CSE 486/586 Distributed Systems
Reliable Multicast (part 1)

Slides by Steve Ko

Computer Sciences and Engineering
University at Buffalo

CSE 486/586



Last Time

* Global state

— A union of all process states
— Consistent global state vs. inconsistent global state

* The snapshot algorithm
* Take a snapshot of the local state
* Broadcast a marker message to tell other processes

« Start recording all incoming messages for each channel until
receiving a marker on that channel

* Qutcome: a consistent global state

University at Buffalo
The State University of New York



Today

* How does a group of processes communicate?

Unicast (best effort or reliable)
— One-to-one: message from process p to process q.
— Best effort: message may be delivered, but will be intact
— Reliable: message will be delivered intact
Broadcast
— One-to-all: Message from process p to all processes
— Impractical for large networks
Multicast
— One-to-many: “local” broadcast within a group g of processes

What are the issues with multicast?
— Processes crash (we assume crash-stop failures)
— Messages get delayed

University at Buffalo
The State University of New York



Why: Examples

' a - - i —
\ SR -
— — § Y \ V% v,
: — = :.,{ N — e - e A Vs .T/-

"/‘.'_ e

aam

L n

h o | y ; g ‘é'- . =T
T g H #-E_“ v 2 o -
= el quia 5 . 2 . ;
- 7 3 — Bl l‘ .l
== — L

Rl e N an o N Wse

University at Buffalo
The State University of New York



Why: Examples

* Akamai’s Configuration Management System (called
ACMS)

— A core group of 3-5 servers.
— Continuously multicast the latest updates to each other.

— After an update is reliably multicast within this group, it is then
sent out to all the (1000s of) servers Akamai has all over the
world.

* Air Traffic Control System

— Commands by one ATC need to be ordered and (reliably)
multicast out to other ATCs.

* Newsgroup servers
— Multicast to each other in a reliable and ordered manner.

University at Buffalo

The State University of New York



The Interface

Application

(at process p)
One process p

send + deliver
|

multicast multicast

MULTICAST PROTOCOL

receive
Incoming
messages

University at Buffalo
The State University of New York



What: Properties to Consider

* Liveness: guarantee that something good will happen
eventually

— From the initial state, there exists a reachable state where the
predicate becomes true.

— “Guarantee of termination” is a liveness property
* Safety: guarantee that something bad will never happen

— For any state reachable from the initial state, the predicate is
false.

— Deadlock avoidance algorithms provide safety
* Liveness and safety are used in many other CS contexts.

University at Buffalo
The State University of New York



Basic Multicast (B-multicast)

* A straightforward way to implement B-multicast is to use
a reliable one-to-one send (unicast) operation:

— B-multicast(g,m): for each process p in g, send(p,m).
— receive(m): B-deliver(m) at p.
* Guarantees?

— All processes in g eventually receive every multicast message...
— ... as long as the sender doesn’t crash
— This guarantee is not so good

* What guarantees do we want?

University at Buffalo
The State University of New York



Reliable Multicast Goals

* Integrity: A correct (i.e., non-faulty) process p delivers a
message m at most once.

— “Non-faulty”: doesn’t deviate from the protocol or crash-stop

* Agreement: If a correct process delivers message m,
then all the other correct processes in group(m) will
eventually deliver m.

— Property of “all or nothing.”

* Validity: If a correct process muliicasts (sends) message
m, then it will eventually deliver m itself.

— Guarantees liveness to the sender.

* Validity and agreement together ensure overall liveness:
If some correct process multicasts a message m, then, all

correct processes deliver m too.
University at Buffalo

The State University of New York



Overview of Reliable Multicast

* Keep a history of messages
- Integrity: at-most-once delivery
* Every host repeats each new message upon receipt

- Agreement: even if the sender fails, m will be
delivered if one correct process received it

* Processes self-deliver
- Validity

University at Buffalo

The State University of New York



Reliable R-Multicast Algorithm

On initialization:
Received = {};
For process p to R-multicast message m to group g:

B-multicast(g,m); R-multicast | yses
B-multicast Y |uses

(p € g is included as destination) Roliable unicasty

On B-deliver(m) at process g with g = group(m):

if (m & Received): Integrity
Received := Received U {m)};
if :
ta#p) _ Agreement
B-multicast(g,m);
R-deliver(m) Validity

University at Buffalo
The State University of New York



Ordered Multicast Problem

Mh
P = =
. $
M2
% i Y

P3
* Each process delivers received messages independently.

— What is the order of delivery for each process if they deliver as
soon as they receive?

* There are other possibilities: what should we use?

* Three meaningful types of ordering
— FIFO, Causal, Total

University at Buffalo
The State University of New York



FIFO Ordering

* Message delivery in every process should preserve the
sending order for each individual process.

* Messages from different processes can be interleaved in
any order!
* With these sends:
— P1: m0, m1, m2
— P2: m3, m4, mb5
— P3: m6, m7, m8
* Are these FIFO?
— P1: m0, m3, m6, m1, m4, m7, m2, m5, m8
— P2: m0, m4, m6, m1, m3, m7, m2, m5, m8
— P3: m6, m7, m8, mO, m1, m2, m3, m4, m5

University at Buffalo
The State University of New York



Causal Ordering

* Message delivery at each individual process preserves
the happened-before relationship across all processes

* Each process may deliver messages in a different order

* For example, given:
- P1: m0, m1, m2
- P2: m3, m4, m5
- P3: m6, m7, m8
— Cross-process happened-before: m0 - m4, m5 - m8

* |s this causal ordering?
— P1: m0O, m3, m6, m1, m4, m7, m2, m5, m8
— P2: mO, m4, m1, m7, m3, m6, m2, m5, m8
— P3: m0, m1, m2, m3, m4, m5, m6, m7, m8

University at Buffalo
The State University of New York



Total Ordering

* Every process delivers all messages in the same order

* For example, given:

- P1: m0, m1, m2

- P2: m3, m4, m5

- P3: m6, m7, m8

Is this total ordering?

