CSE 486/586 Distributed Systems

Time and Synchronization

Slides by Steve Ko

Computer Sciences and Engineering
University at Buffalo

CSE 486/586



Last Time

e Synchronous and asynchronous systems

e Failure detection
- Properties: completeness and accuracy
- Perfect accuracy impossible in asynchronous systems
- Simple protocols: heartbeating and ping-ack

- Falilure detection for large groups
« Centralized heartbeat
* Ring heartbeat
 All-to-all heartbeat

- Metrics: bandwidth, detection time, scalability, accuracy

University at Buffalo
The State University of New York




The Next Two Lectures

* Time
One of the two fundamental challenges in DS:

— Failure, Ordering

Recall that we even used time for failure detection!
* In an ideal world:

— We know exactly when something happens

— Everyone agrees on that time

* How do we agree on time?
* Why is it hard?

University at Buffalo
The State University of New York




Today

* Servers in the cloud need to timestamp events

* Servers A and B have different clock values
— You buy an airline ticket online
— It's the last airline ticket available on that flight
— Server A timestamps your purchase at 9h:15m:32.45s

— What if someone else also bought the last ticket (via server B) at
9h:20m:22.76s?

— What if Server Awas > 10 minutes ahead of server B? Behind?
— How would you know what the difference in clocks was?

University at Buffalo
The State University of New York




Physical Clocks & Synchronization

* Some definitions: Clock Skew versus Drift
* Clock Skew: Relative difference in clock values of two processes

* Clock Drift: Relative difference in clock frequencies of two
processes

* Clock drift will cause skew to continuously increase.

* Real-life examples

— Ever seen “make: warning: Clock skew detected. Your build may
be incomplete.”?

— It's reported that in the worst case, there’s 1 sec/day drift in
modern HW.

— Almost all physical clocks experience this.

University at Buffalo
The State University of New York




Time Standards

Time is a big deal in a lot of disciplines.

Consequently, there are many physical solutions:
- Frequency standards: Rb, Cs, OCXO, ...
- Time services: WWV/WWVB, GPS, ...

It turns out agreeing on physical time is quite difficult

- Propagation delays (speed of light!)
- Relativistic effects

Absolute time has broadly settled on Coordinated Universal
Time (UTC)

University at Buffalo
The State University of New York




Synchronizing Physical Clocks

* C,(t): the reading of the software clock at process i when the real
time is t.

* External synchronization: For a synchronization bound D>0, and for
source S of UTC time,

‘S(t) - Ci (t)‘ <D,
for i=1,2,...,N and for all real times {.
Clocks C, are accurate to within the bound D.
* Internal synchronization: For a synchronization bound D>0,
‘Ci(t) - Cj(t)‘ <D
for i, j=1,2,...,N and for all real times {.
Clocks C; agree within the bound D.

* External synchronization with D = Internal synchronization with 2D
* Internal synchronization with D — External synchronization with ??

University at Buffalo
The State University of New York



Clock Synchronization Using a Time
Server

O——0O

P Time server,S

* Client: “What time is it?”
 Server:; “It's t.”
* Any difficulty?

'[é UmverSIty at Buffalo
The Sta sity of New York




Cristian’s Algorithm

* Uses a fime server to synchronize clocks
* Mainly designed for LAN
* Time server keeps the reference time (say UTC)

* Aclient asks the time server for time, the server
responds with its current time T, and the client uses the
received value T to set its clock

* Network round-trip time introduces error.

* So what do we need to do?

— Estimate one-way delay

University at Buffalo
The State University of New York




Cristian’s Algorithm

* Let RTT = response-received-time — request-sent-time
(measurable at client)

* Also, suppose we know

— The minimum value min of the client-server one-way
transmission time [Depends on what?]

— That the server timestamped the message at the last possible
instant before sending it back

* Then the actual time is between [T+min, T+RTT— min]
T

—min A \ min

H—ﬂ

RTT

Request sent Response received
'[é University at Buffalo
The State University of New York



Cristian’s Algorithm

* (From previous slide), the accuracy is: +-(RTT1/2 — min)
* Cristian’s algorithm [1]

— Aclient asks its time server.

— The time server sends its time T.

— The client estimates the one-way delay and sets its time.
» ltuses T + RTT/2

* Want to improve accuracy?
— Take multiple readings and use the minimum RTT: tighter bound

— Ignore unusually long RTTs and repeat the request: remove
outliers

University at Buffalo
The State University of New York




The Network Time Protocol (NTP)

* Uses a network of time servers to synchronize all
processes on a network.

* Designed for the Internet
* Why not Cristian’s algorithm?

