
CSE 486/586

CSE 486/586 Distributed Systems
Time and Synchronization

Slides by Steve Ko
Computer Sciences and Engineering

University at Buffalo

Last Time

● Synchronous and asynchronous systems

● Failure detection

– Properties: completeness and accuracy

– Perfect accuracy impossible in asynchronous systems

– Simple protocols: heartbeating and ping-ack

– Failure detection for large groups
● Centralized heartbeat
● Ring heartbeat
● All-to-all heartbeat

– Metrics: bandwidth, detection time, scalability, accuracy

The Next Two Lectures

• Time
• One of the two fundamental challenges in DS:

– Failure, Ordering

• Recall that we even used time for failure detection!
• In an ideal world:

– We know exactly when something happens

– Everyone agrees on that time

• How do we agree on time?

• Why is it hard?

Today

• Servers in the cloud need to timestamp events
• Servers A and B have different clock values

– You buy an airline ticket online

– It’s the last airline ticket available on that flight

– Server A timestamps your purchase at 9h:15m:32.45s

– What if someone else also bought the last ticket (via server B) at
9h:20m:22.76s?

– What if Server A was > 10 minutes ahead of server B? Behind?

– How would you know what the difference in clocks was?

Physical Clocks & Synchronization

• Some definitions: Clock Skew versus Drift

• Clock Skew: Relative difference in clock values of two processes

• Clock Drift: Relative difference in clock frequencies of two

processes

• Clock drift will cause skew to continuously increase.
• Real-life examples

– Ever seen “make: warning: Clock skew detected. Your build may
be incomplete.”?

– It’s reported that in the worst case, there’s 1 sec/day drift in
modern HW.

– Almost all physical clocks experience this.

Time Standards

● Time is a big deal in a lot of disciplines.

● Consequently, there are many physical solutions:

– Frequency standards: Rb, Cs, OCXO, …

– Time services: WWV/WWVB, GPS, …

● It turns out agreeing on physical time is quite difficult

– Propagation delays (speed of light!)

– Relativistic effects

● Absolute time has broadly settled on Coordinated Universal
Time (UTC)

• Ci(t): the reading of the software clock at process i when the real
time is t.

• External synchronization: For a synchronization bound D>0, and for
source S of UTC time,

 for i=1,2,...,N and for all real times t.

 Clocks Ci are accurate to within the bound D.

• Internal synchronization: For a synchronization bound D>0,

 for i, j=1,2,...,N and for all real times t.

 Clocks Ci agree within the bound D.

• External synchronization with D  Internal synchronization with 2D
• Internal synchronization with D  External synchronization with ??

Synchronizing Physical Clocks

,)()(DtCtS i 

DtCtC ji )()(

Clock Synchronization Using a Time
Server

• Client: “What time is it?”
• Server: “It’s t.”
• Any difficulty?

mr

mt
p Time server,S

Cristian’s Algorithm

• Uses a time server to synchronize clocks

• Mainly designed for LAN

• Time server keeps the reference time (say UTC)

• A client asks the time server for time, the server

responds with its current time T, and the client uses the

received value T to set its clock

• Network round-trip time introduces error.

• So what do we need to do?

– Estimate one-way delay

Cristian’s Algorithm

• Let RTT = response-received-time – request-sent-time
(measurable at client)

• Also, suppose we know
– The minimum value min of the client-server one-way

transmission time [Depends on what?]
– That the server timestamped the message at the last possible

instant before sending it back

• Then the actual time is between [T+min,T+RTT— min]

Request sent Response received
RTT

min
T

min

Cristian’s Algorithm

• (From previous slide), the accuracy is: +-(RTT/2 – min)
• Cristian’s algorithm [1]

– A client asks its time server.

– The time server sends its time T.

– The client estimates the one-way delay and sets its time.
» It uses T + RTT/2

• Want to improve accuracy?
– Take multiple readings and use the minimum RTT: tighter bound

– Ignore unusually long RTTs and repeat the request: remove
outliers

The Network Time Protocol (NTP)

• Uses a network of time servers to synchronize all
processes on a network.

• Designed for the Internet
• Why not Cristian’s algorithm?

• Time servers are organized into a tree
• The root is disciplined by UTC

• Each node synchronizes its child nodes

• Why?

Stratum 2 servers,
sync’ed by the
primary server

Primary (Stratum 1) server,
direct sync.

