
CSE 486/586

CSE 486/586 Distributed Systems
Global States

Slides by Steve Ko
Computer Sciences and Engineering

University at Buffalo

Last Time

● Ordering of Events
– Necessary for many applications:

● Collaborative editing
● Distributed storage
● Resource allocation

● Logical time
– Happens-before and causality

– Lamport clocks

– Vector clocks

● Today: Snapshots of global state

Administrivia

● Coding practices
– Use good practice!

– Variable naming, comments, structure

– Loop invariants

● Debugging other students’ code is an AI violation
– No other student’s code should ever be on your machine!

Today’s Question

• Example Question: Who has the most Twitter followers?
• Are there challenges to answering this question?

– It changes!

• What do we need?
– A snapshot of the social network graph at a particular time

Today’s Question

• Distributed debugging

• How do you debug this?
– Log in to one machine and see what happens
– Collect logs and see what happens
– Take a global snapshot!

P0 P1 P2

Deadlock!

Both waiting…

What is a Snapshot?

• Single process snapshot
• A snapshot of local state: e.g., memory dump, stack trace, etc.

• Multi-process snapshot
• Snapshots of all process states

• Network snapshot
● All messages in the network

What Do We Want?

• Would you say this is a good snapshot?
– “Good”: we can explain all the causality, including messages

– No, because e2
1 might have been caused by e3

1.

P1

P2

P3

e1
0 e1

1
e1

2 e1
3

e2
0

e2
1

e2
2

e3
0 e3

1 e3
2

A “cut”

What Do We Want?

• Three things we want.
– Per-process state
– Messages that are causally related to each and every local

snapshot and in flight
– All events that happened before each event in the snapshot

P1

P2

P3

e1
0 e1

1
e1

2 e1
3

e2
0

e2
1

e2
2

e3
0 e3

1 e3
2

A “cut”

Obvious First Try

• Synchronize clocks of all processes
– Ask all processes to record their states at known time t

• Problems?
– Only approximate time synchronization is possible
– Another issue?

– Does not record the state of messages in the channels
• Again: causality is sufficient!
• What we need: logical global snapshot

– The state of each process
– Messages in transit in all communication channels

P0 P1 P2

msg

How to Do It? Definitions

• For a process Pi , where events ei
0, ei

1, … occur,

• history(Pi) = hi = <ei
0, ei

1, … >

• prefix history(Pi
k) = hi

k = <ei
0, ei

1, …,ei
k >

• Si
k : Pi ’s state immediately after kth event

P1

P2

P3

e1
0 e1

1
e1

2 e1
3

e2
0

e2
1

e2
2

e3
0 e3

1 e3
2

How to Do It? Definitions

• For a set of processes P1 , …,Pi , … :

• Global history: H = i (hi)

• Global state: S = i (Si
k
i)

• A cut C H = h1
c1 h2

c2 … hn
cn

• The frontier of C = {ei
ci, i = 1,2, … n}

P1

P2

P3

e1
0 e1

1
e1

2 e1
3

e2
0

e2
1

e2
2

e3
0 e3

1 e3
2

Consistent States

• A cut C is consistent if and only if
• e C (if f e then f C)

• A global state S is consistent if and only if
• it corresponds to a consistent cut

P1

P2

P3

e1
0 e1

1 e1
2 e1

3

e2
0

e2
1

e2
2

e3
0 e3

1 e3
2

Inconsistent cut Consistent cut

Why Consistent States?

• #1: For each event, you can trace back the causality.
• #2: Consider a state machine

– The execution of a distributed system as a series of transitions

between global states: S0 S1 S2 …
– …where each transition happens with one single action from a

process (i.e., local process instruction, send, and receive)
– i.e., the clock “ticks” in the logical clocks of last lecture
– Each state (S0, S1, S2, …) is a consistent state

The Snapshot Algorithm: Assumptions

• There is a communication channel between each pair of
processes

– N-1 input and N-1 output channels at each process

• Communication channels are unidirectional and FIFO-
ordered (important point)

• No failures, all messages arrive intact and exactly once

• Any process may initiate the snapshot

• Snapshot does not interfere with normal execution

• Each process is able to record its state and the state of
its incoming channels (no central collection)

Single Process vs. Multiple Processes

• Single process snapshot
• A snapshot of local state; e.g., memory dump, stack trace, etc.

• Multi-process snapshot
• Snapshots of all process states

• Network snapshot: all messages in the network

• Two questions:
• #1: When should a local snapshot be taken at each process so

that the collection of snapshots forms a consistent global state?

• #2: How are messages in flight captured?

The Snapshot Algorithm

• Clock-synced snapshot (instantaneous snapshot)
• Process snapshots and network messages at time t
• Need to capture:

– Local snapshots of P1 & P2
– Messages in the network (message a, since message a is

causally related to P2’s snapshot)

• We can’t quite do it due to (i) imperfect clock sync and (ii)
no help from the network.

P1

P2
a

b

The Snapshot Algorithm [2]

• Logical snapshot (not instantaneous)
– Goal: capture causality (events and messages)
– A process initiates the snapshot by sending a message (see the

diagram). There is delay in this communication.
– Need to capture all network messages during the delay (not at an

instantaneous moment)
• We need to capture:

– Local snapshots of P1 & P2 (but now at different times).
– Messages in flight that are causally related to each and every

local snapshot; e.g., messages a and b for P2’s snapshot.
– How?