* Time servers are organized into a tree
* The root is disciplined by UTC

Stratum 2 servers,
sync’ed by the
primary server

sync’ed by the
secondary

The State University of New York



NTP Peer Message Exchange

Server B Ti Ti. _
Time

Time

Server A Ti_3 T,

* Each message bears timestamps of recent message
events: the local time when the previous NTP message
was sent and received, and the local time when the

current message was transmitted.

University at Buffalo
The State University of New York



The Protocol

Server B T. Ti_

Time

Time

Server A Ti-3 Ti

» Compute round-trip delay: (T, — T.;) — (T., — T.,)

* Take the half of the round-trip delay as the one-way
estimate: (T.—T.,;)— (T, —T.,))/2

University at Buffalo
The State University of New York




The Protocol [2]

Server B T. Ti_

Time

Time

Server A Ti-3 Ti

* Compute offset:
- T.,+ (one-way estimate) - T. = ((T.,—T.;) + (T, —T))/2
* Do this with not just one server, but multiple servers.

* Do some statistical analysis, remove outliers, and apply a
data filtering algorithm.

— Out of scope of this lecture
'[é University at Buffalo
The State University of New York




Theoretical Base for NTP

Server B T. Ti_

Time

Time

Server A Ti-3 Ti

0. estimate of the actual offset between the two clocks

« d: estimate of accuracy of o, ; total transmission times for
m and m’; d=t+t’

University at Buffalo
The State University of New York




Theoretical Base for NTP

Server B T. Ti_

Server A Ti.3 Ti
G irst, let's get O: \
Tia=Tis+t+0
Ti=Ti,+t-0

= 0= (T,'_2 —Tis+Ti —T,)/2+(t’—t)/2
Then, get the bound for (t'—t)/2:

Time

Time

Ginally, we set :

Oi=(Ti.a=Tis+Tii—T)/2
di=t+t0=T,,—Ti3+T;—Ti

Then we get :

University at Buffalo

The State University of New York

Gh

\ -t —t< t—t< t+t (since t,t20) AN

oi—di/2<0<0+d/2.

~

%




Then a Breakthrough...

* We cannot sync multiple clocks perfectly.

* Thus, if we want to order events happening in different
processes, we cannot rely on physical clocks.

- Remember the ticket reservation example?

* Then came logical time.
— First proposed by Leslie Lamport in the 70s [2]
— Based on causality of events
- Defines relative time, not absolute time

* Critical observation: time (ordering) only matters if two or
more processes interact, I.e., send/receive messages.

Time, Clocks, and the Ordering of Events in a Distributed System [2] is required reading.

University at Buffalo
The State University of New York




Events Occurring at Three Processes

P1 >
a b m1
o @ » Physical
ime
C d m,
p3 @ >
e f

'[é Umver51ty at Buffalo
The Sta sity of New York




Summary

* Time synchronization important for distributed systems
— Cristian’s algorithm
- NTP

* Relative order of events is sufficient for many purposes
- Lamport’s logical clocks

Next time:
- More logical clocks

University at Buffalo
The State University of New York




References

[1] Probabilistic clock synchronization. Flaviu Cristian. Distributed
Computing Vol 3 No 3. September 19809.

[2] Time, Clocks, and the Ordering of Events in a Distributed System.
Leslie Lamport. Communications of the ACM Vol 21 No 7. July
1978. Required Reading.
https://www.microsoft.com/en-us/research/uploads/prod/2016/12/Time
-Clocks-and-the-Ordering-of-Events-in-a-Distributed-System.pdf

[3] Internet Time Synchronization: The Network Time Protocol. Dave L.
Mills. RFC 1128. October 19809.
https://www.rfc-editor.org/rfc/rfc1128.ps

[4] Textbook section 14.4. Required Reading.

University at Buffalo
The State University of New York



https://www.microsoft.com/en-us/research/uploads/prod/2016/12/Time-Clocks-and-the-Ordering-of-Events-in-a-Distributed-System.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2016/12/Time-Clocks-and-the-Ordering-of-Events-in-a-Distributed-System.pdf
https://www.rfc-editor.org/rfc/rfc1128.ps

Acknowledgements

* These slides are by Steve Ko, lightly modified by Ethan
Blanton and used with permission.

* These slides contain material developed and copyrighted
by Indranil Gupta at UIUC.

University at Buffalo
The State University of New York




	Slide 1
	Last Time
	Today’s Question
	Today’s Question
	Physical Clocks & Synchronization
	Time Standards
	Synchronizing Physical Clocks
	Clock Synchronization Using a Time Server
	Cristian’s Algorithm
	Cristian’s Algorithm
	Cristian’s Algorithm
	The Network Time Protocol (NTP)
	NTP Peer Message Exchange
	The Protocol
	The Protocol
	Theoretical Base for NTP
	Theoretical Base for NTP
	Then a Breakthrough…
	Events Occurring at Three Processes
	Summary
	References
	Acknowledgements