Stratum 3,
sync’ed by the
secondary
servers

1

2 2 2

3 3 3 3 3 3

NTP Peer Message Exchange

• Each message bears timestamps of recent message
events: the local time when the previous NTP message
was sent and received, and the local time when the
current message was transmitted.

Ti

Ti-1Ti-2

Ti- 3

Server B

Server A

Time

m m'

Time

The Protocol

• Compute round-trip delay: (Ti – Ti-3) – (Ti-1 – Ti-2)

• Take the half of the round-trip delay as the one-way
estimate: ((Ti – Ti-3) – (Ti-1 – Ti-2))/2

Ti

Ti-1Ti-2

Ti- 3

Server B

Server A

Time

m m'

Time

The Protocol [2]

• Compute offset:
– Ti-1 + (one-way estimate) - Ti = ((Ti-2 – Ti-3) + (Ti-1 – Ti))/2

• Do this with not just one server, but multiple servers.
• Do some statistical analysis, remove outliers, and apply a

data filtering algorithm.
– Out of scope of this lecture

Ti

Ti-1Ti-2

Ti- 3

Server B

Server A

Time

m m'

Time

Theoretical Base for NTP

• oi: estimate of the actual offset between the two clocks

• di: estimate of accuracy of oi ; total transmission times for
m and m’; di=t+t’

Ti

Ti-1Ti-2

Ti- 3

Server B

Server A

Time

m m'

Time

Theoretical Base for NTP

(with delay t) (with delay t’)

 

Finally, we set :

io  (i2T  i3T  i1T  iT) /2

id  t t' i2T  i3T  iT  i1T
Then we get :

io  id /2  o io  id /2.

Ti

Ti-1Ti-2

Ti- 3

Server B

Server A

Time

m m'

Time

 

First, let's get o:

i2T  i3T  to

iT  i1T  t'o
 o (i2T  i3T  i1T  iT) /2  (t't) /2

Then, get the bound for (t't) /2 :

t't t't t't (since t',t 0)

Then a Breakthrough…

• We cannot sync multiple clocks perfectly.
• Thus, if we want to order events happening in different

processes, we cannot rely on physical clocks.
– Remember the ticket reservation example?

• Then came logical time.
– First proposed by Leslie Lamport in the 70s [2]
– Based on causality of events
– Defines relative time, not absolute time

• Critical observation: time (ordering) only matters if two or
more processes interact, i.e., send/receive messages.

Time, Clocks, and the Ordering of Events in a Distributed System [2] is required reading.

Events Occurring at Three Processes

p1

p2

p3

a b

c d

e f

m1

m2

Physical
time

Summary

• Time synchronization important for distributed systems
– Cristian’s algorithm
– NTP

• Relative order of events is sufficient for many purposes
– Lamport’s logical clocks

Next time:
– More logical clocks

References

[1] Probabilistic clock synchronization. Flaviu Cristian. Distributed
Computing Vol 3 No 3. September 1989.

[2] Time, Clocks, and the Ordering of Events in a Distributed System.
Leslie Lamport. Communications of the ACM Vol 21 No 7. July
1978. Required Reading.
https://www.microsoft.com/en-us/research/uploads/prod/2016/12/Time
-Clocks-and-the-Ordering-of-Events-in-a-Distributed-System.pdf

[3] Internet Time Synchronization: The Network Time Protocol. Dave L.
Mills. RFC 1128. October 1989.
https://www.rfc-editor.org/rfc/rfc1128.ps

[4] Textbook section 14.4. Required Reading.

https://www.microsoft.com/en-us/research/uploads/prod/2016/12/Time-Clocks-and-the-Ordering-of-Events-in-a-Distributed-System.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2016/12/Time-Clocks-and-the-Ordering-of-Events-in-a-Distributed-System.pdf
https://www.rfc-editor.org/rfc/rfc1128.ps

Acknowledgements

• These slides are by Steve Ko, lightly modified by Ethan
Blanton and used with permission.

• These slides contain material developed and copyrighted
by Indranil Gupta at UIUC.

	Slide 1
	Last Time
	Today’s Question
	Today’s Question
	Physical Clocks & Synchronization
	Time Standards
	Synchronizing Physical Clocks
	Clock Synchronization Using a Time Server
	Cristian’s Algorithm
	Cristian’s Algorithm
	Cristian’s Algorithm
	The Network Time Protocol (NTP)
	NTP Peer Message Exchange
	The Protocol
	The Protocol
	Theoretical Base for NTP
	Theoretical Base for NTP
	Then a Breakthrough…
	Events Occurring at Three Processes
	Summary
	References
	Acknowledgements

