock at process i when the real
time is t.

* External synchronization: For a synchronization bound D>0, and for
source S of UTC time,

‘S(t) - Ci (t)‘ <D,
for i=1,2,...,N and for all real times {.
Clocks C, are accurate to within the bound D.
* Internal synchronization: For a synchronization bound D>0,
‘Ci(t) - Cj(t)‘ <D
for i, j=1,2,...,N and for all real times {.
Clocks C; agree within the bound D.

* External synchronization with D = Internal synchronization with 2D
* Internal synchronization with D — External synchronization with ??
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Clock Synchronization Using a Time
Server

O——0O

P Time server,S

* Client: “What time is it?”
 Server:; “It's t.”
* Any difficulty?
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Cristian’s Algorithm

* Uses a fime server to synchronize clocks
* Mainly designed for LAN
* Time server keeps the reference time (say UTC)

* Aclient asks the time server for time, the server
responds with its current time T, and the client uses the
received value T to set its clock

* Network round-trip time introduces error.

* So what do we need to do?

— Estimate one-way delay
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Cristian’s Algorithm

* Let RTT = response-received-time — request-sent-time
(measurable at client)

* Also, suppose we know

— The minimum value min of the client-server one-way
transmission time [Depends on what?]

— That the server timestamped the message at the last possible
instant before sending it back

* Then the actual time is between [T+min, T+RTT— min]
T

—min A \ min

H—ﬂ

RTT

Request sent Response received
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Cristian’s Algorithm

* (From previous slide), the accuracy is: +-(RTT1/2 — min)
* Cristian’s algorithm [1]

— Aclient asks its time server.

— The time server sends its time T.

— The client estimates the one-way delay and sets its time.
» ltuses T + RTT/2

* Want to improve accuracy?
— Take multiple readings and use the minimum RTT: tighter bound

— Ignore unusually long RTTs and repeat the request: remove
outliers
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The Network Time Protocol (NTP)

* Uses a network of time servers to synchronize all
processes on a network.

* Designed for the Internet
* Why not Cristian’s algorithm?

* Time servers are organized into a tree
* The root is disciplined by UTC

Stratum 2 servers,
sync’ed by the
primary server

sync’ed by the
secondary

The State University of New York



NTP Peer Message Exchange

Server B Ti Ti. _
Time

Time

Server A Ti_3 T,

* Each message bears timestamps of recent message
events: the local time when the previous NTP message
was sent and received, and the local time when the

current message was transmitted.
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The Protocol

Server B T. Ti_

Time

Time

Server A Ti-3 Ti

» Compute round-trip delay: (T, — T.;) — (T., — T.,)

* Take the half of the round-trip delay as the one-way
estimate: (T.—T.,;)— (T, —T.,))/2
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The Protocol [2]

Server B T. Ti_

Time

Time

Server A Ti-3 Ti

* Compute offset:
- T.,+ (one-way estimate) - T. = ((T.,—T.;) + (T, —T))/2
* Do this with not just one server, but multiple servers.

* Do some statistical analysis, remove outliers, and apply a
data filtering algorithm.

— Out of scope of this lecture
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Theoretical Base for NTP

Server B T. Ti_

Time

Time

Server A Ti-3 Ti

0. estimate of the actual offset between the two clocks

« d: estimate of accuracy of o, ; total transmission times for
m and m’; d=t+t’
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Theoretical Base for NTP

Server B T. Ti_

Server A Ti.3 Ti
G irst, let's get O: \
Tia=Tis+t+0
Ti=Ti,+t-0

= 0= (T,'_2 —Tis+Ti —T,)/2+(t’—t)/2
Then, get the bound for (t'—t)/2:

Time

Time

Ginally, we set :

Oi=(Ti.a=Tis+Tii—T)/2
di=t+t0=T,,—Ti3+T;—Ti

Then we get :
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\ -t —t< t—t< t+t (since t,t20) AN

oi—di/2<0<0+d/2.
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Then a Breakthrough...

* We cannot sync multiple clocks perfectly.

* Thus, if we want to order events happening in different
processes, we cannot rely on physical clocks.

- Remember the ticket reservation example?

* Then came logical time.
— First proposed by Leslie Lamport in the 70s [2]
— Based on causality of events
- Defines relative time, not absolute time

* Critical observation: time (ordering) only matters if two or
more processes interact, I.e., send/receive messages.

Time, Clocks, and the Ordering of Events in a Distributed System [2] is required reading.
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Events Occurring at Three Processes

P1 >
a b m1
o @ » Physical
ime
C d m,
p3 @ >
e f
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Summary

* Time synchronization important for distributed systems
— Cristian’s algorithm
- NTP

* Relative order of events is sufficient for many purposes
- Lamport’s logical clocks

Next time:
- More logical clocks

University at Buffalo
The State University of New York




References

[1] Probabilistic clock synchronization. Flaviu Cristian. Distributed
Computing Vol 3 No 3. September 19809.

[2] Time, Clocks, and the Ordering of Events in a Distributed System.
Leslie Lamport. Communications of the ACM Vol 21 No 7. July
1978. Required Reading.
https://www.microsoft.com/en-us/research/uploads/prod/2016/12/Time
-Clocks-and-the-Ordering-of-Events-in-a-Distributed-System.pdf

[3] Internet Time Synchronization: The Network Time Protocol. Dave L.
Mills. RFC 1128. October 19809.
https://www.rfc-editor.org/rfc/rfc1128.ps

[4] Textbook section 14.4. Required Reading.

University at Buffalo
The State University of New York



https://www.microsoft.com/en-us/research/uploads/prod/2016/12/Time-Clocks-and-the-Ordering-of-Events-in-a-Distributed-System.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2016/12/Time-Clocks-and-the-Ordering-of-Events-in-a-Distributed-System.pdf
https://www.rfc-editor.org/rfc/rfc1128.ps

Acknowledgements

* These slides are by Steve Ko, lightly modified by Ethan
Blanton and used with permission.

* These slides contain material developed and copyrighted
by Indranil Gupta at UIUC.

University at Buffalo
The State University of New York




	Slide 1
	Last Time
	Today’s Question
	Today’s Question
	Physical Clocks & Synchronization
	Time Standards
	Synchronizing Physical Clocks
	Clock Synchronization Using a Time Server
	Cristian’s Algorithm
	Cristian’s Algorithm
	Cristian’s Algorithm
	The Network Time Protocol (NTP)
	NTP Peer Message Exchange
	The Protocol
	The Protocol
	Theoretical Base for NTP
	Theoretical Base for NTP
	Then a Breakthrough…
	Events Occurring at Three Processes
	Summary
	References
	Acknowledgements