- P1: m7, m1, m2, m4, m5, m3, m6, mO, m8
— P2: m7, m1, m2, m4, m5, m3, m6, m0O, m8
— P3: m7, m1, m2, m4, m5, m3, m6, mO, m8

What about this?

- P1: m7, m1, m2, m4, m5, m3, m6, m0O, m8
— P2: m7, m2, m1, m4, m5, m3, m6, m0O, m8
— P3: m7, m1, m2, m4, m5, m3, m6, m0O, m8

University at Buffalo
The State University of New York



Ordered Multicast

 FIFO Ordering: If a correct process issues multicast(g, m)
and then multicast(g, m’), then every correct process that
delivers m’ will have already delivered m.

e Causal Ordering: If multicast(g, m) — multicast(g, m’),
then every correct process that delivers m’ will have
already delivered m.

- Typically, — is defined over multicast communication only.
e T[otal Ordering: If any correct process delivers m before

m’, then every correct process that delivers m’ will have
already delivered m.

University at Buffalo

The State University of New York



Total, FIFO and Causal Ordering

* Totally ordered messages
T,and T,.

* FIFO-related messages

F,to F,.

* Causally related
messages C, to C,

* Total ordering does not
imply causal ordering.

* Causal ordering implies
FIFO ordering

* Causal ordering does not
imply total ordering.

* Hybrid mode: causal-total
ordering, FIFO-total

ordering.
University at Buffalo

The State University of New York

T4 |

Time




Display From Bulletin Board Program

Bulletin board:os.interesting
Item |From Subject
23 A.Hanlon Mach
24 G.Joseph Microkernels
25 A.Hanlon Re: Microkernels
26 T.Heureux RPC performance
27 M. Walker Re: Mach
end

What is the most appropriate ordering for this application?
(a) FIFO (b) causal (c) total

University at Buffalo
The State University of New York




Providing Ordering Guarantees
(FIFO)

* Look at messages from each process in the order they
were sent:

— Each process keeps a sequence number for each other process.
— Every message carries its origin’s sequence number.

— When a message is received, if message # is:
» as expected (next sequence for that process), accept
» higher than expected, buffer in a queue
» lower than expected, reject

* Much like TCP sequence space processing!

University at Buffalo
The State University of New York



Implementing FIFO Ordering

* At each process p:
- SP,: the number of messages p has sent to group g.

- R9: the sequence number of the latest group-g message p has
delivered from q.

* For pto FO-multicast mto g
— p increments S°, by 1.
— p “piggy-backs” the value Sr, onto the message.
— p B-multicasts mto g.
* At process p, upon receipt of m from g with sequence S:
— p checks whether S = R9_+1. If so, p FO-delivers m and increments R¢,

— If S> R+ 1, p places the message in the hold-back queue until the
intervening messages have been delivered and S= R9 +1.

—IfS< ng + 1, p rejects m.

University at Buffalo
The State University of New York



Hold-back Queue for Arrived Multicast
Messages

Message
processing

‘ deliver

Hold-back
queue

Delivery queue

When delivery
guarantees ar

Incoming
messages

University at Buffalo

The State University of New York



Example: FIFO Multicast

(Not to be confused with vector timestamps!)

Physical Time . Reject:
1<1+1
deliver:

Pq [doo Y& 2=1+1 412110 210
1* NG 1 1
P2 Lolalo sppae ZiorgT 120110 .
1 deliver:
N\ N =0+
P3 [ddo olojo] [1lolo] [2l1lo

2010

deliver:
1=0+1

20l0

deliver:
1=0+1
buffer:
2>0 +1

deliver
buffered:
2=1+1

ololo] Sequence Vector

University at Buffalo
The State University of New York




Summary

* Reliable multicast
- Reliability
— Ordering
- R-multicast

* Ordered Multicast
- FIFO ordering
— Causal ordering
- Total ordering

e Next time: more multicast!

University at Buffalo
The State University of New York



References

* Textbook section 15.4. Required Reading.

University at Buffalo

The State University of New York



Acknowledgements

* These slides created by Steve Ko, lightly modified
and used with permission by Ethan Blanton

* These slides contain material developed and
copyrighted by Indranil Gupta (UIUC).

University at Buffalo

The State University of New York



	Slide 1
	Last Time
	Today’s Question
	Why: Examples
	Why: Examples
	The Interface
	What: Properties to Consider
	Basic Multicast (B-multicast)
	Reliable Multicast Goals
	Overview of Reliable Multicast
	Reliable R-Multicast Algorithm_clipboard0
	Ordered Multicast Problem
	FIFO Ordering
	Causal Ordering
	Total Ordering
	Ordered Multicast
	Total, FIFO and Causal Ordering
	Display From Bulletin Board Program
	Providing Ordering Guarantees (FIFO)
	Implementing FIFO Ordering
	Hold-back Queue for Arrived Multicast Messages
	Example: FIFO Multicast
	Summary
	Slide 24
	Acknowledgements