P1

P2
a

M
b

The Snapshot Algorithm [3]

• P1 needs to record all causally-related messages.
– All the messages already in the network.
– All the messages sent during the delay.

• For messages already in the network,
– P1 starts recording as soon as it sends the marker M
– The messages already in the network will eventually arrive at P1

• For messages sent during the delay,
– P2 sends a marker M’ to tell P1 that a local snapshot was taken
– This marks the end of the delay
– FIFO ensures that M’ is the last message received

P1

P2
a

M’b

The Snapshot Algorithm [4]

• Basic idea: marker broadcast & recording
– The initiator broadcasts a “marker” message to everyone else
– If a process receives a marker for the first time, it takes a local

snapshot, starts recording all incoming messages, and
broadcasts a marker again to everyone else.

– A process stops recording for each channel when it receives a
marker for that channel.

P1

P2

P3

a

b

M
M

M

M

M

M

The Snapshot Algorithm [5]

1. Marker sending rule for initiator process P0

• After P0 has recorded its own state
• for each outgoing channel C, send a marker message on C

2. Marker receiving rule for a process Pk

 on receipt of a marker on channel C:
• if Pk has not yet recorded its own state

• record Pk’s own state

• record the state of C as “empty”
• for each outgoing channel C, send a marker on C
• turn on recording of messages over other incoming channels

• else
• record the state of C as all the messages received over C since Pk

saved its own state; stop recording state of C

Chandy and Lamport’s Snapshot [1]

Marker receiving rule for process pi

On pi’s receipt of a marker message over channel c:
if (pi has not yet recorded its state) it

records its process state now;
records the state of c as the empty set;
turns on recording of messages arriving over other incoming channels;

else
 pi records the state of c as the set of messages it has received over c
since it saved its state.

end if
Marker sending rule for process pi

After pi has recorded its state, for each outgoing channel c:
 pi sends one marker message over c
(before it sends any other message over c).

Exercise

P1

P2

P3

e1
0

e2
0

e2
3

e3
0

e1
3

a

b

M

e1
1,2

M

1- P1 initiates snapshot: records its state (S1); sends Markers to P2 & P3;
turns on recording for channels C21 and C31

e2
1,2,3

M

M

2- P2 receives Marker over C12, records its state (S2), sets state(C12) = {}
sends Marker to P1 & P3; turns on recording for channel C32

e1
4

3- P1 receives Marker over C21, sets state(C21) = {a}

e3
2,3,4

M

M

4- P3 receives Marker over C13, records its state (S3), sets state(C13) = {}
sends Marker to P1 & P2; turns on recording for channel C23

e2
4

5- P2 receives Marker over C32, sets state(C32) = {b}

e3
1

6- P3 receives Marker over C23, sets state(C23) = {}

e1
3

7- P1 receives Marker over C31, sets state(C31) = {}

22

One Provable Property

• The snapshot algorithm gives a consistent cut
• Meaning,

– Suppose ei is an event in Pi, and ej is an event in Pj

– If ei ej, and ej is in the cut, then ei is also in the cut.

• Proof sketch: proof by contradiction
– Suppose ej is in the cut, but ei is not.

– Since ei ej, there must be a sequence M of messages that
leads to the relation.

– Since ei is not in the cut (our assumption), a marker should
have been sent before ei, and also before all of M.

– Then Pj must have recorded a state before ej, meaning ej is not
in the cut. (Contradiction)

Summary

• Global state
– A union of all process states
– Consistent global state vs. inconsistent global state

• The snapshot algorithm
• Take a snapshot of the local state

• Broadcast a marker message to tell other processes

• Start recording all incoming messages for each channel until
receiving a marker on that channel

• Outcome: a consistent global state

References

[1] Leslie Lamport, K. Mani Chandy. Distributed Snapshots:
Determining Global States of a Distributed System. ACM
Transactions on Computer Systems Vol 3 No 1. February
1985. Required Reading.
http://research.microsoft.com/users/lamport/pubs/chandy.
pdf

http://research.microsoft.com/users/lamport/pubs/chandy.pdf
http://research.microsoft.com/users/lamport/pubs/chandy.pdf

Acknowledgements

• These slides are by Steve Ko, lightly modified and used
with permission by Ethan Blanton

• These slides contain material developed and copyrighted
by Indranil Gupta at UIUC.

	Slide 1
	Last Time
	Slide 3
	Today’s Question
	Today’s Question
	What is a Snapshot?
	What Do We Want?
	What Do We Want (2)
	Obvious First Try
	How to Do It? Definitions
	Slide 11
	Consistent States
	Why Consistent States?
	The Snapshot Algorithm: Assumptions
	Single Process vs. Multiple Processes
	The Snapshot Algorithm
	The Snapshot Algorithm
	The Snapshot Algorithm_clipboard0
	The Snapshot Algorithm
	The Snapshot Algorithm
	Chandy and Lamport’s Snapshot
	Exercise
	One Provable Property
	Summary
	References
	Acknowledgements

