
CSE 486/586

CSE 486/586 Distributed Systems
Reliable Multicast (part 1)

Slides by Steve Ko
Computer Sciences and Engineering

University at Buffalo

Last Time

• Global state
– A union of all process states
– Consistent global state vs. inconsistent global state

• The snapshot algorithm
• Take a snapshot of the local state

• Broadcast a marker message to tell other processes

• Start recording all incoming messages for each channel until
receiving a marker on that channel

• Outcome: a consistent global state

Today

• How does a group of processes communicate?
• Unicast (best effort or reliable)

– One-to-one: message from process p to process q.
– Best effort: message may be delivered, but will be intact
– Reliable: message will be delivered intact

• Broadcast
– One-to-all: Message from process p to all processes
– Impractical for large networks

• Multicast
– One-to-many: “local” broadcast within a group g of processes

• What are the issues with multicast?
– Processes crash (we assume crash-stop failures)
– Messages get delayed

Why: Examples

Why: Examples

• Akamai’s Configuration Management System (called
ACMS)
– A core group of 3-5 servers.
– Continuously multicast the latest updates to each other.
– After an update is reliably multicast within this group, it is then

sent out to all the (1000s of) servers Akamai has all over the
world.

• Air Traffic Control System
– Commands by one ATC need to be ordered and (reliably)

multicast out to other ATCs.

• Newsgroup servers
– Multicast to each other in a reliable and ordered manner.

The Interface

Application
(at process p)

MULTICAST PROTOCOL

send

multicast

Incoming
messages

deliver

multicast

One process p

receive

What: Properties to Consider

• Liveness: guarantee that something good will happen
eventually
– From the initial state, there exists a reachable state where the

predicate becomes true.
– “Guarantee of termination” is a liveness property

• Safety: guarantee that something bad will never happen
– For any state reachable from the initial state, the predicate is

false.
– Deadlock avoidance algorithms provide safety

• Liveness and safety are used in many other CS contexts.

Basic Multicast (B-multicast)

• A straightforward way to implement B-multicast is to use
a reliable one-to-one send (unicast) operation:
– B-multicast(g,m): for each process p in g, send(p,m).
– receive(m): B-deliver(m) at p.

• Guarantees?
– All processes in g eventually receive every multicast message…
– … as long as the sender doesn’t crash
– This guarantee is not so good

• What guarantees do we want?

Reliable Multicast Goals

• Integrity: A correct (i.e., non-faulty) process p delivers a
message m at most once.
– “Non-faulty”: doesn’t deviate from the protocol or crash-stop

• Agreement: If a correct process delivers message m,
then all the other correct processes in group(m) will
eventually deliver m.
– Property of “all or nothing.”

• Validity: If a correct process multicasts (sends) message
m, then it will eventually deliver m itself.
– Guarantees liveness to the sender.

• Validity and agreement together ensure overall liveness:
if some correct process multicasts a message m, then, all
correct processes deliver m too.

Overview of Reliable Multicast

● Keep a history of messages
– Integrity: at-most-once delivery

● Every host repeats each new message upon receipt
– Agreement: even if the sender fails, m will be

delivered if one correct process received it

● Processes self-deliver
– Validity

Reliable R-Multicast Algorithm

On initialization:

Received := {};

For process p to R-multicast message m to group g:

B-multicast(g,m);

(p g∈ is included as destination)

On B-deliver(m) at process q with g = group(m):

if (m ∉ Received):

Received := Received ∪ {m};

if (q ≠ p):

B-multicast(g,m);

R-deliver(m)

R-multicast
B-multicast
Reliable unicast

uses
uses

Integrity

Validity

Agreement

Ordered Multicast Problem

• Each process delivers received messages independently.
– What is the order of delivery for each process if they deliver as

soon as they receive?

• There are other possibilities: what should we use?
• Three meaningful types of ordering

– FIFO, Causal, Total

P1

P2

P3

M1

M2

FIFO Ordering

• Message delivery in every process should preserve the
sending order for each individual process.

• Messages from different processes can be interleaved in
any order!

• With these sends:
– P1: m0, m1, m2
– P2: m3, m4, m5
– P3: m6, m7, m8

• Are these FIFO?
– P1: m0, m3, m6, m1, m4, m7, m2, m5, m8
– P2: m0, m4, m6, m1, m3, m7, m2, m5, m8
– P3: m6, m7, m8, m0, m1, m2, m3, m4, m5

Causal Ordering

● Message delivery at each individual process preserves
the happened-before relationship across all processes

● Each process may deliver messages in a different order
● For example, given:

– P1: m0, m1, m2
– P2: m3, m4, m5
– P3: m6, m7, m8
– Cross-process happened-before: m0  m4, m5  m8

● Is this causal ordering?
– P1: m0, m3, m6, m1, m4, m7, m2, m5, m8
– P2: m0, m4, m1, m7, m3, m6, m2, m5, m8
– P3: m0, m1, m2, m3, m4, m5, m6, m7, m8

Total Ordering

● Every process delivers all messages in the same order
● For example, given:

– P1: m0, m1, m2
– P2: m3, m4, m5
– P3: m6, m7, m8

● Is this total ordering?
– P1: m7, m1, m2, m4, m5, m3, m6, m0, m8
– P2: m7, m1, m2, m4, m5, m3, m6, m0, m8
– P3: m7, m1, m2, m4, m5, m3, m6, m0, m8

● What about this?
– P1: m7, m1, m2, m4, m5, m3, m6, m0, m8
– P2: m7, m2, m1, m4, m5, m3, m6, m0, m8
– P3: m7, m1, m2, m4, m5, m3, m6, m0, m8

Ordered Multicast

● FIFO Ordering: If a correct process issues multicast(g, m)
and then multicast(g, m’), then every correct process that
delivers m’ will have already delivered m.

● Causal Ordering: If multicast(g, m)  multicast(g, m’),
then every correct process that delivers m’ will have
already delivered m.
– Typically,  is defined over multicast communication only.

● Total Ordering: If any correct process delivers m before
m’, then every correct process that delivers m’ will have
already delivered m.

Total, FIFO and Causal Ordering

F3

F1

F2

T2

T1

P1 P2 P3

Time

C3

C1

C2

• Totally ordered messages
T1 and T2.

• FIFO-related messages
F1 to F3.

• Causally related
messages C1 to C3

• Total ordering does not
imply causal ordering.

• Causal ordering implies
FIFO ordering

• Causal ordering does not
imply total ordering.

• Hybrid mode: causal-total
ordering, FIFO-total
ordering.

Display From Bulletin Board Program

Bulletin board: os.interesting

Item From Subject

23 A.Hanlon Mach

24 G.Joseph Microkernels

25 A.Hanlon Re: Microkernels

26 T.L’Heureux RPC performance

27 M.Walker Re: Mach

end

What is the most appropriate ordering for this application?

(a) FIFO (b) causal (c) total

What is the most appropriate ordering for this application?

(a) FIFO (b) causal (c) total

Providing Ordering Guarantees
(FIFO)

• Look at messages from each process in the order they
were sent:
– Each process keeps a sequence number for each other process.
– Every message carries its origin’s sequence number.
– When a message is received, if message # is:

» as expected (next sequence for that process), accept
» higher than expected, buffer in a queue
» lower than expected, reject

• Much like TCP sequence space processing!

Implementing FIFO Ordering

• At each process p:
– Sp

g: the number of messages p has sent to group g.
– Rq

g: the sequence number of the latest group-g message p has
delivered from q.

• For p to FO-multicast m to g
– p increments Sp

g by 1.

– p “piggy-backs” the value Sp
g onto the message.

– p B-multicasts m to g.
• At process p, upon receipt of m from q with sequence S:

– p checks whether S = Rq
g+1. If so, p FO-delivers m and increments Rq

g

– If S > Rq
g+ 1, p places the message in the hold-back queue until the

intervening messages have been delivered and S= Rq
g+1.

– If S < Rq
g
 + 1, p rejects m.

Hold-back Queue for Arrived Multicast
Messages

Message
processing

Delivery queue
Hold-back

queue

deliver

Incoming
messages

When delivery
guarantees are
met

Example: FIFO Multicast

P1

P2

P3

0 0 0

Physical Time

1 0 0 2 0 0

1 0 0 2 0 0 2 1 0

2 1 0

0 0 0

0 0 0

2 1 0

0 0 0 1 0 0 2 1 0

1 1 2 2 1

1

Reject:
1 < 1 + 1

deliver:
1 = 0 + 1

deliver:
2 = 1 + 1

2 0 0

buffer:
2>0 +1

deliver:
1 = 0 + 1

2 0 0

deliver
buffered:
 2 =1 + 1

deliver:
1 = 0 + 1

Sequence Vector0 0 0

1

(Not to be confused with vector timestamps!)

Summary

● Reliable multicast
– Reliability

– Ordering

– R-multicast

● Ordered Multicast
– FIFO ordering

– Causal ordering

– Total ordering

● Next time: more multicast!

References

● Textbook section 15.4. Required Reading.

Acknowledgements

• These slides created by Steve Ko, lightly modified
and used with permission by Ethan Blanton

• These slides contain material developed and
copyrighted by Indranil Gupta (UIUC).

	Slide 1
	Last Time
	Today’s Question
	Why: Examples
	Why: Examples
	The Interface
	What: Properties to Consider
	Basic Multicast (B-multicast)
	Reliable Multicast Goals
	Overview of Reliable Multicast
	Reliable R-Multicast Algorithm_clipboard0
	Ordered Multicast Problem
	FIFO Ordering
	Causal Ordering
	Total Ordering
	Ordered Multicast
	Total, FIFO and Causal Ordering
	Display From Bulletin Board Program
	Providing Ordering Guarantees (FIFO)
	Implementing FIFO Ordering
	Hold-back Queue for Arrived Multicast Messages
	Example: FIFO Multicast
	Summary
	Slide 24
	Acknowledgements

